PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Nonsteroidal Antiinflammatory Drugs/NSAIDs
    Ophthalmological Non-steroidal Anti-inflammatories

    BOXED WARNING

    Limit duration of use

    Systemic use of ketorolac is only indicated for the short-term management of moderately severe acute pain that requires analgesia at the opioid level. The oral tablets are only indicated as continuation treatment following IV or IM administration, if necessary. Limit duration of use so the total combined duration of use of oral and parenteral ketorolac does not exceed 5 days because of the increased risk of serious adverse events. Also, doses higher than recommended will not increase efficacy but will increase the risk of developing serious adverse events; the maximum recommended daily oral dose is significantly lower than the maximum daily parenteral dose.

    Acute myocardial infarction, angina, cardiac arrhythmias, cardiac disease, cardiomyopathy, cerebrovascular disease, coronary artery disease, heart failure, hypertension, myocardial infarction or stroke, peripheral vascular disease, tachycardia

    Systemic ketorolac, like all nonsteroidal anti-inflammatory drugs (NSAIDs), may exacerbate hypertension and congestive heart failure and may cause an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. The FDA has warned that the risk of myocardial infarction or stroke can occur as early as the first weeks of using a NSAID, and risk may increase with higher doses and longer duration of use. Data demonstrate that patients treated with NSAIDs were more likely to die in the first year following a myocardial infarction compared to those not treated with NSAIDs. NSAIDs may increase the risk of a cardiovascular thrombotic event in patients with or without underlying heart disease or risk factors for heart disease. Patients with known heart disease or risk factors appear to have a greater likelihood of an event following NSAID use, likely due to a higher baseline risk. Current evidence is insufficient to determine if the risk of an event is higher or lower for any particular NSAID compared to other NSAIDs. There is an increased risk of heart failure with NSAID use. Caution is recommended when administering systemic ketorolac to patients with cardiac disease, cardiomyopathy, cardiac arrhythmias (e.g., tachycardia), significant coronary artery disease (including acute myocardial infarction, angina, or history of myocardial infarction), peripheral vascular disease, cerebrovascular disease (e.g., stroke, transient ischemic attack), hypertension, pre-existing renal disease, or fluid retention. In addition, clinical practice guidelines state NSAIDs should not be administered to patients presenting with and hospitalized for ST-elevation myocardial infarction (STEMI) due to increased risk of mortality, reinfarction, hypertension, heart failure, and myocardial rupture associated with their use. Closely monitor blood pressure during ketorolac receipt. An increase in cardiovascular risk is not expected with ophthalmic use. Use the lowest effective dose for the shortest duration possible to minimize the potential risk for an adverse cardiovascular event. Inform patients to seek immediate medical attention if they experience any signs or symptoms of a cardiovascular thrombotic event.

    Bleeding, coronary artery bypass graft surgery (CABG), surgery

    Like all NSAIDs, ketorolac may increase the potential for hematological complications. Systemic formulations are contraindicated for use as a prophylactic analgesic before major surgery and contraindicated for use during surgery when hemostasis is critical; cautious use of the ophthalmic solution is advised with ocular surgery. Perioperative use has been associated with postoperative hematomas and other events. Postoperative parenteral use was associated with clinically significant bleeding in 0.4% of patients versus 0.2% of patients who received narcotic analgesics. Postoperative use when hemostasis is critical is not recommended. Bleeding after a single IV or IM dose in pediatric patients was greater after tonsillectomy versus other procedures. Systemic ketorolac, like other NSAIDS, is contraindicated for the treatment of peri-operative pain in the setting of coronary artery bypass graft surgery (CABG). An increased incidence of myocardial infarction and stroke was found through analysis of data regarding the use of a COX-2 selective NSAID for the treatment of pain in the first 10—14 days after CABG surgery. Ketorolac, in all forms, should be used with caution in patients with known bleeding tendencies and in patients who are receiving other medications that may prolong bleeding time (e.g., anticoagulant therapy) as such patients have an increased risk of bleeding complications. There have been reports that ocularly applied NSAIDs may cause increased bleeding of ocular tissues (including hyphemas) in conjunction with ocular procedures.

    DEA CLASS

    Rx

    DESCRIPTION

    Pyrrolo-pyrrole NSAID; for the short-term relief of pain; max of 5 consecutive days regardless of dosage form(s) used.

    COMMON BRAND NAMES

    Acular, Acular LS, Acular PF, Acuvail, SPRIX, Toradol

    HOW SUPPLIED

    Acular/Acular LS/Acular PF/Acuvail/Ketorolac/Ketorolac Tromethamine Ophthalmic Sol: 0.4%, 0.45%, 0.5%
    Ketorolac/Ketorolac Tromethamine/Toradol Intramuscular Inj Sol: 1mL, 2mL, 15mg, 30mg, 60mg
    Ketorolac/Ketorolac Tromethamine/Toradol Intravenous Inj Sol: 1mL, 15mg, 30mg
    Ketorolac/Ketorolac Tromethamine/Toradol Oral Tab: 10mg
    SPRIX Nasal Spray Met: 1actuation, 15.75mg

    DOSAGE & INDICATIONS

    For the reduction of postoperative ocular inflammation and ocular pain following cataract ocular surgery or corneal refractive surgery .
    For the reduction of postoperative ocular inflammation and ocular pain following cataract surgery.
    Ophthalmic dosage (ketorolac 0.5% ophthalmic solution)
    Adults, Adolescents, and Children >= 2 years

    Instill 1 drop into into the affected eye four times daily beginning 24 hours after cataract surgery; continue through the first 2 weeks after surgery.

    Ophthalmic dosage (ketorolac 0.45% ophthalmic solution)
    Adults

    Instill 1 drop into the affected eye twice daily beginning 1 day prior to cataract surgery; continue on the day of surgery and through the first 2 weeks after surgery.

    For the reduction of ocular pain and burning/stinging following corneal refractive surgery.
    Ophthalmic dosage (ketorolac 0.4% ophthalmic solution)
    Adults, Adolescents and Children >= 3 years

    Instill 1 drop four times daily in the affected eye as needed for pain and burning/stinging for up to 4 days following corneal refractive surgery.

    For the treatment of ocular pruritus due seasonal allergic conjunctivitis.
    Ophthalmic dosage (ketorolac 0.5% ophthalmic solution)
    Adults, Adolescents, and Children >= 3 years of age

    One drop (0.25 mg) instilled into affected eye(s) four times daily.

    For the short-term treatment of moderate pain or moderately severe pain that requires analgesia at the opioid level, including bone pain†, dental pain†, arthralgia†, and myalgia†.
    NOTE: Shortening the recommended dosing interval or increasing the dose may result in an increased frequency and severity of adverse reactions. Consider as needed opioid agonist therapy for breakthrough pain.
    NOTE: Do not administer systemic therapy for more than 5 consecutive days regardless of route (PO, Nasal, IV, or IM) or combination of routes because of an increased potential for a higher incidence and severity of adverse reactions (see Contraindications/Precautions and Adverse Reactions sections).
    NOTE: Correct hypovolemia before administering ketorolac. Ketorolac is contraindicated for use by patients at risk for renal failure due to volume depletion and by patients with advanced renal impairment (i.e., serum creatinine concentrations indicating advanced renal impairment).
    NOTE: Dosing of intranasal product is the same for moderate to moderately severe pain.
    For the short-term treatment of moderately severe pain.
    Intramuscular or intravenous dosage (single-dose treatment)
    Adults or Adolescents 17 years of age who weigh >= 50 kg and have normal renal function

    60 mg IM or 30 mg IV.

    Adults or Adolescents 17 years of age who weigh < 50 kg or have renal impairment, and Geriatric patients

    30 mg IM or 15 mg IV.

    Children >= 2 years and Adolescents <= 16 years

    1 mg/kg IM to a maximum of 30 mg or 0.5 mg/kg IV to a maximum of 15 mg.

    Intramuscular or intravenous dosage (mutiple-dose treatment)
    Adults or Adolescents 17 years of age who weigh >= 50 kg and have normal renal function

    30 mg IM/IV every 6 hours. Total systemic therapy should not exceed 5 days.

    Adults or Adolescents 17 years of age who weigh < 50 kg or have renal impairment, and Geriatric patients

    15 mg IM/IV every 6 hours. Total systemic therapy should not exceed 5 days.

    Oral dosage (continuation therapy from IM/IV only)
    Adults and Adolescents 17 years of age that weigh >= 50 kg and have normal renal function

    20 mg PO as the initial dose following IV/IM therapy, then 10 mg PO every 4—6 hours. Do not exceed 40 mg PO daily. Total systemic therapy should not exceed 5 days.

    Adults and Adolescents 17 years of age who weigh < 50 kg or have renal impairment, and Geriatric patients

    10 mg PO as the initial dose following IV/IM therapy, then 10 mg PO every 4—6 hours. Do not exceed 40 mg PO daily. Total systemic therapy should not exceed 5 days.

    Intranasal dosage
    Adults >= 50 kg with normal renal function

    1 spray (15.75 mg/spray) in each nostril (total dose of 31.5 mg) every 6 to 8 hours. Do not exceed daily maximum of 4 doses (8 sprays/126 mg). Total systemic therapy should not exceed 5 days.

    Adults weighing < 50 kg or with renal impairment, and Geriatric patients

    1 spray (15.75 mg/spray) in one nostril every 6 to 8 hours. Do not exceed daily maximum of 4 doses (4 sprays/63 mg). Total systemic therapy should not exceed 5 days.

    For the short-term treatment of moderate pain.
    Intranasal dosage
    Adults >= 50 kg with normal renal function

    1 spray (15.75 mg/spray) in each nostril (total dose of 31.5 mg) every 6 to 8 hours. Do not exceed daily maximum of 4 doses (8 sprays/126 mg). Total systemic therapy should not exceed 5 days.

    Adults < 50 kg or who have renal impairment, and Geriatric patients

    1 spray (15.75 mg/spray) in one nostril every 6 to 8 hours. Do not exceed daily maximum of 4 doses (4 sprays/63 mg). Total systemic therapy should not exceed 5 days.

    For the treatment of acute, severe headache†, including migraine†.
    Intramuscular or intravenous dosage (single-dose treatment)
    Adults < 65 years

    Separate studies comparing IM ketorolac to IM meperidine suggest that ketorolac should be administered in a single dose of 60 mg IM for the treatment of acute migraine. Ketorolac 60 mg IM was found equivalent to meperidine 100 mg IM/hydroxyzine 50 mg IM and equivalent to meperidine 75 mg IM/promethazine 25 IM in the acute treatment of migraine. Alternatively, a dose of 30 mg IV has been used.

    †Indicates off-label use

    MAXIMUM DOSAGE

    Adults

    >= 50 kg: 120 mg/day IV/IM, 40 mg/day PO, or 126 mg/day intranasally for no more than 5 days; ophthalmic dosage is indication and product specific.
    < 50 kg and/or with CrCl < 30 ml/min: 60 mg/day IV/IM, 40 mg/day PO, or 63 mg/day intranasally for no more than 5 days; ophthalmic dosage is indication and product specific.

    Geriatric

    60 mg/day IV/IM, 40 mg/day PO, or 63 mg/day intranasally for no more than 5 days; ophthalmic dosage is indication and product specific.

    Adolescents

    17 years and >= 50 kg: 120 mg/day IV/IM or 40 mg/day PO for no more than 5 days; safety and efficacy have not been established for intranasal use; ophthalmic dosage is indication and product specific.
    17 years and < 50 kg and/or with CrCl < 30 mL/min: 60 mg/day IV/IM or 40 mg/day PO for no more than 5 days; safety and efficacy have not been established for intranasal use; ophthalmic dosage is indication and product specific.
    13—16 years: 0.5 mg/kg IV (Max: 15 mg IV) or 1 mg/kg IM (Max: 30 mg IM) times one dose; safety and efficacy have not been established for oral or intranasal use; ophthalmic dosage is indication and product specific.

