Angiomax

Browse PDR's full list of drug information

Angiomax

Classes

Direct Thrombin Inhibitors

Administration
Injectable Administration

Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit. The reconstituted solution will be clear to slightly opalescent, colorless to slightly yellow.

Intravenous Administration

Preparation for IV Bolus and Continuous Infusion
Add 5 mL of Sterile Water for Injection to each 250 mg bivalirudin vial.
Gently swirl until all material is dissolved.
Withdraw and discard 5 mL from a 50 mL 5% Dextrose Injection or 0.9% Sodium Chloride Injection infusion bag.
Add the contents of the reconstituted bivalirudin vial to the infusion bag to yield a final concentration of 5 mg/mL.
Storage: Do not freeze. The reconstituted drug may be stored at 2 to 8 degrees C (36 to 46 degrees F) for up to 24 hours. Diluted solution is stable at room temperature for up to 24 hours.[29586]
 
Premixed IV solution (Baxter)
No dilution necessary.
Thaw at room temperature or under refrigeration. Do not thaw by immersion in water baths or by microwave irradiation. Agitate after the solution has reached room temperature. If after visual inspection the solution remains cloudy or if an insoluble precipitate is noted, if there are any leaks, or if any seals or outlet ports are not intact, the container should be discarded.
Do not add supplemental medication.
Do not refreeze thawed injection.
Storage: Thawed solution is stable for 14 days under refrigeration or 24 hours at room temperature. Discard any unused portion.[63101]
 
Premixed IV solution (Angiomax RTU)
No dilution necessary.
Storage: Use immediately once removed from refrigerator. Discard any unused portion.[64527]
 
Intravenous Infusion
Administer by continuous IV infusion.
No incompatibilities have been observed with administration sets.
Do not administer alteplase, amiodarone, amphotericin B, chlorpromazine, diazepam, dobutamine, prochlorperazine, reteplase, streptokinase, or vancomycin in the same IV line with bivalirudin.[29586] Dobutamine was compatible at a concentration of 4 mg/mL but visually incompatible at a concentration of 12.5 mg/mL.[31656]

Adverse Reactions
Severe

hematuria / Delayed / 12.5-12.5
GI bleeding / Delayed / 6.0-6.0
retroperitoneal bleeding / Delayed / Incidence not known
intracranial bleeding / Delayed / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
thrombosis / Delayed / Incidence not known
cardiac tamponade / Delayed / Incidence not known

Moderate

bleeding / Early / 3.7-56.0
thrombocytopenia / Delayed / 3.9-3.9
hematoma / Early / Incidence not known
antibody formation / Delayed / Incidence not known

Common Brand Names

Angiomax, Bivalirudin

Dea Class

Rx

Description

Intravenous direct thrombin inhibitor
Used for anticoagulation in patients undergoing PCI, including patients with HIT or HITTS
Associated with higher incidence of acute stent thrombosis in STEMI patients undergoing PCI compared to heparin

Dosage And Indications
For coronary artery thrombosis prophylaxis in percutaneous coronary intervention (PCI), acute myocardial infarction, STEMI, acute myocardial infarction, NSTEMI†, and unstable angina†, including in persons with heparin-induced thrombocytopenia (HIT) and heparin-induced thrombocytopenia and thrombosis syndrome (HITTS). For coronary artery thrombosis prophylaxis in general PCI without prior anticoagulation administration. Intravenous dosage Adults

0.75 mg/kg IV bolus, followed by 1.75 mg/kg/hour continuous IV infusion for the duration of the procedure. Monitor activated clotting time (ACT) 5 minutes after the bolus dose and administer an additional 0.3 mg/kg IV bolus if needed.[29586] Guidelines recommend bivalirudin (or argatroban) over other nonheparin anticoagulants for persons with acute HIT or subacute HIT who require PCI.[49183]

For coronary artery thrombosis prophylaxis in general PCI with prior heparin administration. Intravenous dosage Adults

0.75 mg/kg IV bolus, followed by 1.75 mg/kg/hour continuous IV infusion for the duration of the procedure if repeat ACT is not therapeutic. Monitor ACT 5 minutes after the bolus dose and administer an additional 0.3 mg/kg IV bolus if needed.[29586] Guidelines recommend bivalirudin (or argatroban) over other nonheparin anticoagulants for persons with acute HIT or subacute HIT who require PCI.[49183]

For coronary artery thrombosis prophylaxis in STEMI. Intravenous dosage Adults

0.75 mg/kg IV bolus, followed by 1.75 mg/kg/hour continuous IV infusion for the duration of the procedure. Monitor ACT 5 minutes after the bolus dose and administer an additional 0.3 mg/kg IV bolus if needed.[29586] Consider extending the duration of bivalirudin infusion for up to 4 hours postprocedure). Bivalirudin has been studied only in persons receiving concomitant aspirin.[29586] Bivalirudin with or without prior treatment with heparin is recommended for persons with STEMI undergoing PCI. In persons who are at high risk of bleeding, it is reasonable to use bivalirudin monotherapy in preference to the combination of heparin and a GP IIb/IIa receptor antagonist.[55688]

For coronary artery thrombosis prophylaxis in NSTEMI. Intravenous dosage Adults

0.1 mg/kg IV bolus, followed by 0.25 mg/kg/hour continuous IV infusion until diagnostic angiography or PCI. Administer an additional 0.5 mg/kg IV bolus and increase the infusion to 1.75 mg/kg/hour during PCI. In persons who have received heparin, wait 30 minutes before administering the initial bivalirudin bolus. In persons who are at high risk of bleeding, it is reasonable to use bivalirudin monotherapy in preference to the combination of heparin and a GP IIb/IIa receptor antagonist.