    Children

    >= 3 years: 0.5 mg/kg IV (Max: 15 mg IV) or 1 mg/kg IM (Max: 30 mg IM) times one dose; safety and efficacy have not been established for oral or intranasal use; ophthalmic maximum dosage is indication and product specific.
    2 years: 0.5 mg/kg IV (Max: 15 mg IV) or 1 mg/kg IM (Max: 30 mg IM) times one dose; ophthalmic maximum dosage is indication and product specific; safety and efficacy have not been established for oral or intranasal use.
    < 2 years: Safety and efficacy have not been established.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    Dosage adjustments in hepatic impairment have not been determined; however, caution is advised when using ketorolac in this patient population.

    Renal Impairment

    Ketorolac tromethamine is contraindicated for use by patients with advanced renal impairment (i.e., serum creatinine concentrations indicating advanced renal impairment) and in patients at risk for renal failure due to volume depletion. Correct hypovolemia before initiation of ketorolac tromethamine. Lower doses are recommended for patients with impaired renal function; closely monitor these patients for renal adverse events. Patients with underlying renal insufficiency are at increased risk of developing acute renal failure; consider the risks and benefits before administering ketorolac tromethamine.

    ADMINISTRATION

    Oral Administration

    Oral ketorolac therapy is only indicated as continuation therapy to IV/IM therapy.
    Food can decrease peak and delay time-to-peak concentrations; however, the extent of absorption is not affected.
    Shortening the recommended dosing intervals may result in increased frequency and severity of adverse reactions.

    Injectable Administration

    Ketorolac is administered intramuscularly or intravenously.
    Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit.
    Do not mix ketorolac and opioid agonists in the same syringe. Precipitation of ketorolac occurs when mixed with morphine sulfate, meperidine hydrochloride, promethazine hydrochloride, or hydroxyzine hydrochloride.

    Intravenous Administration

    Inject by IV bolus over no less than 15 seconds.

    Intramuscular Administration

    Inject slowly and deeply into a large muscle mass. Aspirate prior to injection to avoid injection into a blood vessel.

    Inhalation Administration
    Intranasal Inhalation Administration

    NOTE: Each spray delivers 15.75 mg.
    Before using for the first time the unit must be primed. Keep the sprayer pointed away from people and pets. Pump the activator 5 times. Once primed the unit does not not need to be re-primed.
    Instruct patient on the proper use.
    The nasal spray unit does not contain a preservative. The unit is designed for a single day of use. Discard unused medicine and unit within 24 hours of opening. Bottle will not dispense the correct dose if more than 24 hours has elapsed from priming/first use of the unit.
    To avoid the spread of infection, do not use the inhaler in more than one person.

    Ophthalmic Administration

    Apply topically to the eye.
    Remove contact lenses before instillation of solution.
    Instruct patient on proper instillation of eye solution.
    Do not touch the tip of the dropper to the eye, fingertips, or other surface.
    To avoid the potential for cross-contamination, use one bottle for each eye after bilateral ocular surgery. Do not use the same bottle for both eyes.
    Ketorolac tromethamine has been safely administered in conjunction with ophthalmic antibiotics, alpha agonists, beta blockers, carbonic anhydrase inhibitors, cycloplegics, and mydriatics. When using with other ophthalmic products, drops should be administered at least 5 minutes apart.
    Preservative-free eye solution containers, if so marked, are for single-use and should be discarded after each use.

    STORAGE

    Generic:
    - Discard unused portion. Do not store for later use.
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Acular:
    - Protect from light
    - Store at room temperature (between 59 to 86 degrees F)
    Acular LS:
    - Store between 59 to 77 degrees F
    Acular PF:
    - Protect from light
    - Store at room temperature (between 59 to 86 degrees F)
    Acuvail :
    - Protect from light
    - Store at room temperature (between 59 to 86 degrees F)
    - Store unused product in foil pouch
    SPRIX:
    - Discard unused product within 24 hours of opening bottle
    - Do not freeze
    - Protect from direct sunlight
    - Protect from light
    - Store at room temperature (between 59 to 86 degrees F)
    - Store unopened containers in refrigerator (36 to 46 degrees F)
    Toradol:
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Protect from light
    - Store at controlled room temperature (between 68 and 77 degrees F)
    - Store in carton until time of use

    CONTRAINDICATIONS / PRECAUTIONS

    Limit duration of use

    Systemic use of ketorolac is only indicated for the short-term management of moderately severe acute pain that requires analgesia at the opioid level. The oral tablets are only indicated as continuation treatment following IV or IM administration, if necessary. Limit duration of use so the total combined duration of use of oral and parenteral ketorolac does not exceed 5 days because of the increased risk of serious adverse events. Also, doses higher than recommended will not increase efficacy but will increase the risk of developing serious adverse events; the maximum recommended daily oral dose is significantly lower than the maximum daily parenteral dose.

    Acute myocardial infarction, angina, cardiac arrhythmias, cardiac disease, cardiomyopathy, cerebrovascular disease, coronary artery disease, heart failure, hypertension, myocardial infarction or stroke, peripheral vascular disease, tachycardia

    Systemic ketorolac, like all nonsteroidal anti-inflammatory drugs (NSAIDs), may exacerbate hypertension and congestive heart failure and may cause an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. The FDA has warned that the risk of myocardial infarction or stroke can occur as early as the first weeks of using a NSAID, and risk may increase with higher doses and longer duration of use. Data demonstrate that patients treated with NSAIDs were more likely to die in the first year following a myocardial infarction compared to those not treated with NSAIDs. NSAIDs may increase the risk of a cardiovascular thrombotic event in patients with or without underlying heart disease or risk factors for heart disease. Patients with known heart disease or risk factors appear to have a greater likelihood of an event following NSAID use, likely due to a higher baseline risk. Current evidence is insufficient to determine if the risk of an event is higher or lower for any particular NSAID compared to other NSAIDs. There is an increased risk of heart failure with NSAID use. Caution is recommended when administering systemic ketorolac to patients with cardiac disease, cardiomyopathy, cardiac arrhythmias (e.g., tachycardia), significant coronary artery disease (including acute myocardial infarction, angina, or history of myocardial infarction), peripheral vascular disease, cerebrovascular disease (e.g., stroke, transient ischemic attack), hypertension, pre-existing renal disease, or fluid retention. In addition, clinical practice guidelines state NSAIDs should not be administered to patients presenting with and hospitalized for ST-elevation myocardial infarction (STEMI) due to increased risk of mortality, reinfarction, hypertension, heart failure, and myocardial rupture associated with their use. Closely monitor blood pressure during ketorolac receipt. An increase in cardiovascular risk is not expected with ophthalmic use. Use the lowest effective dose for the shortest duration possible to minimize the potential risk for an adverse cardiovascular event. Inform patients to seek immediate medical attention if they experience any signs or symptoms of a cardiovascular thrombotic event.

    Acute bronchospasm, asthma, nasal polyps, NSAID hypersensitivity, salicylate hypersensitivity, urticaria

    Ketorolac is contraindicated for use by patients with ketorolac or other NSAID hypersensitivity, and the systemic formulations are contraindicated for use by patients with salicylate hypersensitivity or who have experienced asthma, urticaria, or other allergic reactions after taking aspirin or other NSAIDs; cautious use of the ophthalmic solution is advised in salicylate-sensitive patients. Severe, rarely fatal, anaphylactoid reactions such as bronchospasm and anaphylactic shock have been reported after systemic ketorolac use in salicylate-sensitive patients. After ketorolac tromethamine ophthalmic solution use, reports of bronchospasm or exacerbation of asthma exist among patients who have either a known hypersensitivity to aspirin/nonsteroidal anti-inflammatory drugs or a past medical history of asthma. Appropriate counteractive measures must be available when administering the first dose of ketorolac. Do not use ketorolac in patients with aspirin-sensitive asthma or the aspirin triad because of the approximate 5% cross-sensitivity that occurs between aspirin and NSAIDs. The triad typically occurs in patients with asthma who experience rhinitis with or without nasal polyps or who experience severe, potentially fatal, acute bronchospasm after taking aspirin or other NSAIDs.

    Bleeding, coronary artery bypass graft surgery (CABG), surgery

    Like all NSAIDs, ketorolac may increase the potential for hematological complications. Systemic formulations are contraindicated for use as a prophylactic analgesic before major surgery and contraindicated for use during surgery when hemostasis is critical; cautious use of the ophthalmic solution is advised with ocular surgery. Perioperative use has been associated with postoperative hematomas and other events. Postoperative parenteral use was associated with clinically significant bleeding in 0.4% of patients versus 0.2% of patients who received narcotic analgesics. Postoperative use when hemostasis is critical is not recommended. Bleeding after a single IV or IM dose in pediatric patients was greater after tonsillectomy versus other procedures. Systemic ketorolac, like other NSAIDS, is contraindicated for the treatment of peri-operative pain in the setting of coronary artery bypass graft surgery (CABG). An increased incidence of myocardial infarction and stroke was found through analysis of data regarding the use of a COX-2 selective NSAID for the treatment of pain in the first 10—14 days after CABG surgery. Ketorolac, in all forms, should be used with caution in patients with known bleeding tendencies and in patients who are receiving other medications that may prolong bleeding time (e.g., anticoagulant therapy) as such patients have an increased risk of bleeding complications. There have been reports that ocularly applied NSAIDs may cause increased bleeding of ocular tissues (including hyphemas) in conjunction with ocular procedures.

    Alcoholism, chemotherapy, Crohn's disease, GI bleeding, GI disease, GI perforation, inflammatory bowel disease, peptic ulcer disease, tobacco smoking, ulcerative colitis

    Using systemic ketorolac can result in gastritis, ulceration with or without perforation, and/or bleeding, which can occur at any time, often without preceding symptoms. It is, therefore, contraindicated in patients with a history of or active peptic ulcer disease, GI bleeding, or GI perforation. Cautious use is warranted for patients with other types of GI disease such as inflammatory bowel disease (ulcerative colitis, Crohn's disease), as these conditions may be exacerbated. Ulcerative stomatitis and exacerbations of inflammatory bowel disease have been noted during post-marketing surveillance with ketorolac or other NSAIDs. Older patients seem to tolerate GI ulceration or bleeding less well than younger patients. Most fatal GI events occur in older or debilitated patients. Patients should be monitored closely for bleeding while receiving systemic ketorolac, receiving concurrent myelosuppressive chemotherapy, corticosteroid therapy, or anticoagulant therapy, tobacco smoking patients, or in patients with alcoholism. Ketorolac is contraindicated for use by patients who take aspirin or another NSAID because of the cumulative risk of inducing serious NSAID-related side effects.

    Hepatic disease, hypoalbuminemia, jaundice

    Use systemic ketorolac products cautiously in patients with hepatic disease. Severe hepatic reactions can occur during treatment, and patients with hepatic impairment are at an increased risk for these complications. Elevations in liver-function tests can also occur. Discontinue treatment if elevated liver-function tests persist or worsen, or if signs or symptoms of hepatic disease, such as jaundice, develop. Patients with hepatic disease are also at increased risk for ketorolac-related toxicity, as hypoalbuminemia increases the amount of active drug available in the serum. Additionally, there is a dose-dependent decrease in prostaglandin synthesis, which can cause renal blood flow reduction in patients that utilize prostaglandins to support renal blood flow. Due to the role of prostaglandins in renal function and hemodynamics, patients with hypoalbuminemia should be closely observed during therapy due to an increased risk for reduced renal blood flow or volume. Such precautions are not expected in conjunction with ophthalmic use.