For anticoagulation in patients undergoing cardiac surgery†, specifically cardiopulmonary bypass (CPB)†. In adult patients with acute or subacute heparin-induced thrombocytopenia (HIT) undergoing CPB. Intravenous dosage Adults

1 mg/kg IV followed by 2.5 mg/kg/hour continuous IV infusion with 0.1 to 0.5 mg/kg IV as needed to maintain ACT more than 2.5 times baseline for on-pump cardiac surgery; additional 50 mg to prime the pump. For off-pump cardiac surgery, 0.75 mg/kg IV followed 1.75 mg/kg/hour continuous IV infusion. Additional bolus doses or infusion titration discouraged. Guidelines suggest bivalirudin over other nonheparin anticoagulants and over heparin plus antiplatelet agents for patients with acute HIT or subacute HIT who require urgent cardiac surgery.

In adult patients without heparin-induced thrombocytopenia (HIT) undergoing CPB. Intravenous dosage Adults

1 mg/kg IV followed by 2.5 mg/kg/hour continuous IV infusion with 0.1 to 0.5 mg/kg IV as needed for on-pump cardiac surgery to maintain ACT more than 2.5 times baseline; additional 50 mg to prime the pump. For off-pump cardiac surgery, 0.75 mg/kg IV followed 1.75 mg/kg/hour continuous IV infusion with 0.1 to 0.5 mg/kg IV as needed and/or may titrate infusion by 0.25 mg/kg/hour to maintain ACT more than 300 seconds.

In pediatric patients undergoing CPB. Intravenous dosage Children

1 mg/kg IV load then 2.5 mg/kg/hour continuous IV infusion initially; prime pump with supplemental 50 mg bivalirudin. Monitor ACT at 30-minute intervals intraoperatively; for ACT less than 480 seconds, give an additional 0.25 mg/kg load and increase infusion by 1.25 mg/kg/hour. Bivalirudin 1.7 +/- 0.2 mg/kg IV load then 3 +/- 0.7 mg/kg/hour continuous IV infusion was required to maintain ACT more than 480 seconds in a randomized controlled trial comparing bivalirudin (n = 24; mean age: 59.3 months) to heparin (n = 25; mean age: 51.5 months) in children undergoing open-heart surgery. ACT was higher in the heparin group initially but remained elevated for 2 hours and was comparatively higher for 6 hours after CPB termination in bivalirudin-treated patients. This increased level of anticoagulation was not accompanied by excessive chest tube drainage or blood transfusion. Use of bivalirudin prolonged the total duration of surgery, in part due to extra time attempting to achieve and maintain a therapeutic ACT. A single case report describes infusion rates ranging from 2.5 to 5 mg/kg/hour required to maintain therapeutic ACT in an 11-year-old requiring CBP.

For anticoagulation in the treatment of thrombosis†, including arterial thromboembolism† and deep vein thrombosis (DVT)† in pediatric patients. Intravenous dosage Infants, Children, and Adolescents

0.125 to 0.25 mg/kg IV load then 0.125 to 0.25 mg/kg/hour continuous IV infusion initially. Adjust in 0.125 mg/kg/hour increments to maintain aPTT 1.5 to 2.5 times baseline. In a retrospective dose finding study of 18 patients (age range: 9 months to 17 years), 12 achieved target aPTT after the initial loading dose and 67% achieved target aPTT with the initial infusion rate 4 hours after initiation with this dosing regimen. Regression of thrombus via ultrasonography was noted in 10 of 10 patients with available data in a second cohort of 16 patients (age range: 1 day to 14 years) utilizing similar dosing. Mean infusion rate was 0.16 +/- 0.07 mg/kg/hour (range: 0.03 to 0.55 mg/kg/hour); only 63% of patients received a loading dose (most commonly 0.25 mg/kg).

Neonates

0.125 to 0.25 mg/kg IV load then 0.125 to 0.25 mg/kg/hour continuous IV infusion initially. Adjust in 0.125 mg/kg/hour increments to maintain aPTT 1.5 to 2.5 times baseline. In a retrospective dose finding study of 16 infants (age range: 0.5 to 6 months), 13 achieved target aPTT after the initial loading dose and 94% achieved target aPTT with the initial infusion dose 4 hours after initiation with this dosing regimen. Regression of thrombus via ultrasonography was noted in 10 of 10 patients with available data in a second cohort of 16 patients (age range: 1 day to 14 years) utilizing similar dosing. Mean infusion rate was 0.16 +/- 0.07 mg/kg/hour (range: 0.03 to 0.55 mg/kg/hour); only 63% of patients received a loading dose (most commonly 0.25 mg/kg).

For deep venous thrombosis (DVT) prophylaxis† in patients undergoing orthopedic surgery. Subcutaneous dosage Adults

Dosage not established. 1 mg/kg subcutaneously every 8 hours was associated with a significantly lower DVT rate compared to lower doses.[26269] Guidelines do not include bivalirudin.[58277]

For thrombosis prophylaxis†. In adult patients undergoing peripheral arterial bypass. Intravenous dosage Adults

0.75 mg/kg IV bolus then 1.75 mg/kg/hour continuous IV infusion for the duration of the procedure. May continue at 0.25 mg/kg/hour for up to 4 hours post procedure.[58246] [58247] [58248]

In pediatric patients undergoing cardiac catheterization. Intravenous dosage Infants, Children, and Adolescents

0.75 mg/kg IV load then 1.75 mg/kg/hour continuous IV infusion for the duration of the procedure. May continue at a rate of 0.25 mg/kg/hour for up to 72 hours post procedure if required. Major bleeding and thrombosis were noted in 1.8% and 7.5% of patients, respectively, in an analysis of 106 neonates, infants, children, and adolescents (median age: 3.7 years, weight range: 3 to 108 kg).

Neonates

0.75 mg/kg IV load then 1.75 mg/kg/hour continuous IV infusion for the duration of the procedure. May continue at a rate of 0.25 mg/kg/hour for up to 72 hours post procedure if required. Major bleeding and thrombosis were noted in 1.8% and 7.5% of patients, respectively, in an analysis of 106 neonates, infants, children, and adolescents (median age: 3.7 years, weight range: 3 to 108 kg).

In pediatric patients supported on extracorporeal membrane oxygenation (ECMO). Intravenous dosage Infants, Children, and Adolescents

0.1 to 0.3 mg/kg/hour continuous IV infusion initially; adjust to achieve and maintain target aPTT and ACT. A lower starting dose of 0.05 to 0.1 mg/kg/hour was used in a retrospective study of 21 patients, including 10 pediatric patients. Reported range: 0.03 to 1 .8 mg/kg/hour. Retrospective pediatric case series comparing bivalirudin to heparin have demonstrated shorter time to therapeutic aPTT, fewer bleeding events, lower rates of blood product replacement, and no difference in the rate of thromboembolic events.

Neonates

0.1 to 0.3 mg/kg/hour continuous IV infusion initially; adjust to achieve and maintain target aPTT and ACT. A lower starting dose of 0.05 to 0.1 mg/kg/hour was used in a retrospective study of 21 patients, including 10 pediatric patients. Reported range: 0.03 to 1 .8 mg/kg/hour. Retrospective pediatric case series comparing bivalirudin to heparin have demonstrated shorter time to therapeutic aPTT, fewer bleeding events, lower rates of blood product replacement, and no difference in the rate of thromboembolic events.

In pediatric patients supported with a ventricular assist device (VAD). Intravenous dosage Infants, Children, and Adolescents

0.1 to 0.3 mg/kg/hour continuous IV infusion initially. A higher initial rate of 0.5 mg/kg/hour has been suggested for Berlin Heart EXCOR ventricular assist devices. Adjust infusion rate to maintain aPTT 1.5 to 2 times baseline or 60 to 90 seconds and ACT goal 180 to 220 seconds. For aPTT less than 60 seconds, increase dose 20%. For aPTT more than 90 seconds, hold infusion for an hour and restart at half of the previous dose. The median initial dose of bivalirudin was 0.3 mg/kg/hour (range 0.1 to 1.4 mg/kg/hour) with median maximum dose of 1 mg/kg/hour (range: 0.1 to 3.9 mg/kg/hour) in a retrospective analysis of patients (age range: 0.1 to 215 months; weight range: 2.8 to 150 kg) receiving bivalirudin (n = 39) or argatroban (n = 4) in combination with antiplatelet therapy. Of the 43 patients receiving a direct thrombin inhibitor, 12% experienced stroke and 16% experienced major late bleeding with no mortality associated with either.

†Indicates off-label use

Dosing Considerations
Hepatic Impairment

Specific guidelines for dosage adjustments in hepatic impairment are not available; it appears that no dosage adjustments are needed.

Renal Impairment

Adults
CrCl 30 mL/minute or more: No dosage adjustment necessary.
CrCl less than 30 mL/minute: Reduce infusion rate to 1 mg/kg/hour.[29586]
 
Pediatrics
In general, decrease the initial infusion rate by 40% to 60% in patients with a CrCl less than 30 to 60 mL/minute. The following dosage adjustments have been used in prospective studies and institutional protocols.
Cardiac Catheterization GFR more than 30 mL/minute: No dosage adjustment necessary (usual dose: 1.75 mg/kg/hour).GFR less than 30 mL/minute: Reduce initial infusion to 1 mg/kg/hour.
Extracorporeal membrane oxygenationCrCl more than 60 mL/minute: No dosage adjustment necessary (usual dose: 0.3 mg/kg/hour).CrCl less than 60 mL/minute: Reduce initial infusion to 0.15 mg/kg/hour.
Ventricular Assist Devices, Berlin Heart EXCORGFR more than 60 mL/minute: No dosage adjustment necessary (usual dose: 0.5 mg/kg/hour). GFR 30 to 60 mL/minute: Reduce initial infusion to 0.3 mg/kg/hour.GFR less than 30 mL/minute: Reduce initial infusion to 0.2 mg/kg/hour.Renal replacement therapy: Reduce initial infusion to 0.1 mg/kg/hour.
 
Intermittent hemodialysis
Adults
Reduce infusion rate to 0.25 mg/kg/hour.[29586]