    Dehydration, diabetes mellitus, edema, hypovolemia, renal disease, renal failure, renal impairment, rheumatoid arthritis, systemic lupus erythematosus (SLE)

    Systemic ketorolac is contraindicated for use by patients with advanced renal impairment such as renal failure and in patients at risk for renal failure due to hypovolemia (dehydration); cautious use is recommended in patients with milder forms of renal disease or renal impairment. These precautions are not expected to apply with ophthalmic use. Ketorolac and its metabolites are renally excreted. Accumulation of parent drug and metabolites can occur with impaired renal function; dosage adjustment is needed. There is a dose-dependent decrease in prostaglandin synthesis, which can cause renal blood flow reduction in patients who utilize prostaglandins to support renal blood flow. Due to the role of prostaglandins in renal function and hemodynamics, certain patients should be closely observed during therapy due to an increased risk for reduced renal blood flow or volume. Conditions such as congestive heart failure, edema, or hypertension can be exacerbated by the fluid retention cause by suboptimal renal perfusion. Use ketorolac cautiously in patients with any of these conditions or other diseases that predispose to fluid retention. Meta-analyses have demonstrated that the effect of NSAIDs on blood pressure is the greatest in hypertensive individuals receiving antihypertensive medication. In addition, normotensive patients receiving antihypertensive therapy had higher increases in blood pressure than subjects with uncontrolled hypertension or normotensive subjects receiving no hypertensive therapy. Patients with renal impairment, renal failure, hepatic disease, diabetes mellitus, systemic lupus erythematosus (SLE), congestive heart failure, rheumatoid arthritis, edema, extracellular volume depletion (i.e., hypovolemia or dehydration), sepsis; those taking diuretics or nephrotoxic drugs; and elderly patients are at the highest risk for complications related to suboptimal renal perfusion. The oral tablets are only indicated for the short-term management of moderately severe acute pain that requires analgesia at the opioid level and only as continuation treatment following IV or IM administration, if necessary. The total combined duration of use of oral and parenteral ketorolac should not exceed 5 days because of the increased risk of serious adverse events. Also, doses higher than recommended will not increase efficacy but will increase the risk of developing serious adverse events; the maximum recommended daily oral dose is significantly lower than the maximum daily parenteral dose. Also, ketorolac is contraindicated for use by patients who take aspirin or another NSAID because of the cumulative risk of inducing serious NSAID-related side effects.

    Anemia, bone marrow suppression, hematological disease, immunosuppression, intracranial bleeding, neutropenia, thrombocytopenia

    Ketorolac should be used extremely cautiously, if at all, in patients with preexisting coagulation disorders or thrombocytopenia due to the effect of the drug on platelet function and vascular response to bleeding. Systemic ketorolac is contraindicated in patients with hematological disease (hemorrhagic diathesis), with incomplete hemostasis, with a high bleeding risk, or with known or suspected intracranial bleeding; cautious use of ophthalmic solution is advised in patients with known bleeding tendencies. Anemia may be exacerbated with the use of systemic NSAIDs. This may be due to fluid retention, GI blood loss, or an incompletely described effect upon erythrogenesis. Patients who have initial hemoglobin values of 10 g/dL or less and who are to receive long-term NSAID therapy should have hemoglobin values determined periodically. NSAIDs should be used with caution in patients with immunosuppression or neutropenia. NSAIDs may mask the signs of infection such as fever or pain in patients with bone marrow suppression. Systemic use is only indicated for the short-term management of moderately severe acute pain that requires analgesia at the opioid level. The total combined duration of use should not exceed 5 consecutive days because of the increased risk of serious adverse events. Also, doses higher than recommended will not increase efficacy but will increase the risk of developing serious adverse events; the maximum recommended daily oral dose is a lot lower than the maximum daily parenteral dose. Additionally, it is contraindicated for use by patients who take aspirin or another NSAID because of the cumulative risk of inducing serious NSAID-related side effects.

    Keratitis, ocular disease, ocular surgery

    Post-marketing experience with ophthalmic NSAIDs, including ketorolac, suggests that patients with complicated ocular surgery, corneal denervation, corneal epithelial defects, diabetes mellitus, ocular disease affecting the ocular surface (e.g., xerophthalmia, dry eye syndrome), rheumatoid arthritis, or repeat ocular surgeries within a short period of time may be at increased risk for corneal adverse events (corneal thinning, corneal erosion, corneal ulceration, corneal perforation) that may become sight-threatening. Ocular NSAIDs should be used with caution in these patients. Use of ocular NSAIDs may also result in keratitis. Post-marketing experience also suggests that use more than 24 hours prior to ocular surgery or use beyond 14 days post-surgery may increase patient risk for the occurrence and severity of corneal adverse events.

    Contact lenses

    Patients need to remove contact lenses before administering ketorolac ophthalmic solution. Unless the preservative-free formulation is used, ketorolac ophthalmic solution contains the preservative benzalkonium chloride, which may be absorbed by soft contact lenses. Also, contact lens removal is needed for drug penetration into the eye.

    Dental disease, dental work

    Like all NSAIDs, systemic ketorolac may affect hemostasis and platelet aggregation leading to an increased risk of bleeding complications. As such, use this medication with caution in patients with dental disease and in those requiring dental work. Advise patients to maintain good oral hygiene and to inform all health care providers, including dentists, of this therapy. 

    Epidural administration, intrathecal administration

    Ketorolac injection is contraindicated for epidural administration or intrathecal administration because of the alcohol content (10% weight per volume) of the parenteral preparation.

    Children, infants, neonates

    The safety and efficacy of some formulations of ketorolac have not been established in certain pediatric populations. Nasal ketorolac is not recommended for use in pediatric patients. Parenteral ketorolac is not recommended for neonates, infants, or children under the age of 2 years. Furthermore, only a single parenteral dose is recommended for children 2—12 years of age and adolescents 13—16 years of age. Dosage adjustment is needed for patients who weigh less than 50 kg (110 pounds). Whenever possible analgesia should be administered to a pediatric patient through a noninvasive route (i.e., orally or through an existing IV line). Intramuscular administration of analgesic medications, including opiate agonists, to children sends them the message that to achieve pain relief more pain must be given. This can lead to denial of pain by fearful children.

    Caesarean section, labor, obstetric delivery, pregnancy

    Although use should be avoided in late pregnancy, systemic ketorolac formulations are classified as FDA pregnancy risk category C throughout most of gestation. The nasal formulation is FDA pregnancy risk category C prior to 30 weeks gestation. Because of the known effects of NSAIDs on the fetal cardiovascular system (premature closure of the fetal ductus arteriosus in utero), systemic and nasal use during late pregnancy should be avoided (FDA pregnancy risk category D, e.g., starting at 30 weeks gestation). The ketorolac ophthalmic solution is classified as FDA pregnancy risk category C; because a small amount of ophthalmic solution is systemically absorbed, use during late pregnancy should be avoided. There are no adequate and well-controlled studies in pregnant women. Use of all formulations should be avoided unless the potential therapeutic benefits justify its use during pregnancy. There are some published observational data to suggest that prescription NSAIDs may increase the risk of miscarriage in the first half of pregnancy before 20 weeks gestation; however, based on the FDA evaluation of the quality of evidence available, there is inclusive evidence regarding a possible connection between NSAID use and miscarriage. The FDA recommends caution and adherence to recommendations in product labels regarding pregnancy. Of 40 babies born with persistent pulmonary hypertension of the newborn (PPHN), 87.5% had the presence of an NSAID in their meconium versus 24.6% of 61 infants born without PPHN; the presence of only four NSAIDs was examined. In addition to meconium aspiration, asphyxia, respiratory distress syndrome, and group B streptococcal pneumonia, ductus arteriosus constriction by an NSAID appears to be another predisposing factor for PPHN development, as a patent ductus arteriosus was absent in 18 of the 40 infants. Prostaglandin synthetase inhibitors also have the potential to prolong pregnancy and inhibit labor if taken during the third trimester. There may be an increased risk of neonatal complications, such as necrotizing enterocolitis, patent ductus arteriosus, and intracranial hemorrhage when prostaglandin synthetase inhibitors are used to delay preterm delivery. Because of the adverse effects on fetal circulation and uterine contractions, systemic and nasal formulations are contraindicated during labor and obstetric delivery. Systemic and nasal formulations are contraindicated for use as a prophylactic analgesic before major surgery and during surgery when hemostasis is critical, such as during caesarean section. Prostaglandin inhibitors may impair fertility and are not recommended for use in women attempting to conceive.

    Breast-feeding

    Due to the potential adverse effects of prostaglandin-inhibiting drugs on nursing infants, caution is advised when administering ketorolac to lactating mothers. If used during breast-feeding, instruct the patient to closely monitor the breast-fed infant and report any adverse events that may develop. Ketorolac is excreted into breast milk. Of 10 lactating mothers, ketorolac was undetectable in the milk of 4 of the women, and the maximum milk concentration observed was 7.9 ng/mL in the other 6 women after 1 day of dosing with 10 mg every 6 hours. Based on a daily infant intake of 400—1000 mL/day of breast milk and a maternal body weight of 60 kg, the calculated maximum infant dose would be equivalent to 0.4% of the weight-adjusted maternal dose. The American Academy of Pediatrics (AAP) considers ketorolac to be a drug which is usually compatible with breast-feeding; however, their assessment was published prior to recent recommendations to ensure safe use of the drug; other analgesics and anti-inflammatory agents considered to be usually compatible with breast-feeding by the AAP include acetaminophen, ibuprofen, indomethacin, naproxen, and piroxicam and would be preferred to limit infant risk. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to a maternally ingested drug, healthcare providers are encouraged to report the adverse effect to the FDA.

    Ocular exposure

    Avoid ocular exposure of ketorolac nasal spray; advise patients to avoid spraying in the eyes. If eye contact occurs, the patient should wash the affected eye(s) with water or saline, and seek medical attention if irritation persists for more than one hour.

    Geriatric

    Systemic ketorolac is only indicated for short-term pain management due to the increased risk for side effects relative to other NSAIDs; the total combined duration of use of oral ketorolac and parenteral ketorolac tromethamine should not exceed 5 days. Dosage adjustments of systemic ketorolac are needed for geriatric patients 65 years of age and older and use in the geriatric patient should be approached with extreme caution. The elderly and debilitated are typically at the highest risk for developing complications related to NSAID therapy, such as GI bleeding and ulceration, fluid retention, and reduced renal perfusion. According to the Beers Criteria, oral and parenteral ketorolac are considered potentially inappropriate medications (PIMs) in geriatric patients and avoidance is recommended in those with or without a history of gastrointestinal (GI) ulcers due to an increased risk of gastrointestinal bleeding, peptic ulcer disease, and acute kidney injury in older adults. The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities (LTCFs). According to OBRA, NSAIDs should be reserved for symptoms and/or inflammatory conditions for which lower risk analgesics (e.g., acetaminophen) have either failed, or are not clinically indicated. NSAIDs may cause GI bleeding in patients with a prior history of, or with increased risk for, GI bleeding. In addition, NSAIDs may cause or worsen renal failure, increase blood pressure, or exacerbate heart failure. The total combined duration of use of oral ketorolac and parenteral ketorolac tromethamine should not exceed 5 days.

    Lactase deficiency

    Ketorolac tablets may contain lactose; patients with lactase deficiency should take appropriate precautions with use.

    ADVERSE REACTIONS

    Severe

    GI bleeding / Delayed / 0-16.0
    peptic ulcer / Delayed / 0-16.0
    GI perforation / Delayed / 0-16.0
    keratitis / Delayed / 1.0-10.0
    oliguria / Early / 0-3.0
    visual impairment / Early / 0-1.0
    seizures / Delayed / 1.0
    proteinuria / Delayed / 1.0
    pulmonary edema / Early / 1.0
    hearing loss / Delayed / 1.0
    hematemesis / Delayed / Incidence not known
    odynophagia / Delayed / Incidence not known
    esophageal ulceration / Delayed / Incidence not known
    esophageal stricture / Delayed / Incidence not known
    aseptic meningitis / Delayed / Incidence not known
    interstitial nephritis / Delayed / Incidence not known
    heart failure / Delayed / Incidence not known
    renal failure (unspecified) / Delayed / Incidence not known
    hyperkalemia / Delayed / Incidence not known
    hemolytic-uremic syndrome / Delayed / Incidence not known
    renal papillary necrosis / Delayed / Incidence not known
    nephrotic syndrome / Delayed / Incidence not known
    pancreatitis / Delayed / Incidence not known
    hepatic failure / Delayed / Incidence not known
    corneal erosion / Delayed / Incidence not known
    angioedema / Rapid / Incidence not known
    toxic epidermal necrolysis / Delayed / Incidence not known
    Stevens-Johnson syndrome / Delayed / Incidence not known
    bronchospasm / Rapid / Incidence not known
    anaphylactoid reactions / Rapid / Incidence not known
    anaphylactic shock / Rapid / Incidence not known
    exfoliative dermatitis / Delayed / Incidence not known
    stroke / Early / Incidence not known
    myocardial infarction / Delayed / Incidence not known