Drug Interactions

Abciximab: (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin has been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Acetaminophen; Aspirin: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Acetaminophen; Ibuprofen: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Ado-Trastuzumab emtansine: (Moderate) Use caution if coadministration of anticoagulants with ado-trastuzumab emtansine is necessary due to reports of severe and sometimes fatal hemorrhage, including intracranial bleeding, with ado-trastuzumab emtansine therapy. Consider additional monitoring when concomitant use is medically necessary. While some patients who experienced bleeding during ado-trastuzumab therapy were also receiving anticoagulation therapy, others had no known additional risk factors.
Altretamine: (Moderate) Due to the thrombocytopenic effects of altretamine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants.
Aminosalicylate sodium, Aminosalicylic acid: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Amlodipine; Celecoxib: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Anagrelide: (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin has been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Antithrombin III: (Major) Generally, an additive risk of bleeding may be seen in patients receiving other anticoagulants, including antithrombin III (AT III), in combination with bivalirudin. In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. In addition, the half-life of AT III may be altered during concomitant administration with anticoagulants.
Apixaban: (Major) Avoid concomitant use of apixaban and thrombin inhibitors due to the increased risk for bleeding. Short-term overlaps in anticoagulation therapy may be necessary for patients transitioning from one anticoagulant to another. Monitor patients closely and promptly evaluate any signs or symptoms of bleeding if the use of multiple anticoagulants is necessary.
Argatroban: (Major) An additive risk of bleeding may be seen in patients receiving bivalirudin with argatroban.
Aspirin, ASA: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Aspirin, ASA; Caffeine: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Aspirin, ASA; Carisoprodol: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Aspirin, ASA; Dipyridamole: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation. (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin has been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Aspirin, ASA; Omeprazole: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Aspirin, ASA; Oxycodone: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Betrixaban: (Major) Avoid use of betrixaban with thrombin inhibitors due to the increased bleeding risk. Monitor patients closely and promptly evaluate any signs or symptoms of bleeding if betrixaban and other anticoagulants are used concomitantly. Coadministration of betrixaban and other anticoagulants may increase the risk of bleeding. Long-term concomitant treatment with betrixaban and other anticoagulants is not recommended; short-term use may be necessary for patients transitioning to or from betrixaban.
Bismuth Subsalicylate: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Bupivacaine; Meloxicam: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Caplacizumab: (Major) Avoid concomitant use of caplacizumab and anticoagulants when possible. Assess and monitor closely for bleeding if use together is necessary. Interrupt use of caplacizumab if clinically significant bleeding occurs.
Celecoxib: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Celecoxib; Tramadol: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Chlorambucil: (Moderate) Due to the thrombocytopenic effects of chlorambucil, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Choline Salicylate; Magnesium Salicylate: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Cilostazol: (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin has been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Citalopram: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and other drugs that affect coagulation like thrombin inhibitors. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Clofarabine: (Moderate) Due to the thrombocytopenic effects of clofarabine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants.
Clopidogrel: (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin has been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Collagenase: (Moderate) Cautious use of injectable collagenase by patients taking anticoagulants is advised. The efficacy and safety of administering injectable collagenase to a patient taking an anticoagulant within 7 days before the injection are unknown. Receipt of injectable collagenase may cause an ecchymosis or bleeding at the injection site.
Cytarabine, ARA-C: (Moderate) Due to the thrombocytopenic effects of pyrimidine analogs, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants.
Dabigatran: (Major) Avoid use of dabigatran with bivalirudin due to the increased bleeding risk. Monitor patients closely and promptly evaluate any signs or symptoms of bleeding if dabigatran and other anticoagulants are used concomitantly. Coadministration of dabigatran and other anticoagulants may increase the risk of bleeding. Long-term concomitant treatment with dabigatran and other anticoagulants is not recommended; short-term use may be necessary for patients transitioning to or from dabigatran.
Dalteparin: (Major) An additive risk of bleeding may be seen in patients receiving dalteparin in combination with other anticoagulants. If coadministration of 2 or more anticoagulants is necessary, patients should be closely monitored for evidence of bleeding.
Dasatinib: (Moderate) Monitor for evidence of bleeding if coadministration of dasatinib and anticoagulants is necessary. Dasatinib can cause serious and fatal bleeding. Concomitant anticoagulants may increase the risk of hemorrhage.
Deferasirox: (Moderate) Because gastric ulceration and GI bleeding have been reported in patients taking deferasirox, use caution when coadministering with other drugs known to increase the risk of peptic ulcers or gastric hemorrhage including anticoagulants.
Defibrotide: (Contraindicated) Coadministration of defibrotide with antithrombotic agents like anticoagulants is contraindicated. The pharmacodynamic activity and risk of hemorrhage with antithrombotic agents are increased if coadministered with defibrotide. If therapy with defibrotide is necessary, discontinue systemic antithrombotic agents (not including use for routine maintenance or reopening of central venous catheters) prior to initiation of defibrotide therapy. Consider delaying the onset of defibrotide treatment until the effects of the antithrombotic agent have abated.
Desirudin: (Major) Any agent which may enhance the risk of hemorrhage, including other anticoagulants, should generally be discontinued before initiating desirudin therapy. If coadministration cannot be avoided, close clinical and laboratory monitoring should be conducted.
Dextran: (Moderate) Because of the potential effects of certain dextran formulations on bleeding time, use with caution in patients on anticoagulants concurrently.
Diclofenac: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Diclofenac; Misoprostol: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Diflunisal: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Diphenhydramine; Ibuprofen: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Diphenhydramine; Naproxen: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Dipyridamole: (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin has been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Edoxaban: (Major) Avoid concurrent use of edoxaban with thrombin inhibitors due to the increased bleeding risk. Monitor patients closely and promptly evaluate any signs or symptoms of bleeding if edoxaban and other anticoagulants are used concomitantly. Coadministration of edoxaban and other anticoagulants may increase the risk of bleeding. Long-term concomitant treatment with edoxaban and other anticoagulants is not recommended; short-term use may be necessary for patients transitioning to or from edoxaban.
Eltrombopag: (Moderate) Use caution when discontinuing eltrombopag in patients receiving anticoagulants (e.g., warfarin, enoxaparin, dabigatran, rivaroxaban). The risk of bleeding and recurrent thrombocytopenia is increased in patients receiving these drugs when eltrombopag is discontinued.
Enoxaparin: (Major) An additive risk of bleeding may be seen in patients receiving enoxaparin in combination with other anticoagulants. If coadministration of 2 or more anticoagulants is necessary, patients should be closely monitored for evidence of bleeding.
Epoprostenol: (Moderate) When used concurrently with anticoagulants, epoprostenol may increase the risk of bleeding.
Eptifibatide: (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin has been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Escitalopram: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and other drugs that affect coagulation like thrombin inhibitors. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Esterified Estrogens; Methyltestosterone: (Moderate) Methyltestosterone can increase the effects of anticoagulants through reduction of procoagulant factor. Patients receiving oral anticoagulant therapy should be closely monitored, especially when methyltestosterone treatment is initiated or discontinued.
Etodolac: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Fenoprofen: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Fish Oil, Omega-3 Fatty Acids (Dietary Supplements): (Moderate) Drug interactions with fish oil, omega-3 fatty acids (Dietary Supplements) or fish oil, omega-3 fatty acids (FDA-approved) are unclear at this time. However, because fish oil, omega-3 fatty acids inhibit platelet aggregation, caution is advised when fish oils are used concurrently with anticoagulants, platelet inhibitors, or thrombolytic agents. Theoretically, the risk of bleeding may be increased, but some studies that combined these agents did not produce clinically significant bleeding events. In one placebo-controlled, randomized, double-blinded, parallel study, patients receiving stable, chronic warfarin therapy were administered various doses of fish oil supplements to determine the effect on INR determinations. Patients were randomized to receive a 4-week treatment period of either placebo or 3 or 6 grams of fish oil daily. Patients were followed on a twice-weekly basis for INR determinations and adverse reactions. There was no statistically significant difference in INRs between the placebo or treatment period within each group. There was also no difference in INRs found between groups. One episode of ecchymosis was reported, but no major bleeding episodes occurred. The authors concluded that fish oil supplementation in doses of 3-6 grams per day does not have a statistically significant effect on the INR of patients receiving chronic warfarin therapy. However, an increase in INR from 2.8 to 4.3 in a patient stable on warfarin therapy has been reported when increasing the dose of fish oil, omega-3 fatty acids from 1 gram/day to 2 grams/day. The INR decreased once the patient decreased her dose of fish oil to 1 gram/day. This implies that a dose-related effect of fish oil on warfarin may be possible. Patients receiving warfarin that initiate concomitant fish oil therapy should have their INR monitored more closely and the dose of warfarin adjusted accordingly.
Fluoxetine: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and other drugs that affect coagulation like thrombin inhibitors. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Flurbiprofen: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Fluvoxamine: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and other drugs that affect coagulation like thrombin inhibitors. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Fondaparinux: (Major) Discontinue thrombin inhibitors before starting fondaparinux due to the increased bleeding risk, unless these agents are essential. If coadministration is necessary, monitor patients closely and promptly evaluate any signs or symptoms of bleeding.
Garlic, Allium sativum: (Moderate) Garlic produces clinically significant antiplatelet effects so additive risk of bleeding may occur if anticoagulants are given in combination. Avoid concurrent use of herbs which interact with anticoagulants when possible. If garlic dietary supplements are taken, monitor the INR or other appropriate parameters to attain clinical and anticoagulant endpoints. In regard to warfarin, published data are limited to a random case report; however, the product labeling for warfarin includes garlic as having potential for interaction due to additive pharmacologic activity. A case of spontaneous spinal epidural hematoma, attributed to dysfunctional platelets from excessive garlic use in a patient not receiving concomitant anticoagulation, has been reported.
Ginger, Zingiber officinale: (Moderate) Additive bleeding may occur if anticoagulants are given in combination with ginger, zingiber officinale. Ginger inhibits thromboxane synthetase (platelet aggregation inducer) and is a prostacyclin agonist. Patients taking ginger and an anticoagulant should be monitored closely for bleeding.
Ginkgo, Ginkgo biloba: (Moderate) Monitor for signs or symptoms of bleeding with coadministration of ginkgo biloba and thrombin inhibitors as an increased bleeding risk may occur. Although data are mixed, ginkgo biloba is reported to inhibit platelet aggregation and several case reports describe bleeding complications with ginkgo biloba, with or without concomitant drug therapy.
Green Tea: (Moderate) Green tea has demonstrated antiplatelet and fibrinolytic actions in animals. It is possible that the use of green tea may increase the risk of bleeding if co-administered with anticoagulants (e.g., enoxaparin, heparin, warfarin, and others), thrombolytic agents, or platelet inhibitors (e.g., aspirin, clopidogrel, cilostazol and others). Caution and careful monitoring of clinical and/or laboratory parameters are warranted if green tea is coadministered with any of these agents. Exogenous administration or occult sources of vitamin K may decrease or reverse the activity of warfarin; stability of the diet can be an important factor in maintaining anticoagulation goals. Occult sources of vitamin K include green tea and green tea dietary supplements. Published data are limited in regard to this interaction. A patient with previous INRs of 3.2 and 3.79 on a dose of 7.5mg daily of warfarin (goal INR 2.5 to 3.5) had an INR of 1.37. One month later, the patient's INR was 1.14. The patient admitted that he had started consuming 0.51 gallon of green tea daily approximately one week prior to the INR of 1.37. The patient denied noncompliance and other changes in diet, medications, or health. The patient discontinued green tea and one week later his INR was 2.55. While the amount of vitamin K in a single cup of brewed green tea may not be high (0.03 mcg/100 g), the actual amount may vary from cup to cup depending on the amount of tea leaves used, the length of time the tea bags are allowed to brew, and the volume of tea consumed. Additionally, if a patient drinks multiple cups of tea per day, the amount of vitamin K could reach significance. It is recommended that patients on warfarin maintain a stable intake of green tea.