    Moderate

    constipation / Delayed / 1.0-10.0
    stomatitis / Delayed / 1.0-10.0
    hypertension / Early / 1.0-10.0
    edema / Delayed / 1.0-10.0
    corneal edema / Early / 1.0-10.0
    iritis / Delayed / 1.0-10.0
    ocular infection / Delayed / 1.0-10.0
    ocular inflammation / Early / 1.0-10.0
    conjunctival hyperemia / Early / 1.0-5.0
    gastritis / Delayed / 1.0
    eosinophilia / Delayed / 1.0
    depression / Delayed / 1.0
    euphoria / Early / 1.0
    psychosis / Early / 1.0
    hematuria / Delayed / 1.0
    elevated hepatic enzymes / Delayed / 15.0
    dyspnea / Early / 1.0
    blurred vision / Early / 1.0
    bleeding / Early / Incidence not known
    anemia / Delayed / Incidence not known
    melena / Delayed / Incidence not known
    dysphagia / Delayed / Incidence not known
    esophagitis / Delayed / Incidence not known
    platelet dysfunction / Delayed / Incidence not known
    thrombocytopenia / Delayed / Incidence not known
    hyphema / Delayed / Incidence not known
    leukopenia / Delayed / Incidence not known
    hallucinations / Early / Incidence not known
    hyponatremia / Delayed / Incidence not known
    cholestasis / Delayed / Incidence not known
    hepatitis / Delayed / Incidence not known
    jaundice / Delayed / Incidence not known

    Mild

    ocular pain / Early / 1.0-40.0
    headache / Early / 11.0-17.0
    nasal irritation / Early / 15.0-15.0
    abdominal pain / Early / 11.0-13.0
    rhinalgia / Early / 13.0-13.0
    nausea / Early / 11.0-12.0
    dyspepsia / Early / 11.0-12.0
    diarrhea / Early / 1.0-11.0
    vomiting / Early / 1.0-10.0
    flatulence / Early / 1.0-10.0
    drowsiness / Early / 1.0-10.0
    dizziness / Early / 1.0-10.0
    ocular irritation / Rapid / 1.0-10.0
    lacrimation / Early / 5.0-5.0
    throat irritation / Early / 4.0-4.0
    purpura / Delayed / 1.0-3.0
    rash (unspecified) / Early / 1.0-3.0
    pruritus / Rapid / 1.0-3.0
    diaphoresis / Early / 1.0-3.0
    injection site reaction / Rapid / 2.0-2.0
    rhinitis / Early / 0-2.0
    polyuria / Early / 0-1.0
    xerophthalmia / Early / 0-1.0
    urticaria / Rapid / 0-1.0
    anorexia / Delayed / 1.0
    eructation / Early / 1.0
    insomnia / Early / 1.0
    paresthesias / Delayed / 1.0
    tremor / Early / 1.0
    hyperkinesis / Delayed / 1.0
    cough / Delayed / 1.0
    tinnitus / Delayed / 1.0
    pyrosis (heartburn) / Early / Incidence not known
    epistaxis / Delayed / Incidence not known
    maculopapular rash / Early / Incidence not known