Hemin: (Major) Because hemin has exhibited transient, mild anticoagulant effects during clinical studies, concurrent use of anticoagulants should be avoided. The extent and duration of the hypocoagulable state induced by hemin has not been established.
Heparin: (Major) An additive risk of bleeding may be seen in patients receiving or other anticoagulants in combination with heparin.
Hydrocodone; Ibuprofen: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Ibritumomab Tiuxetan: (Major) During and after therapy, avoid the concomitant use of Yttrium (Y)-90 ibrutumomab tiuxetan with drugs that interfere with coagulation such as anticoagulants; the risk of bleeding may be increased. If coadministration with anticoagulants is necessary, monitor platelet counts more frequently for evidence of thrombocytopenia.
Ibrutinib: (Moderate) The concomitant use of ibrutinib and anticoagulant agents such as bivalirudin may increase the risk of bleeding; monitor patients for signs of bleeding. Severe bleeding events have occurred with ibrutinib therapy including intracranial hemorrhage, GI bleeding, hematuria, and post procedural hemorrhage; some events were fatal. The mechanism for bleeding with ibrutinib therapy is not well understood.
Ibuprofen: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Ibuprofen; Famotidine: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Ibuprofen; Oxycodone: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Ibuprofen; Pseudoephedrine: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Icosapent ethyl: (Moderate) Icosapent ethyl is an ethyl ester of the omega-3 fatty acid eicosapentaenoic acid (EPA). Because omega-3 fatty acids inhibit platelet aggregation, caution is advised when icosapent ethyl is used concurrently with anticoagulants, platelet inhibitors, or thrombolytic agents. Theoretically, the risk of bleeding may be increased, but some studies that combined these agents did not produce clinically significant bleeding events. In one placebo-controlled, randomized, double-blinded, parallel study, patients receiving stable, chronic warfarin therapy were administered various doses of fish oil supplements to determine the effect on INR determinations. Patients were randomized to receive a 4-week treatment period of either placebo or 3 or 6 grams of fish oil daily. Patients were followed on a twice-weekly basis for INR determinations and adverse reactions. There was no statistically significant difference in INRs between the placebo or treatment period within each group. There was also no difference in INRs found between groups. One episode of ecchymosis was reported, but no major bleeding episodes occurred. The authors concluded that fish oil supplementation in doses of 36 grams per day does not have a statistically significant effect on the INR of patients receiving chronic warfarin therapy. However, an increase in INR from 2.8 to 4.3 in a patient stable on warfarin therapy has been reported when increasing the dose of fish oil, omega-3 fatty acids from 1 gram/day to 2 grams/day. The INR decreased once the patient decreased her dose of fish oil to 1 gram/day. This implies that a dose-related effect of fish oil on warfarin may be possible. Patients receiving warfarin that initiate concomitant icosapent ethyl therapy should have their INR monitored more closely and the dose of warfarin adjusted accordingly.
Iloprost: (Moderate) When used concurrently with anticoagulants, inhaled iloprost may increase the risk of bleeding.
Indomethacin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Inotersen: (Moderate) Use caution with concomitant use of inotersen and anticoagulants due to the potential risk of bleeding from thrombocytopenia. Consider discontinuation of anticoagulants in a patient taking inotersen with a platelet count of less than 50,000 per microliter.
Intravenous Lipid Emulsions: (Moderate) Drug interactions with fish oil, omega-3 fatty acids (Dietary Supplements) or fish oil, omega-3 fatty acids (FDA-approved) are unclear at this time. However, because fish oil, omega-3 fatty acids inhibit platelet aggregation, caution is advised when fish oils are used concurrently with anticoagulants, platelet inhibitors, or thrombolytic agents. Theoretically, the risk of bleeding may be increased, but some studies that combined these agents did not produce clinically significant bleeding events. In one placebo-controlled, randomized, double-blinded, parallel study, patients receiving stable, chronic warfarin therapy were administered various doses of fish oil supplements to determine the effect on INR determinations. Patients were randomized to receive a 4-week treatment period of either placebo or 3 or 6 grams of fish oil daily. Patients were followed on a twice-weekly basis for INR determinations and adverse reactions. There was no statistically significant difference in INRs between the placebo or treatment period within each group. There was also no difference in INRs found between groups. One episode of ecchymosis was reported, but no major bleeding episodes occurred. The authors concluded that fish oil supplementation in doses of 3-6 grams per day does not have a statistically significant effect on the INR of patients receiving chronic warfarin therapy. However, an increase in INR from 2.8 to 4.3 in a patient stable on warfarin therapy has been reported when increasing the dose of fish oil, omega-3 fatty acids from 1 gram/day to 2 grams/day. The INR decreased once the patient decreased her dose of fish oil to 1 gram/day. This implies that a dose-related effect of fish oil on warfarin may be possible. Patients receiving warfarin that initiate concomitant fish oil therapy should have their INR monitored more closely and the dose of warfarin adjusted accordingly.
Ketoprofen: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Ketorolac: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Lithium: (Moderate) Moderate to significant dietary sodium changes, or changes in sodium and fluid intake, may affect lithium excretion. Systemic sodium chloride administration may result in increased lithium excretion and therefore, decreased serum lithium concentrations. In addition, high fluid intake may increase lithium excretion. For patients receiving sodium-containing intravenous fluids, symptom control and lithium concentrations should be carefully monitored. It is recommended that patients taking lithium maintain consistent dietary sodium consumption and adequate fluid intake during the initial stabilization period and throughout lithium treatment. Supplemental oral sodium and fluid should be only be administered under careful medical supervision.
Lomustine, CCNU: (Moderate) Due to the bone marrow suppressive and thrombocytopenic effects of lomustine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants.
Magnesium Salicylate: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Meclofenamate Sodium: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Mefenamic Acid: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Meloxicam: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Methenamine; Sodium Salicylate: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Methoxsalen: (Minor) Agents, such as anticoagulants, that decrease clotting could decrease the efficacy of photosensitizing agents used in photodynamic therapy.
Methylsulfonylmethane, MSM: (Moderate) Increased effects from concomitant anticoagulant drugs such as increased bruising or blood in the stool have been reported in patients taking methylsulfonylmethane, MSM. Although these effects have not been confirmed in published medical literature or during clinical studies, clinicians should consider using methylsulfonylmethane, MSM with caution in patients who are taking anticoagulants such as warfarin until data confirming the safety of MSM in patients taking these drugs are available. During one of the available, published clinical trials in patients with osteoarthritis, those patients with bleeding disorders or using anticoagulants or antiplatelets were excluded from enrollment. Patients who choose to consume methylsulfonylmethane, MSM while receiving warfarin should be observed for increased bleeding.
Methyltestosterone: (Moderate) Methyltestosterone can increase the effects of anticoagulants through reduction of procoagulant factor. Patients receiving oral anticoagulant therapy should be closely monitored, especially when methyltestosterone treatment is initiated or discontinued.
Mifepristone: (Contraindicated) When mifepristone is used for the termination of pregnancy, concurrent use of anticoagulants is contraindicated due to the risk of serious bleeding.
Miltefosine: (Moderate) Caution is advised when administering miltefosine with anticoagulants, as use of these drugs together may increase risk for bleeding. Miltefosine, when administered for the treatment of visceral leishmaniasis, has been associated with thrombocytopenia; monitor platelet counts in patients receiving treatment for this indication. In addition, monitor closely for increased bleeding if use in combination with an anticoagulant.
Mycophenolate: (Moderate) Mycophenolate may causes thrombocytopenia and increase the risk for bleeding. Agents which may lead to an increased incidence of bleeding in patients with thrombocytopenia include anticoagulants.
Nabumetone: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Naproxen: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Naproxen; Esomeprazole: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Naproxen; Pseudoephedrine: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Nelarabine: (Moderate) Due to the thrombocytopenic effects of nelarabine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants.
Nintedanib: (Moderate) Nintedanib is a VEGFR inhibitor and may increase the risk of bleeding. Monitor patients who are taking anticoagulants closely and adjust anticoagulation therapy as necessary. Use nintedanib in patients with known risk of bleeding only if the anticipated benefit outweighs the potential risk.
Nonsteroidal antiinflammatory drugs: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Obinutuzumab: (Moderate) Fatal hemorrhagic events have been reported in patients treated with obinutuzumab; all events occured during cycle 1. Monitor all patients for thrombocytopenia and bleeding, and consider withholding concomitant medications which may increase bleeding risk (i.e., anticoagulants, platelet inhibitors), especially during the first cycle.
Olanzapine; Fluoxetine: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and other drugs that affect coagulation like thrombin inhibitors. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Omacetaxine: (Major) Avoid the concomitant use of omacetaxine and anticoagulants when the platelet count is less than 50,000 cells/microliter due to an increased risk of bleeding.
Omidubicel: (Moderate) Because of the potential effects of certain dextran formulations on bleeding time, use with caution in patients on anticoagulants concurrently.
Oxandrolone: (Moderate) An increased effect of anticoagulants may occur with oxandrolone; the anticoagulant dosage may need adjustment downward with oxandrolone initiation or adjustment upward with oxandrolone discontinuation to maintain the desired clinical effect. Oxandrolone suppresses clotting factors II, V, VII, and X, which results in an increased prothrombin time. An increase in plasminogen-activator activity, and serum concentrations of plasminogen, protein C, and antithrombin III have occurred with several 17-alpha-alkylated androgens. For example, concurrent use of oxandrolone and warfarin may result in unexpectedly large increases in the INR or prothrombin time (PT). A multidose study of oxandrolone (5 or 10 mg PO twice daily) in 15 healthy individuals concurrently treated with warfarin resulted in significant increases in warfarin half-life and AUC; a 5.5-fold decrease in the mean warfarin dosage from 6.13 mg/day to 1.13 mg/day (approximately 80 to 85% dose reduction) was necessary to maintain a target INR of 1.5. According to the manufacturer, if oxandrolone therapy is initiated in a patient already receiving warfarin, the dose of warfarin may need to be decreased significantly to reduce the potential for excessive INR elevations and associated risk of serious bleeding events. The patient should be closely monitored with frequent evaluation of the INR and clinical parameter, and the dosage of warfarin should be adjusted as necessary until a stable target INR is achieved. Careful monitoring of the INR and necessary adjustment of the warfarin dosage are also recommended when the androgen therapy is changed or discontinued.
Oxaprozin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Paroxetine: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and other drugs that affect coagulation like thrombin inhibitors. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Pentosan: (Major) Pentosan is a weak anticoagulant. Pentosan has 1/15 the anticoagulant activity of heparin. An additive risk of bleeding may be seen in patients receiving other anticoagulants in combination with pentosan.
Piperacillin; Tazobactam: (Moderate) Some penicillins (e.g., piperacillin) can inhibit platelet aggregation, which may increase the risk of bleeding with any anticoagulants. Clinically important bleeding of this type, however, is relatively rare. The concomitant use of warfarin with many classes of antibiotics, including penicillins, may result in an increased INR thereby potentiating the risk for bleeding. Inhibition of vitamin K synthesis due to alterations in the intestinal flora may be a mechanism; however, concurrent infection is also a potential risk factor for elevated INR. Monitor patients for signs and symptoms of bleeding. Additionally, increased monitoring of the INR, especially during initiation and upon discontinuation of the antibiotic, may be necessary in patients receiving warfarin.
Piroxicam: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Platelet Inhibitors: (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin has been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
Prasugrel: (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin h