    DRUG INTERACTIONS

    Abciximab: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Acebutolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Acetohexamide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Adefovir: (Moderate) Chronic coadministration of adefovir with nephrotoxic drugs, such as nonsteroidal antiinflammatory drugs may increase the risk of developing nephrotoxicity even in patients who have normal renal function. The use of adefovir with NSAIDs may be done cautiously. As stated in the current adefovir prescribing information, 'Ibuprofen (800 mg PO three times daily), when given concomitantly with adefovir dipivoxil, increased the adefovir Cmax by 33% and AUC by 23%, as well as urinary recovery. The increase appears to be due to higher oral bioavailability, not a reduction in renal clearance of adefovir.' In an in vitro investigation, the antiviral effect of adefovir was unaltered and the renal proximal tubule accumulation of adefovir was inhibited by the presence of a NSAID. Adefovir is efficiently transported by the human renal organic anion transporter 1, and the presence of this transporter appears to mediate the accumulation of the drug in renal proximal tubules. The in vitro study suggests that the use of a NSAID with adefovir may potentially reduce the nephrotoxic potential of adefovir. Of course, NSAIDs are associated with nephrotoxicity of their own; therefore, further data on the interaction between NSAIDs and adefovir in humans are needed.
    Aldesleukin, IL-2: (Major) Aldesleukin, IL-2 may cause nephrotoxicity. Concurrent administration of drugs possessing nephrotoxic effects, such as nonsteroidal antiinflammatory agents (NSAIDs), with Aldesleukin, IL-2 may increase the risk of kidney dysfunction. In addition, reduced kidney function secondary to Aldesleukin, IL-2 treatment may delay elimination of concomitant medications and increase the risk of adverse events from those drugs.
    Aliskiren: (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren.
    Aliskiren; Amlodipine: (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren.
    Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren.
    Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren.
    Aliskiren; Valsartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren.
    Alpha-blockers: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Alteplase, tPA: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
    Altretamine: (Major) Altretamine causes mild to moderate dose-related myelosuppression. Due to the thrombocytopenic effects of altretamine, an additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Ambenonium Chloride: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Amikacin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal antiinflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as amikacin.
    Amiloride: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Amlodipine; Benazepril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Amlodipine; Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Amlodipine; Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Amlodipine; Olmesartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Amlodipine; Telmisartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Amlodipine; Valsartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Amphotericin B cholesteryl sulfate complex (ABCD): (Minor) Concurrent use of amphotericin B and other nephrotoxic medications, including nonsteroidal antiinflammatory drugs (NSAIDs), may enhance the potential for drug-induced renal toxicity. Monitor renal function carefully during concurrent therapy. Amphotericin B dosage reduction may be necessary if renal impairment occurs.
    Amphotericin B lipid complex (ABLC): (Minor) Concurrent use of amphotericin B and other nephrotoxic medications, including nonsteroidal antiinflammatory drugs (NSAIDs), may enhance the potential for drug-induced renal toxicity. Monitor renal function carefully during concurrent therapy. Amphotericin B dosage reduction may be necessary if renal impairment occurs.
    Amphotericin B liposomal (LAmB): (Minor) Concurrent use of amphotericin B and other nephrotoxic medications, including nonsteroidal antiinflammatory drugs (NSAIDs), may enhance the potential for drug-induced renal toxicity. Monitor renal function carefully during concurrent therapy. Amphotericin B dosage reduction may be necessary if renal impairment occurs.
    Amphotericin B: (Minor) Concurrent use of amphotericin B and other nephrotoxic medications, including nonsteroidal antiinflammatory drugs (NSAIDs), may enhance the potential for drug-induced renal toxicity. Monitor renal function carefully during concurrent therapy. Amphotericin B dosage reduction may be necessary if renal impairment occurs.
    Anagrelide: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Angiotensin II receptor antagonists: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Angiotensin-converting enzyme inhibitors: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Antithrombin III: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Antithymocyte Globulin: (Moderate) An increased risk of bleeding may occur when NSAIDs are used with agents that cause clinically significant thrombocytopenia, such as antithymocyte globulin. Patients receiving these drugs together should be monitored closely for bleeding.
    Apixaban: (Major) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Aprotinin: (Moderate) The manufacturer recommends using aprotinin cautiously in patients that are receiving drugs that can affect renal function, such as NSAIDs, as the risk of renal impairment may be increased.
    Argatroban: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Arsenic Trioxide: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia. Notable interactions may occur with myelosuppressive antineoplastic agents. Patients receiving ketorolac concurrently with antineoplastic agents should be monitored closely for bleeding.
    Aspirin, ASA; Dipyridamole: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Atenolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Atenolol; Chlorthalidone: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Atracurium: (Moderate) Ketorolac may enhance the muscle-relaxant effect of nondepolarizing neuromuscular blockers. Caution should be exercised during concomitant administration of ketorolac with these agents.
    Atropine; Edrophonium: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Azathioprine: (Moderate) NSAIDs should be used with caution in patients receiving immunosuppressives as they may mask fever, pain, swelling and other signs and symptoms of an infection.
    Azelastine; Fluticasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Azilsartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Azilsartan; Chlorthalidone: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Bacitracin: (Minor) Due to the inhibition of renal prostaglandins by ketorolac, concurrent use with other nephrotoxic agents like systemic bacitracin may lead to additive nephrotoxicity.
    Basiliximab: (Moderate) An increased risk of bleeding may occur when NSAIDs are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents, Monitor closely for bleeding.
    Beclomethasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Benazepril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Bendamustine: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia. Notable interactions may occur with myelosuppressive antineoplastic agents. Patients receiving ketorolac concurrently with antineoplastic agents should be monitored closely for bleeding.
    Bendroflumethiazide; Nadolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Beta-blockers: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Betamethasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Betaxolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Betrixaban: (Major) Monitor patients closely and promptly evaluate any signs or symptoms of bleeding if betrixaban and nonsteroidal antiinflammatory drugs (NSAIDs) are used concomitantly. Coadministration of betrixaban and NSAIDs may increase the risk of bleeding.
    Bevacizumab: (Major) An increased risk of bleeding may occur when NSAIDs are used with agents that cause clinically significant thrombocytopenia. Notable interactions may occur with myelosuppressive antineoplastic agents. Patients receiving nabumetone concurrently with antineoplastic agents should be monitored closely for bleeding.
    Bisoprolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Bisphosphonates: (Moderate) Exercise caution when administering an NSAID with a bisphosphonate. Monitor for the presence of GI complaints, including potential GI ulceration and bleeding, as well as renal function, during combined use. Nonsteroidal antiinflammatory drugs (NSAIDs) are associated with esophageal and/or gastric irritation, GI ulceration. a risk of nephrotoxicity, and decreased bone mineral density. Bisphosphonates may cause GI adverse events and occasionally, renal dysfunction. Though patients receiving intravenously administered bisphosphonates have a decreased incidence of GI adverse effects as compared to those taking orally administered bisphosphonates, nephrotoxicity is possible, and GI events are rarely reported.
    Bivalirudin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Brimonidine; Timolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Budesonide: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Budesonide; Formoterol: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Bumetanide: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
    Busulfan: (Major) Due to the thrombocytopenic effects of busulfan, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Calcium Phosphate, Supersaturated: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
    Calcium-channel blockers: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Candesartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Capreomycin: (Major) Because capreomycin is primarily eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including nonsteroidal antiinflammatory drugs (NSAIDs), may increase serum concentrations of either drug. Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered.
    Captopril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Carbamazepine: (Moderate) Sporadic cases of seizures have been reported during concomitant use of ketorolac tromethamine and antiepileptic drugs like carbamazepine. The mechanism of action(s) is unknown. Ketorolac may cause seizures.
    Carmustine, BCNU: (Major) Due to the thrombocytopenic effects of carmustine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. These additive effects may not occur for at least 6 weeks after the administration of carmustine due to the delayed myelosuppressive effects of carmustine.
    Carteolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Carvedilol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Cefotaxime: (Minor) Cefotaxime's product label states that cephalosporins may potentiate the adverse renal effects of nephrotoxic agents, such as aminoglycosides, nonsteroidal antiinflammatory drugs (NSAIDs), and loop diuretics. Carefully monitor renal function, especially during prolonged therapy or use of high aminoglycoside doses. The majority of reported cases involve the combination of aminoglycosides and cephalothin or cephaloridine, which are associated with dose-related nephrotoxicity as singular agents. Limited but conflicting data with other cephalosporins have been noted.
    Celecoxib: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Chlorambucil: (Major) Due to the thrombocytopenic effects of chlorambucil, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Chlorpropamide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Chlorthalidone; Clonidine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Cholinesterase inhibitors: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Chondroitin; Glucosamine: (Moderate) Patients taking methylsulfonylmethane, MSM have reported increased bruising or blood in the stool. These effects have not been confirmed in published medical literature or during clinical studies. Use methylsulfonylmethane, MSM with caution in patients who are taking drugs with the potential for additive bleeding, including nonsteroidal antiinflammatory drugs (NSAIDs). During an available, published clinical trials in patients with osteoarthritis, patients with bleeding disorders or using anticoagulants or platelet inhibiting drugs were excluded from enrollment. Patients who choose to consume methylsulfonylmethane, MSM while receiving NSAIDs should be observed for potential bleeding.
    Ciclesonide: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Cidofovir: (Severe) The concomitant administration of cidofovir and nonsteroidal antiinflammatory drugs (NSAIDs) is contraindicated due to the potential for increased nephrotoxicity. NSAIDs should be discontinued 7 days prior to beginning cidofovir.
    Cilostazol: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Cisatracurium: (Moderate) Ketorolac may enhance the muscle-relaxant effect of nondepolarizing neuromuscular blockers. Caution should be exercised during concomitant administration of ketorolac with these agents.
    Cisplatin: (Moderate) Although the thrombocytopenic effects of cisplatin are limited, an additive risk of bleeding may be seen in patients receiving concomitant therapy with non-steroidal antiinflammatory agents (NSAIDs). Also, cisplatin may cause nephrotoxicity, and NSAIDs can be drugs with nephrotoxic potential. Long-term administration of NSAIDs has resulted in renal injury. Patients at greatest risk are the elderly, taking other nephrotoxic drugs, and those patients with renal dysfunction, liver dysfunction, or heart failure. Concurrent use can be acceptable, but monitor renal function closely and be alert for signs of bleeding.
    Citalopram: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
    Cladribine: (Major) Due to the thrombocytopenic effects of cladribine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Clofarabine: (Major) Due to the thrombocytopenic effects of clofarabine, an additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Clonidine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Clopidogrel: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Cobicistat; Elvitegravir; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
    Colistimethate, Colistin, Polymyxin E: (Major) The administration of colistimethate sodium may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when used concurrently. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including nonsteroidal antiinflammatory drugs (NSAIDs), may theoretically increase serum concentrations of either drug.
    Corticosteroids: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Corticotropin, ACTH: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Cortisone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Cyclosporine: (Moderate) Additive decreases in renal function have been reported between cyclosporine and nonsteroidal anti-inflammatory drugs. Patients should be monitored for signs and symptoms of cyclosporine toxicity and infection, as NSAIDs may mask fever, pain, or swelling.
    Cytarabine, ARA-C: (Major) The main toxic effect of cytarabine, ARA-C is bone marrow suppression with leukopenia, thrombocytopenia and anemia. Due to the thrombocytopenic effects of cytarabine, an additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Dipyridamole can block membrane transport of cytarabine in tumor cells, therefore decreasing its antineoplastic activity.
    Dabigatran: (Major) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Dacarbazine, DTIC: (Major) Leukopenia and thrombocytopenia are common toxicities of dacarbazine, DTIC. Due to the thrombocytopenic effects of dacarbazine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Dactinomycin, Actinomycin D: (Major) An increased risk of bleeding may occur when NSAIDs are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Dalteparin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Danaparoid: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Dasatinib: (Major) Due to the thrombocytopenic and possible platelet inhibiting effects of dasatinib, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors (including aspirin), strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Caution should be exercised if patients are required to take medications that inhibit platelet function or anticoagulants concomitantly with dasatinib.
    Daunorubicin Liposomal: (Major) An increased risk of bleeding may occur when NSAIDs are used with agents that cause clinically significant thrombocytopenia. Patients should be monitored closely for bleeding during concurrent use.
    Daunorubicin Liposomal; Cytarabine Liposomal: (Major) An increased risk of bleeding may occur when NSAIDs are used with agents that cause clinically significant thrombocytopenia. Patients should be monitored closely for bleeding during concurrent use.
    Daunorubicin: (Major) Due to the thrombocytopenic effects of daunorubicin, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Decitabine: (Major) Due to the thrombocytopenic effects of decitabine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors (including aspirin), strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Deferasirox: (Moderate) Because gastric ulceration and GI bleeding have been reported in patients taking deferasirox, use caution when coadministering with other drugs known to increase the risk of peptic ulcers or gastric hemorrhage including NSAIDs. In addition, coadministration of deferasirox with other potentially nephrotoxic drugs, including NSAIDs, may increase the acute renal failure. Monitor serum creatinine and/or creatinine clearance in patients who are receiving deferasirox and nephrotoxic drugs concomitantly
    Deflazacort: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Denileukin Diftitox: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Desirudin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Desmopressin: (Major) Additive hyponatremic effects may be seen in patients treated with desmopressin and drugs associated with hyponatremia including NSAIDs. Use combination with caution, and monitor patients for signs and symptoms of hyponatremia. A woman who took both desmopressin and ibuprofen was found in a comatose state. As her serum sodium concentration was 121 mmol/L, and her plasma osmolality was low in the presence of a high-normal urine osmolality and normal sodium excretion, she was treated with fluid restriction. Her serum sodium concentration was 124 mmol/L within a day and was 135 mmol/L by the second day. The woman had previously received desmopressin without the development of clinical symptoms of hyponatremia
    Desvenlafaxine: (Moderate) Platelet aggregation may be impaired by desvenlafaxine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Patients should be monitored for signs and symptoms of bleeding while taking desvenlafaxine with NSAIDs.
    Dexamethasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Diazoxide: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Diclofenac: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Diclofenac; Misoprostol: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Diflunisal: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Digoxin: (Moderate) Concomitant use of nonsteroidal antiinflammatory drugs (NSAIDs) with digoxin may result in increased serum concentrations of digoxin. NSAIDs may cause a significant deterioration in renal function. A decline in glomerular filtration or tubular secretion may impair the excretion of digoxin. Monitor patients during concomitant treatment for possible digoxin toxicity and reduce digoxin dose as necessary.
    Diphenhydramine; Ibuprofen: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Diphenhydramine; Naproxen: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Dipyridamole: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Docetaxel: (Major) Due to the thrombocytopenic effects of docetaxel, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors (including aspirin), strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Donepezil: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Donepezil; Memantine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Dorzolamide; Timolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Doxacurium: (Moderate) Ketorolac may enhance the muscle-relaxant effect of nondepolarizing neuromuscular blockers. Caution should be exercised during concomitant administration of ketorolac with these agents.
    Doxazosin: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Doxorubicin: (Major) Due to the thrombocytopenic effects of doxorubicin, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Drospirenone; Estradiol: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended.
    Drospirenone; Ethinyl Estradiol: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended.
    Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended.
    Drotrecogin Alfa: (Moderate) Caution should be used when drotrecogin alfa is used with any other drugs that affect hemostasis, including NSAIDs. These patients are at increased risk of bleeding during drotrecogin alfa therapy.
    Duloxetine: (Moderate) Platelet aggregation may be impaired by duloxetine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving Nonsteroidal antiinflammatory drugs (NSAIDs). Mmonitor for signs and symptoms of bleeding when duloxetine is coadministered with NSAIDs.
    Edoxaban: (Major) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Edrophonium: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Efavirenz; Emtricitabine; Tenofovir: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
    Eltrombopag: (Moderate) Eltrombopag is a UDP-glucuronyltransferase inhibitor. NSAIDs are a substrate of UDP-glucuronyltransferases. The significance or effect of this interaction is not known; however, elevated concentrations of the NSAID are possible. Monitor patients for adverse reactions if eltrombopag is administered with an NSAID.
    Emtricitabine; Rilpivirine; Tenofovir disoproxil fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
    Emtricitabine; Tenofovir disoproxil fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
    Enalapril, Enalaprilat: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Enalapril; Felodipine: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Enoxaparin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Entecavir: (Moderate) The manufacturer of entecavir recommends monitoring for adverse effects when coadministered with NSAIDs. Entecavir is primarily eliminated by the kidneys; NSAIDs can affect renal function. Concurrent administration may increase the serum concentrations of entecavir and adverse events.
    Epirubicin: (Major) Due to the thrombocytopenic effects of epirubicin, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Eplerenone: (Major) Monitor serum potassium and serum creatinine concentrations within 3 to 7 days of initiating coadministration of eplerenone and nonsteroidal antiinflammatory drugs (NSAIDs), and monitor blood pressure. The concomitant use of other potassium-sparing antihypertensives with NSAIDs has been shown to reduce the antihypertensive effect in some patients and result in severe hyperkalemia in patients with impaired renal function. Patients who develop hyperkalemia may continue eplerenone with proper dose adjustment; eplerenone dose reduction decreases potassium concentrations.
    Epoprostenol: (Moderate) NSAIDs may decrease the effect of antihypertensive agents through various mechanisms, including renal and peripheral vasoactive pathways.
    Eprosartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Eptifibatide: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Eribulin: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Erlotinib: (Moderate) Use caution if erlotinib is administered with nonsteroidal antiinflammatory drugs (NSAIDs), as these patients may have an increased risk of gastrointestinal (GI) perforation. Gastrointestinal perforation, including fatal cases, has been reported in 0.2% to 0.4% of patients treated with erlotinib in clinical trials compared with 0.1% or less in control arms.
    Escitalopram: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
    Esmolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Esomeprazole; Naproxen: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Estramustine: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Ethacrynic Acid: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
    Ethanol: (Major) Concomitant ingestion of ethanol with NSAIDs increases the risk of developing gastric irritation and GI mucosal bleeding. Ethanol is a mucosal irritant and NSAIDs decrease platelet aggregation. Routine ingestion of ethanol and NSAIDs can cause significant GI bleeding, which may or may not be overt. Even occasional concomitant use of NSAIDs and ethanol should be avoided. Chronic alcoholism is often associated with hypoprothrombinemia and this condition increases the risk of bleeding. Systemic exposure of NSAIDs that are primary substrates for CYP2C9, such as diclofenac, may be increased during use of ethanol, which is a dose-dependent inhibitor of CYP2C9. The effects of ethanol may also be substrate-dependent, since in vitro data have shown varying inhibitory effects on 2C9 substrates.The manufacturer of diclofenac; misoprostol recommends that the total daily dose of diclofenac not exceed 100 mg in patients receiving a CYP2C9 inhibitor. Patients should be warned regarding the potential for increased risk of GI bleeding if alcohol-containing beverages are taken concurrently with NSAIDs.
    Etodolac: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Famotidine; Ibuprofen: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Fenoldopam: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Fenoprofen: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Flavocoxid, Flavocoxid; Citrated Zinc Bisglycinate: (Major) Flavocoxid exerts similar pharmacologic characteristics to other systemic NSAIDs. Additive pharmacodynamic effects, including a potential for additive adverse cardiac and GI effects, may be seen if flavocoxid is used with NSAIDs. In general, the concurrent use of flavocoxid and NSAIDs should be avoided.
    Floxuridine: (Major) Due to the thrombocytopenic effects of floxuridine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Fludarabine: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Fludrocortisone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Flunisolide: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Fluorouracil, 5-FU: (Major) Due to the thrombocytopenic effects of fluorouracil, 5-FU, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Fluoxetine: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
    Fluoxetine; Olanzapine: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
    Flurbiprofen: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Fluticasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Fluticasone; Salmeterol: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Fluticasone; Umeclidinium; Vilanterol: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Fluticasone; Vilanterol: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Fluvoxamine: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
    Fondaparinux: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Food: (Moderate) Administering nonsteroidal antiinflammatory drugs (NSAIDs) concurrently with marijuana may limit some of marijuana's pharmacologic activities. Certain actions of marijuana require prostaglandin-mediated processes to occur; NSAIDs may interfere with these processes thereby decreasing marijuana's effect. Coadministration of indomethacin with marijuana has been shown to significantly decrease euphoria, tachycardia, and the intraocular pressure lowering activity of marijuana.
    Formoterol; Mometasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Foscarnet: (Minor) The risk of renal toxicity may be increased if foscarnet is used in conjuction with other nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor renal function carefully during concurrent therapy.
    Fosinopril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Fosphenytoin: (Moderate) Sporadic cases of seizures have been reported during concomitant use of ketorolac tromethamine and antiepileptic drugs like phenytoin sodium. A similar interaction may occur with fosphenytoin. The mechanism of action(s) is unknown. Ketorolac may cause seizures. Also, ketorolac could displace phenytoin from plasma protein binding sites. Toxic phenytoin concentrations could cause a seizure.
    Furosemide: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
    Gadoterate meglumine: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Galantamine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Gallium Ga 68 Dotatate: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Ganciclovir: (Minor) Concurrent use of nephrotoxic agents, such as NSAIDs, with ganciclovir should be done cautiously to avoid additive nephrotoxicity. Monitor renal function carefully if concomitant therapy is required.
    Garlic, Allium sativum: (Minor) Garlic, Allium sativum may produce clinically-significant antiplatelet effects; until more data are available, garlic should be used cautiously in patients receiving drugs with a potential risk for bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs).
    Gefitinib: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Gentamicin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal anti-inflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as gentamicin.
    Ginger, Zingiber officinale: (Minor) Patients receiving regular therapy with nonsteroidal antiinflammatory drugs (NSAIDs) should use ginger with caution, due to a theoretical risk of bleeding resulting from additive pharmacology related to the COX enzymes. However, clinical documentation of interactions is lacking. Several pungent constituents of ginger (Zingiber officinale) are reported to inhibit arachidonic acid (AA) induced platelet activation in human whole blood. The constituent (8)-paradol is the most potent inhibitor of COX-1 and exhibits the greatest anti-platelet activity versus other gingerol analogues. The mechanism of ginger-associated platelet inhibition may be related to decreased COX-1/Thomboxane synthase enzymatic activity.
    Ginkgo, Ginkgo biloba: (Moderate) Ginkgo is reported to inhibit platelet aggregation and several case reports describe bleeding complications with Ginkgo biloba, with or without concomitant drug therapy. Ginkgo should be used cautiously in patients receiving drugs that inhibit platelet aggregation or pose a risk for bleeding, such as NSAIDs. A case of fatal intracerebral bleeding has been reported with the combination of Ginkgo and the NSAID ibuprofen. A 71 year-old male had been taking a concentrated Ginkgo biloba extract (Gingium, Germany) 40 mg PO twice daily for a few years; 4 weeks prior to his death, he had started taking ibuprofen (600 mg daily) for osteoarthritic hip pain. The man was found comatose and CT scan revealed a massive intracerebral bleed; no other causative factors were identified.
    Glimepiride: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Glimepiride; Pioglitazone: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Glimepiride; Rosiglitazone: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Glipizide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Glipizide; Metformin: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Glyburide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Glyburide; Metformin: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Gold: (Moderate) Due to the inhibition of renal prostaglandins by NSAIDs, concurrent use with other nephrotoxic agents, such as gold compounds, may lead to additive nephrotoxicity. Monitor renal function carefully during concurrent therapy.
    Guanabenz: (Moderate) NSAIDs may decrease the effect of antihypertensive agents through various mechanisms, including renal and peripheral vasoactive pathways.
    Guanfacine: (Moderate) NSAIDs may decrease the effect of antihypertensive agents through various mechanisms, including renal and peripheral vasoactive pathways.
    Heparin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Hyaluronidase, Recombinant; Immune Globulin: (Moderate) Immune Globulin (IG) products have been reported to be associated with renal dysfunction, acute renal failure, osmotic nephrosis, and death. Patients predisposed to acute renal failure include patients receiving known nephrotoxic drugs like nonsteroidal anti-inflammatory drugs (NSAIDs) and salicylates. Coadminister IG products at the minimum concentration available and the minimum rate of infusion practicable. Also, closely monitor renal function.
    Hydralazine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Hydralazine; Isosorbide Dinitrate, ISDN: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Hydrochlorothiazide, HCTZ; Irbesartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Hydrochlorothiazide, HCTZ; Lisinopril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Hydrochlorothiazide, HCTZ; Losartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Hydrochlorothiazide, HCTZ; Metoprolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Hydrochlorothiazide, HCTZ; Propranolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Hydrochlorothiazide, HCTZ; Quinapril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Hydrochlorothiazide, HCTZ; Spironolactone: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Hydrochlorothiazide, HCTZ; Telmisartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Hydrochlorothiazide, HCTZ; Triamterene: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Hydrocodone; Ibuprofen: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Hydrocortisone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Ibritumomab Tiuxetan: (Major) Prolonged cytopenias, including thrombocytopenia and neutropenia, are frequently associated with the ibritumomab tiuxetan therapeutic regimen. An additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. The potential for bleeding should be considered in the concomitant use of such medications during the ibritumomab tiuxetan therapeutic regimen. Frequent laboratory monitoring of patients who must receive these therapies is recommended, with modification of clinical approaches to transfusion and other therapies if bleeding occurs due to the additive mechanisms and risks.
    Ibuprofen lysine: (Major) Because ibuprofen lysine exerts similar pharmacologic characteristics to other systemic NSAIDs, including COX-2 inhibitors, additive pharmacodynamic effects, including a potential increase for additive adverse GI effects, may be seen if ibuprofen lysine is used with other NSAIDs. In general, concurrent use of ibuprofen lysine and another NSAID should be avoided.
    Ibuprofen: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Ibuprofen; Oxycodone: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Ibuprofen; Pseudoephedrine: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Idarubicin: (Major) Due to the thrombocytopenic effects of idarubicin, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Ifosfamide: (Major) Due to the thrombocytopenic effects of ifosfamide, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Iloprost: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Imatinib: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Immune Globulin IV, IVIG, IGIV: (Moderate) Immune Globulin (IG) products have been reported to be associated with renal dysfunction, acute renal failure, osmotic nephrosis, and death. Patients predisposed to acute renal failure include patients receiving known nephrotoxic drugs like nonsteroidal anti-inflammatory drugs (NSAIDs) and salicylates. Coadminister IG products at the minimum concentration available and the minimum rate of infusion practicable. Also, closely monitor renal function.
    Indapamide: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Indomethacin: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Interferon Alfa-2a: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Interferon Alfa-2b: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Interferon Alfa-2b; Ribavirin: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Iodipamide Meglumine: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Iohexol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Ionic Contrast Media: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Iopamidol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Iopromide: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Ioversol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Ioxaglate Meglumine; Ioxaglate Sodium: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Irbesartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Irinotecan: (Major) Due to the thrombocytopenic effects of irinotecan, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Isosulfan Blue: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Ixabepilone: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Kanamycin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal anti-inflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as kanamycin.
    Ketoprofen: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Labetalol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Lansoprazole; Naproxen: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Lapatinib: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Leflunomide: (Moderate) In vitro studies indicate that the M1 metabolite of leflunomide inhibits cytochrome P450 2C9, the enzyme responsible for the metabolism of many NSAIDs. Leflunomide altered protein binding and thus, increased the free fraction of ibuprofen by 13% to 50%. The clinical significance of the interactions with NSAIDs is unknown. There was extensive concomitant use of NSAIDs in phase III clinical studies of leflunomide in the treatment of rheumatoid arthritis, and no clinical differential effects were observed. However, because some NSAIDs have been reported to cause hepatotoxic effects, some caution may be warranted in their use with leflunomide.
    Lepirudin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Levobetaxolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Levobunolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Levomilnacipran: (Moderate) Platelet aggregation may be impaired by SNRIs such as levomilnacipran due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Monitor for signs and symptoms of bleeding in patients taking levomilnacipran and NSAIDs.
    Lisinopril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Lithium: (Moderate) Lithium levels should be monitored when patients initiate or discontinue nonsteroidal antiinflammatory drugs. In some cases, lithium toxicity has resulted from interactions between an NSAID and lithium. Indomethacin and piroxicam have been reported to significantly increase steady-state plasma lithium concentrations. There is also evidence that other NSAIDs, including the selective cyclooxygenase-2 (COX-2) inhibitors, have the same effect. In a study conducted in healthy subjects, mean steady-state lithium plasma levels increased approximately 17% in subjects receiving lithium 450 twice daily with celecoxib 200 mg twice daily as compared to subjects receiving lithium alone. It is thought that prostaglandins are involved in the renal clearance of lithium and that NSAIDs interfere with lithium excretion. Typically, increased lithium levels develop over 5 to 10 days after adding a NSAID and return to pretreatment levels within 7 days of stopping the NSAID.
    Lomustine, CCNU: (Major) Due to the bone marrow suppressive and thrombocytopenic effects of lomustine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Losartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Magnesium Salts: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
    Magnesium Sulfate; Potassium Sulfate; Sodium Sulfate: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
    Mannitol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Mechlorethamine, Nitrogen Mustard: (Major) Mechlorethamine, nitrogen mustard is highly toxic and is associated with lymphocytopenia, granulocytopenia, and thrombocytopenia. Due to the thrombocytopenic effects of mechlorethamine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Meclofenamate Sodium: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Mefenamic Acid: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Meloxicam: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Melphalan: (Major) Bone marrow suppression is the most significant toxicity associated with melphalan in most patients, and includes thrombocytopenia and leukopenia. Due to the thrombocytopenic effects of melphalan, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Mercaptopurine, 6-MP: (Major) Due to the thrombocytopenic effects of mercaptopurine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Mesalamine, 5-ASA: (Minor) The concurrent use of mesalamine with known nephrotoxic agents such as nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of nephrotoxicity.
    Methotrexate: (Major) In general, NSAID therapy can decrease the clearance of methotrexate, resulting in elevated and prolonged serum methotrexate levels. Nonsteroidal antiinflammatory drugs (NSAIDs) should not be administered prior to, concomitantly, or following intermediate or high doses of methotrexate. Concomitant administration of NSAIDs with high dose methotrexate therapy has been reported to elevate and prolong serum concentrations of methotrexate resulting in deaths from severe hematologic and gastrointestinal toxicity. Caution should be used when NSAIDs are administered concurrently with lower doses of methotrexate. In patients with rheumatoid arthritis, methotrexate has been given concurrently with NSAIDs without apparent problems. It should be noted that the doses of methotrexate used in rheumatoid arthritis are lower than those used in psoriasis or malignant disease; higher methotrexate doses may lead to unexpected toxicity in combination with NSAIDs. Concurrent use of NSAIDs may increase the risk of GI bleeding in patients with methotrexate-induced myelosuppression or mask fever, pain, swelling and other signs and symptoms of an infection.
    Methoxsalen: (Major) Preclinical data suggest agents that inhibit prostaglandin synthesis such as ketorolac could decrease the efficacy of photosensitizing agents used in photodynamic therapy. Avoidance of ketorolac before and during photodynamic therapy may be advisable.
    Methyldopa: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Methylprednisolone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Methylsulfonylmethane, MSM: (Moderate) Patients taking methylsulfonylmethane, MSM have reported increased bruising or blood in the stool. These effects have not been confirmed in published medical literature or during clinical studies. Use methylsulfonylmethane, MSM with caution in patients who are taking drugs with the potential for additive bleeding, including nonsteroidal antiinflammatory drugs (NSAIDs). During an available, published clinical trials in patients with osteoarthritis, patients with bleeding disorders or using anticoagulants or platelet inhibiting drugs were excluded from enrollment. Patients who choose to consume methylsulfonylmethane, MSM while receiving NSAIDs should be observed for potential bleeding.
    Metoprolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Mifepristone, RU-486: (Moderate) Mifepristone RU-486, significantly increased exposure of drugs metabolized by CYP2C8/2C9 in interaction studies. Therefore, when mifepristone is used in the treatment of Cushing's syndrome and coadministered with other CYP2C8/2C9 substrates, including NSAIDs, the lowest does of the substrate should be used and patients monitored closely for adverse reactions.
    Milnacipran: (Moderate) Platelet aggregation may be impaired by milnacipran due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Monitor for signs and symptoms of bleeding in patients taking milnacipran and NSAIDs.
    Minoxidil: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Mitomycin: (Major) Due to the thrombocytopenic effects of mitomycin, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Mitoxantrone: (Major) Due to the thrombocytopenic effects of mitoxantrone, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Mivacurium: (Moderate) Ketorolac may enhance the muscle-relaxant effect of nondepolarizing neuromuscular blockers. Caution should be exercised during concomitant administration of ketorolac with these agents.
    Moexipril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Mometasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Nabumetone: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Nadolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Naproxen: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Naproxen; Pseudoephedrine: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Naproxen; Sumatriptan: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Nebivolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Nebivolol; Valsartan: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Nelarabine: (Major) Due to the thrombocytopenic effects of nelarabine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Neomycin: (Minor) It is possible that additive nephrotoxicity may occur in patients who receive NSAIDs concurrently with other nephrotoxic agents, such as aminoglycosides.
    Neostigmine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Neuromuscular blockers: (Moderate) Ketorolac may enhance the muscle-relaxant effect of nondepolarizing neuromuscular blockers. Caution should be exercised during concomitant administration of ketorolac with these agents.
    Nitroprusside: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Non-Ionic Contrast Media: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Olmesartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Omacetaxine: (Major) Avoid the concomitant use of omacetaxine and nonsteroidal antiinflammatory drugs (NSAIDs) when the platelet count is less than 50,000 cells/microliter due to an increased risk of bleeding.
    Oxaprozin: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Paclitaxel: (Major) Due to the thrombocytopenic effects of paclitaxel, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Pancuronium: (Moderate) Ketorolac may enhance the muscle-relaxant effect of nondepolarizing neuromuscular blockers. Caution should be exercised during concomitant administration of ketorolac with these agents.
    Paroxetine: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
    Pegaspargase: (Major) Due to the thrombocytopenic effects of pegaspargase, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Penbutolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Pentamidine: (Moderate) Additive nephrotoxicity may be seen with the combination of pentamidine and other agents that cause nephrotoxicity, including non-steroidal anti-inflammatory agents (NSAIDs). Maintain adequate hydration and monitor renal function carefully during concurrent therapy.
    Pentosan: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Pentostatin: (Major) Due to the thrombocytopenic effects of pentostatin, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Pentoxifylline: (Severe) Concomitant use of ketorolac tromethamine and pentoxifylline is contraindicated; an increased bleeding tendency occurs with concurrent use.
    Perindopril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Perindopril; Amlodipine: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Phenoxybenzamine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Phentermine; Topiramate: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
    Phentolamine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Phenytoin: (Moderate) Sporadic cases of seizures have been reported during concomitant use of ketorolac tromethamine and antiepileptic drugs like phenytoin sodium. The mechanism of action is unknown. Ketorolac may cause seizures. Also, ketorolac could displace phenytoin from plasma protein binding sites. Toxic phenytoin concentrations could cause a seizure.
    Physostigmine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Pindolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Piroxicam: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Platelet Inhibitors: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Pneumococcal Vaccine, Polyvalent: (Moderate) Concomitant administration of antipyretics, such as nonsteroidal antiinflammatory drugs (NSAIDS), may decrease an individual's immunological response to the pneumococcal vaccine. A post-marketing study conducted in Poland using a non-US vaccination schedule (2, 3, 4, and 12 months of age) evaluated the impact of prophylactic oral acetaminophen on antibody responses to Prevnar 13. Data show that acetaminophen, given at the time of vaccination and then dosed at 6 to 8 hour intervals for 3 doses on a scheduled basis, reduced the antibody response to some serotypes after the third dose of Prevnar 13 when compared to the antibody responses of infants who only received antipyretics 'as needed' for treatment. However, reduced antibody responses were not observed after the fourth dose of Prevnar 13 with prophylactic acetaminophen.
    Polyethylene Glycol; Electrolytes: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
    Polymyxin B: (Major) The chronic coadministration of systemic polymyxins may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when used concurrently. Monitor patients for changes in renal function if these drugs are coadministered. Since Polymyxin B is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including nonsteroidal antiinflammatory drugs (NSAIDs), may theoretically increase serum concentrations of either drug.
    Polymyxins: (Major) The administration of colistimethate sodium may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when used concurrently. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including nonsteroidal antiinflammatory drugs (NSAIDs), may theoretically increase serum concentrations of either drug.
    Porfimer: (Major) Preclinical data suggest agents that inhibit prostaglandin synthesis such as ketorolac could decrease the efficacy of photosensitizing agents used in photodynamic therapy. Avoidance of ketorolac before and during photodynamic therapy may be advisable.
    Pralatrexate: (Major) Renal elimination accounts for approximately 34% of the overall clearance of pralatrexate. Concomitant administration of drugs that undergo substantial renal clearance, such as nonsteroidal antiinflammatory drugs (NSAIDs), may result in delayed clearance of pralatrexate.
    Prasugrel: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Prazosin: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Prednisolone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Prednisone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Probenecid: (Severe) Simultaneous use of ketorolac and probenecid is contraindicated. Concomitant administration of ketorolac with probenecid can result in substantially increased plasma concentrations of ketorolac through decreased clearance. The elimination half-life of ketorolac is approximately doubled.
    Procarbazine: (Major) Due to the thrombocytopenic effects of procarbazine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Propranolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Pyridostigmine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Quinapril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Quinolones: (Moderate) The concomitant administration of quinolones and nonsteroidal antiinflammatory drugs has been reported to increase the risk of CNS stimulation and convulsive seizures. Patients with CNS disorders or other risk factors that may predispose them to seizure development or patients taking drugs that lower the seizure threshold may not be appropriate candidates for NSAID usage if they are also taking a quinolone. Use a quinolone with caution in individuals who take a NSAID concomitantly.
    Ramipril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Rapacuronium: (Moderate) Ketorolac may enhance the muscle-relaxant effect of nondepolarizing neuromuscular blockers. Caution should be exercised during concomitant administration of ketorolac with these agents.
    Reserpine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Reteplase, r-PA: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
    Rivaroxaban: (Major) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Rivastigmine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Rocuronium: (Moderate) Ketorolac may enhance the muscle-relaxant effect of nondepolarizing neuromuscular blockers. Caution should be exercised during concomitant administration of ketorolac with these agents.
    Romidepsin: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Sacubitril; Valsartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Salicylates: (Severe) Increased adverse gastrointestinal and other effects are possible if ketorolac is used with salicylates. In addition, concomitant administration of salicylates and ketorolac has resulted in a reduction in protein binding and a two-fold increase in unbound plasma concentrations of ketorolac. As a result, concomitant use of ketorolac and aspirin or any other NSAID is contraindicated. Because ketorolac can cause GI bleeding, inhibit platelet aggregation, and may prolong bleeding time, additive effects may be seen in patients receiving platelet inhibitors (e.g., aspirin), anticoagulants, or thrombolytic agents.
    Selective serotonin reuptake inhibitors: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
    Sertraline: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
    Sodium Hyaluronate, Hyaluronic Acid: (Moderate) Increased bruising or bleeding at the injection site may occur when using hyaluronate sodium with nonsteroidal antiinflammatory drugs (NSAIDs).
    Sodium Phosphate Monobasic Monohydrate; Sodium Phosphate Dibasic Anhydrous: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
    Sodium picosulfate; Magnesium oxide; Anhydrous citric acid: (Moderate) Use caution when prescribing sodium picosulfate; magnesium oxide; anhydrous citric acid in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
    Sorafenib: (Moderate) An increased risk of bleeding may occur when NSAIDs are used with sorafenib. Patients should be monitored closely for bleeding.
    Sotalol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Spironolactone: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Streptokinase: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
    Streptomycin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal anti-inflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as streptomycin.
    Streptozocin: (Major) An increased risk of bleeding may occur when NSAIDs are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Succinylcholine: (Moderate) Ketorolac may enhance the muscle-relaxant effect of nondepolarizing neuromuscular blockers. Caution should be exercised during concomitant administration of ketorolac with these agents.
    Sulfinpyrazone: (Moderate) Sulfinpyrazone is an inhibitor of CYP2C9 and may lead to increased plasma levels of NSAIDs. During concurrent therapy, monitor for potential NSAID-induced toxicity, such as GI irritation or bleeding.
    Sulfonylureas: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Sulindac: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Tacrine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Telavancin: (Minor) Concurrent or sequential use of telavancin with drugs that inhibit renal prostaglandins such as nonsteroidal antiinflammatory drugs (NSAIDS) may lead to additive nephrotoxicity. Closely monitor renal function and adjust telavancin doses based on calculated creatinine clearance.
    Telbivudine: (Moderate) Drugs that alter renal function such as NSAIDs may alter telbivudine plasma concentrations because telbivudine is eliminated primarily by renal excretion. Monitor renal function before and during telbivudine treatment.
    Telmisartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Temozolomide: (Major) Myelosuppression, primarily neutropenia and thrombocytopenia, is the dose-limiting toxicity of temozolomide. Due to the thrombocytopenic effects of temozolomide, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Tenecteplase, TNK-tPA: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
    Teniposide: (Major) Dose-limiting bone marrow suppression is the most significant toxicity associated with teniposide, and may include thrombocytopenia. An additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Salicylates also displace protein-bound teniposide in fresh human serum to a small but significant extent. Because of the extremely high binding of teniposide to plasma proteins, these small decreases in binding could cause substantial increases in plasma free drug concentrations that could result in potentiation of teniposide toxicity, including bone marrow suppression.
    Tenofovir Alafenamide: (Moderate) Avoid administering tenofovir-containing medications concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine clearance, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
    Tenofovir, PMPA: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
    Terazosin: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Thiazide diuretics: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Thioguanine, 6-TG: (Major) Due to the thrombocytopenic effects of thioguanine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Thiotepa: (Major) Thiotepa is highly toxic to the hematopoietic system, and causes thrombocytopenia, leukopenia, and anemia. An additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Thrombolytic Agents: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
    Ticagrelor: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Ticlopidine: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Timolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Tinzaparin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Tirofiban: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Tobacco: (Moderate) Concomitant use of nonsteroidal antiinflammatory drugs (NSAIDs) with tobacco smoking may enhance the risk of gastrointestinal (GI) side effects. Tobacco smoking may independently increase the risk of peptic ulcer and GI bleeding, and thus may increase the risk with NSAID usage. Patients using tobacco and NSAIDs concurrently should be monitored closely for GI adverse reactions.
    Tobramycin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal anti-inflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as tobramycin.
    Tolazamide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Tolbutamide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Tolmetin: (Severe) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Topiramate: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
    Torsemide: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
    Tositumomab: (Major) The tositumomab therapeutic regimen frequently causes severe and prolonged thrombocytopenia. The potential benefits of medications that interfere with platelet function and/or anticoagulation should be weighed against the potential increased risk of bleeding and hemorrhage. An additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Trandolapril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Trandolapril; Verapamil: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone.
    Trastuzumab: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Trazodone: (Moderate) Platelet aggregation may be impaired by trazodone due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Patients should be instructed to monitor for signs and symptoms of bleeding while taking trazodone concurrently with medications that impair platelet function and to promptly report any bleeding events to the practitioner.
    Treprostinil: (Moderate) NSAIDs may decrease the effect of antihypertensive agents through various mechanisms, including renal and peripheral vasoactive pathways.
    Tretinoin, ATRA: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Triamcinolone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Triamterene: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Tubocurarine: (Moderate) Ketorolac may enhance the muscle-relaxant effect of nondepolarizing neuromuscular blockers. Caution should be exercised during concomitant administration of ketorolac with these agents.
    Urea: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Urokinase: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
    Valganciclovir: (Minor) Concurrent use of nephrotoxic agents, such as NSAIDs, with valganciclovir should be done cautiously to avoid additive nephrotoxicity.
    Valproic Acid, Divalproex Sodium: (Moderate) Due to the high protein binding of NSAIDs, they could displace other highly protein-bound drugs such as valproic acid, divalproex sodium from albumin binding sites in the blood leading to an increase in valproic acid free drug concentrations. In such cases, a patient may experience valproic acid toxicity even if the total drug concentration is within the therapeutic range.
    Valsartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
    Vancomycin: (Minor) It is possible that additive nephrotoxicity may occur in patients who receive NSAIDs concurrently with other nephrotoxic agents, including vancomycin.
    Vasodilators: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Vecuronium: (Moderate) Ketorolac may enhance the muscle-relaxant effect of nondepolarizing neuromuscular blockers. Caution should be exercised during concomitant administration of ketorolac with these agents.
    Vemurafenib: (Major) An increased risk of bleeding may also occur when NSAIDs are used with agents that cause clinically significant thrombocytopenia. Notable interactions may occur with myelosuppressive antineoplastic agents, antithymocyte globulin and strontium-89 chloride. Patients receiving ketorolac concurrently with antineoplastic agents, antithymocyte globulin, or strontium-89 chloride should be monitored closely for bleeding.
    Venlafaxine: (Moderate) Platelet aggregation may be impaired by venlafaxine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Monitor patients for signs and symptoms of bleeding when coadministering venlafaxine with NSAIDs.
    Vilazodone: (Moderate) Platelet aggregation may be impaired by vilazodone due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Patients should be instructed to monitor for signs and symptoms of bleeding while taking vilazodone concurrently with NSAIDs and to promptly report any bleeding events to the practitioner.
    Vinblastine: (Major) Due to the thrombocytopenic effects of vinblastine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Vincristine Liposomal: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Vincristine: (Major) An increased risk of bleeding may occur when NSAIDs, such as ketorolac, are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Vinorelbine: (Major) Due to the thrombocytopenic effects of vinorelbine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Vorapaxar: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
    Vorinostat: (Major) An increased risk of bleeding may occur when NSAIDs are used with agents that cause clinically significant thrombocytopenia, such as myelosuppressive antineoplastic agents. Monitor closely for bleeding.
    Vortioxetine: (Moderate) Platelet aggregation may be impaired by vortioxetine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Bleeding events related to drugs that inhibit serotonin reuptake have ranged from ecchymosis to life-threatening hemorrhages. Patients should be instructed to monitor for signs and symptoms of bleeding while taking vortioxetine concurrently with medications which impair platelet function and to promptly report any bleeding events to the practitioner.
    Warfarin: (Moderate) Monitor patients for signs or symptoms of bleeding during concurrent use of warfarin and nonsteroidal antiinflammatory drugs (NSAIDs).To minimize the potential for GI bleeding, use the lowest effective NSAID dose for the shortest possible duration. If signs or symptoms of bleeding occur, promptly evaluate and treat. Systemic hematological effects may also occur with the use of topical NSAIDs. NSAIDs inhibit platelet aggregation and may prolong bleeding time in some patients.

    PREGNANCY AND LACTATION

    Pregnancy

    Although use should be avoided in late pregnancy, systemic ketorolac formulations are classified as FDA pregnancy risk category C throughout most of gestation. The nasal formulation is FDA pregnancy risk category C prior to 30 weeks gestation. Because of the known effects of NSAIDs on the fetal cardiovascular system (premature closure of the fetal ductus arteriosus in utero), systemic and nasal use during late pregnancy should be avoided (FDA pregnancy risk category D, e.g., starting at 30 weeks gestation). The ketorolac ophthalmic solution is classified as FDA pregnancy risk category C; because a small amount of ophthalmic solution is systemically absorbed, use during late pregnancy should be avoided. There are no adequate and well-controlled studies in pregnant women. Use of all formulations should be avoided unless the potential therapeutic benefits justify its use during pregnancy. There are some published observational data to suggest that prescription NSAIDs may increase the risk of miscarriage in the first half of pregnancy before 20 weeks gestation; however, based on the FDA evaluation of the quality of evidence available, there is inclusive evidence regarding a possible connection between NSAID use and miscarriage. The FDA recommends caution and adherence to recommendations in product labels regarding pregnancy. Of 40 babies born with persistent pulmonary hypertension of the newborn (PPHN), 87.5% had the presence of an NSAID in their meconium versus 24.6% of 61 infants born without PPHN; the presence of only four NSAIDs was examined. In addition to meconium aspiration, asphyxia, respiratory distress syndrome, and group B streptococcal pneumonia, ductus arteriosus constriction by an NSAID appears to be another predisposing factor for PPHN development, as a patent ductus arteriosus was absent in 18 of the 40 infants. Prostaglandin synthetase inhibitors also have the potential to prolong pregnancy and inhibit labor if taken during the third trimester. There may be an increased risk of neonatal complications, such as necrotizing enterocolitis, patent ductus arteriosus, and intracranial hemorrhage when prostaglandin synthetase inhibitors are used to delay preterm delivery. Because of the adverse effects on fetal circulation and uterine contractions, systemic and nasal formulations are contraindicated during labor and obstetric delivery. Systemic and nasal formulations are contraindicated for use as a prophylactic analgesic before major surgery and during surgery when hemostasis is critical, such as during caesarean section. Prostaglandin inhibitors may impair fertility and are not recommended for use in women attempting to conceive.

    MECHANISM OF ACTION

    Ketorolac competitively inhibits both cyclooxygenase (COX) isoenzymes, COX-1 and COX-2, by blocking arachidonate binding resulting in analgesic, antipyretic, and anti-inflammatory pharmacologic effects. The enzymes COX-1 and COX-2 catalyze the conversion of arachidonic acid to prostaglandin G2 (PGG2), the first step of the synthesis prostaglandins and thromboxanes that are involved in rapid physiological responses. COX isoenzymes are also responsible for a peroxidase reaction, which is not affected by NSAIDs. In addition, NSAIDs do not suppress leukotriene synthesis by lipoxygenase pathways. COX-1 is constitutively expressed in almost all tissues, while COX-2 appears to only be constitutively expressed in the brain, kidney, bones, reproductive organs, and some neoplasms (e.g., colon and prostate cancers). COX-1 is responsible for prostaglandin synthesis in response to stimulation by circulating hormones, as well as maintenance of normal renal function, gastric mucosal integrity, and hemostasis. However, COX-2 is inducible in many cells in response to certain mediators of inflammation (e.g., interleukin-1, tumor necrosis factor, lipopolysaccharide, mitogens, and reactive oxygen intermediates).
    •Anti-inflammatory Activity: The anti-inflammatory mechanism of ketorolac is due to decreased prostaglandin synthesis via inhibition of COX-1 and COX-2. It appears that the anti-inflammatory effects may be primarily due to inhibition of the COX-2 isoenzyme. However, COX-1 is expressed at some sites of inflammation. COX-1 is expressed in the joints of rheumatoid arthritis or osteoarthritis patients, especially the synovial lining, and it is the primary enzyme of prostaglandin synthesis in human bursitis.
    •Analgesic Activity: Ketorolac is effective in cases where inflammation has caused sensitivity of pain receptors (hyperalgesia). It appears prostaglandins, specifically prostaglandins E and F, are responsible for sensitizing the pain receptors; therefore, ketorolac has an indirect analgesic effect by inhibiting the production of further prostaglandins and does not directly affect hyperalgesia or the pain threshold.
    •Antipyretic Activity: Ketorolac promotes a return to a normal body temperature set point in the hypothalamus by suppressing the synthesis of prostaglandins, specifically PGE2, in circumventricular organs in and near the hypothalamus. Ketorolac may mask fever in some patients, especially with high or chronic dosing.
    •Ophthalmic Activity: Following topical application to the eye, ketorolac inhibits miosis by inhibiting the biosynthesis of ocular prostaglandins. Prostaglandins play a role in the miotic response produced during ocular surgery by constricting the iris sphincter independently of cholinergic mechanisms. In the eye, prostaglandins also have been shown to disrupt the blood-aqueous humor barrier, cause vasodilation, increase vascular permeability, promote leukocytosis, and increase intraocular pressure (IOP). The degree of ocular inflammatory response is correlated with prostaglandin-induced increases in ciliary epithelium permeability. When applied topically to the eye, NSAIDs inhibit the synthesis of prostaglandins in the iris, ciliary body, and conjunctiva. Thus, NSAIDs may prevent many of the manifestations of ocular inflammation. Ketorolac does not affect intraocular pressure or tonographic aqueous outflow resistance and does not interfere with the action of acetylcholine administered during ocular surgery. Ketorolac also does not prevent increases in intraocular pressure or decreases in aqueous outflow induced by topical corticosteroids.
    •GI Effects: Gastrointestinal side effects of ketorolac are primarily contributed to COX-1 inhibition; however, potential role of COX-2 inhibition in the GI tract has not been fully elucidated. In comparison to other NSAIDs, ketorolac has been associated an increased incidence of GI effects and has dosing restrictions to limit these effects.
    •Platelet Effects: The inhibition of platelet aggregation seen with ketorolac is due to dose-dependent inhibition of COX-1 in platelets leading to decreased levels of platelet thromboxane A2 and an increase in bleeding time. The inhibition of platelet aggregation is reversible within 24—48 hours of ketorolac discontinuation. This differs from aspirin, which irreversibly binds to COX-1 in platelets inhibiting this enzyme for the life of the cell.
    •Renal Effects: In the kidney, prostaglandins, produced by both COX-1 and COX-2, are important regulators of sodium and water reabsorption through PGE2 and of renal function and hemodynamics via PGI2 in response to vasoconstrictive factors (e.g., endothelin-1, a factor that increases peripheral vascular resistance) and through effects on the renin-angiotensin system. In the setting of decreased volume, PGI2, helps maintain renal blood flow by counteracting other vasoconstrictive autocoids. In conditions where renal blood flow is dependent upon prostaglandin synthesis, administration of NSAIDs can result in significant decreases in renal blood flow leading to acute renal failure. In addition, alterations in sodium and water reabsorption may worsen increased blood pressure, which can be significant in selected individuals.
     
     
     

    PHARMACOKINETICS

    Ketorolac is administered orally, parenterally, nasally, or as an ophthalmic solution. Parenteral and oral dosages, and intramuscular and intranasal dosages produce similar pharmacokinetic profiles. Ketorolac is more than 99% bound to albumin. Ketorolac crosses the placenta and is distributed into breast milk in small quantities. Ketorolac is metabolized through hydroxylation in the liver to form p-hydroxyketorolac, which has a potency of less than 1% of the parent drug. Conjugation with glucuronic acid also occurs. Ketorolac and its metabolites are primarily excreted in the urine (91%), and the remainder is eliminated in the feces.

    Oral Route

    The absorption of ketorolac is rapid and complete with a bioavailability of 100% after oral administration. Food decreases the rate, but not the extent, of absorption. Peak plasma concentrations after oral administration are achieved within an hour. When ketorolac 10 mg is administered systemically every 6 hours, peak plasma concentrations at steady state are about 960 ng/mL. Following oral administration, analgesia occurs in 30—60 minutes, with a duration of action of 6—8 hours. Duration of analgesia increases with larger doses, but the time to peak analgesic effect is similar. The mean elimination half-life of ketorolac after oral dosing is 5.3 hours with a range of 2.4—9 hours. As compared to patients younger than 65 years of age, the mean elimination half-life in the elderly was prolonged (7 hours after an IM dose and 6.1 hours after an oral dose).

    Intravenous Route

    The absorption of ketorolac is rapid and complete with a bioavailability of 100% after IV administration. Following IV injection, the onset of analgesia occurs in about 30 minutes, with a peak effect around 1—2 hours, and a duration of action of 4—6 hours. Duration of analgesia increases with larger doses, but the time to peak analgesic effect is similar. When ketorolac 10 mg is administered systemically every 6 hours, peak plasma concentrations at steady state are about 960 ng/mL.

    Intramuscular Route

    The absorption of ketorolac is rapid and complete with a bioavailability of 100% after IM administration. Peak plasma concentrations after IM injection are achieved within an hour. When ketorolac 10 mg is administered systemically every 6 hours, peak plasma concentrations at steady state are about 960 ng/mL. The mean elimination half-life of ketorolac after IM dosing is 5.3 hours with a range of 3.5—9.2. Following IM injection, the onset of analgesia occurs in about 30 minutes, with a peak effect around 1—2 hours, and a duration of action of 4—6 hours. Duration of analgesia increases with larger doses, but the time to peak analgesic effect is similar. As compared to patients younger than 65 years of age, the mean elimination half-life in the elderly was prolonged (7 hours after an IM dose).

    Other Route(s)

    Ophthalmic Route
    Measurable, but low, serum concentrations are detectable after ophthalmic administration. Following instillation of one drop (0.05 mL) of 0.5% ketorolac solution into the eye, only 5 of 26 subjects had detectable plasma concentrations of ketorolac (range 10.7to 22.5 ng/mL) at treatment day 10. Two drops of 0.5% solution instilled into the eyes of patients 12 hours and 1 hour prior to cataract extraction achieved a mean ketorolac concentration of 95 ng/mL in the aqueous humor of 8 of 9 eyes tested (range: 40 to 170 ng/mL).
     
    Intranasal Route
    Local ketorolac disbursement after nasal spray (Sprix brand) administration includes nasal cavity and pharynx (approximately 80%), esophagus and stomach (less than 20%), and lungs (less than 0.5%). Bioavailability was 60% that of IM administered ketorolac; however, at FDA approved dosing, the Cmax, Tmax, AUC, and drug half-life values of intranasal ketorolac were similar to those of intramuscular ketorolac. Dose accumulation was not apparent in healthy patients; Cmax and AUC values were similar following the last dose of four times daily dosing for 5 days as compared to following single dose administration. After 5 days of receiving 31.5 mg of ketorolac 4 times per day intranasally, the half-life was 5.2 hours.