as been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Rivaroxaban: (Major) Due to the increased bleeding risk, avoid concurrent use of rivaroxaban with thrombin inhibitors; the safety of concomitant use has not been studied. If a thrombin inhibitor is used during therapeutic transition periods, closely observe patients and promptly evaluate any signs or symptoms of blood loss.
Salicylates: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Salsalate: (Moderate) An additive risk of bleeding may be seen in patients receiving salicylates (e.g., aspirin, ASA) in combination with thrombin inhibitors. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Nonsteroidal antiinflammatory drugs (NSAIDs) may also increase bleeding risk when given with argatroban because of their potential to cause GI bleeding or inhibit platelet aggregation.
Selective serotonin reuptake inhibitors: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and other drugs that affect coagulation like thrombin inhibitors. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Serotonin norepinephrine reuptake inhibitors: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of serotonin norepinephrine reuptake inhibitors (SNRIs) and anticoagulants like bivalirudin. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Sertraline: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and other drugs that affect coagulation like thrombin inhibitors. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Sodium Iodide: (Moderate) Anticoagulants may alter sodium iodide I-131 pharmacokinetics and dynamics for up to 1 week after administrations.
Sulindac: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Sumatriptan; Naproxen: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Telavancin: (Moderate) Telavancin has no effect on coagulation or platelet aggregation; however, caution is advised when administering telavancin concurrently with anticoagulants as telavancin may interfere with laboratory tests used in monitoring these medications. The coagulation tests affected by telavancin include prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), activated clotting time, and coagulation based factor Xa tests. When measured shortly after completion of a telavancin infusion, the results of these tests are increased; however, the effects of telavancin on these tests dissipate over time as plasma concentrations of telavancin decrease. Therefore, when administering telavancin in conjunction with anticoagulants ensure that blood samples for these coagulation tests are collected as close as possible to the patient's next telavancin dose.
Thrombolytic Agents: (Major) An additive risk of bleeding may be seen in patients receiving thrombolytic agents with thrombin inhibitors.
Ticagrelor: (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin has been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Ticlopidine: (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin has been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Tipranavir: (Moderate) Caution should be used when administering tipranavir to patients receiving anticoagulants or platelet inhibitors. In clinical trials, there have been 14 reports of intracranial bleeding (intracranial hemorrhage, ICH), including 8 fatalities, in 13 out of 6,840 HIV infected patients receiving tipranavir as part of combination antiretroviral therapy. In many of these reports, the patients had other medical conditions (CNS lesions, head trauma, recent neurosurgery, coagulopathy, hypertension, or alcoholism/alcohol abuse) or were receiving concomitant medications, including anticoagulants and antiplatelet agents, that may have caused or contributed to these events. The median time to onset of an ICH event was 525 days on tipranavir treatment. In general, there have been no reported patterns of abnormal coagulation parameters in patients receiving tipranavir, or preceding the development of ICH. Routine measurement of coagulation parameters does not appear to be indicated. An increased risk of ICH has previously been observed in patients with advanced HIV disease or AIDS; further investigations are ongoing to assess the role of tipranavir in ICH. While coadministration with warfarin does not result in altered warfarin concentrations, alterations in INR may still occur; close monitoring of the patient's INR is recommended. Patients should be advised to promptly report any signs or symptoms of bleeding.
Tirofiban: (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin has been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Tolmetin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Tolvaptan: (Moderate) Coadministration of tolvaptan and hypertonic saline (e.g., 3% NaCl injection solution) is not recommended. The use of hypertonic sodium chloride in combination with tolvaptan may result in a too rapid correction of hyponatremia and increase the risk of osmotic demyelination (i.e., central pontine myelinolysis).
Trazodone: (Moderate) Patients should be instructed to monitor for signs and symptoms of bleeding while taking trazodone concurrently with anticoagulants and to promptly report any bleeding events to the practitioner. Serotonergic agents may increase the risk of bleeding when combined with anticoagulants via inhibition of serotonin uptake by platelets; however, the absolute risk is not known. It would be prudent for clinicians to monitor the INR and patient's clinical status closely if trazodone is added to or removed from the regimen of a patient stabilized on anticoagulant therapy.
Treprostinil: (Moderate) When used concurrently with anticoagulants, treprostinil may increase the risk of bleeding.
Valdecoxib: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Verteporfin: (Moderate) Use caution if coadministration of verteporfin with anticoagulants is necessary due to the risk of decreased verteporfin efficacy. Verteporfin is a light-activated drug. Once activated, local damage to neovascular endothelium results in a release of procoagulant and vasoactive factors resulting in platelet aggregation, fibrin clot formation, and vasoconstriction. Concomitant use of drugs that decrease clotting could decrease the efficacy of verteporfin therapy.
Vilazodone: (Moderate) Patients should be instructed to monitor for signs and symptoms of bleeding while taking vilazodone concurrently with anticoagulants and to promptly report any bleeding events to the practitioner. Serotonergic agents may increase the risk of bleeding when combined with anticoagulants via inhibition of serotonin uptake by platelets; however, the absolute risk is not known. In addition, both vilazodone and warfarin are highly protein bound, which may result in displacement of warfarin from protein binding sites and an increased anticoagulant effect. It would be prudent for clinicians to monitor the INR and clinical status of the patient closely if vilazodone is added to or removed from the regimen of a patient stabilized on warfarin.
Vorapaxar: (Moderate) When used as an anticoagulant in patients undergoing percutaneous coronary intervention (PCI), bivalirudin is intended for use with aspirin (300 to 325 mg/day PO) and has been studied only in patients receiving concomitant aspirin. Generally, an additive risk of bleeding may be seen in patients receiving other platelet inhibitors (other than aspirin). In clinical trials in patients undergoing PTCA, patients receiving bivalirudin with heparin, warfarin, or thrombolytics had increased risks of major bleeding events compared to those receiving bivalirudin alone. According to the manufacturer, the safety and effectiveness of bivalirudin have not been established when used in conjunction with platelet inhibitors other than aspirin. However, bivalirudin has been safely used as an alternative to heparin in combination with provisional use of platelet glycoprotein IIb/IIIa inhibitors during angioplasty (REPLACE-2). In addition, two major clinical trials have evaluated the use of bivalirudin in patients receiving streptokinase following acute myocardial infarction (HERO-1, HERO-2). Based on the these trials, bivalirudin may be considered an alternative to heparin therapy for use in combination with streptokinase for ST-elevation MI. Bivalirudin has not been sufficiently studied in combination with other more specific thrombolytics.
Vortioxetine: (Moderate) Platelet aggregation may be impaired by vortioxetine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving anticoagulants. Bleeding events related to drugs that inhibit serotonin reuptake have ranged from ecchymosis to life-threatening hemorrhages. Patients should be instructed to monitor for signs and symptoms of bleeding while taking vortioxetine concurrently with anticoagulants and to promptly report any bleeding events to the practitioner. Co-administration of vortioxetine and warfarin has not been shown to significantly affect the pharmacokinetics of either agent.
Warfarin: (Minor) Based on the pharmacology of warfarin, other anticoagulants cause additive risk of bleeding when given concurrently with warfarin. Bivalirudin affects the International Normalized Ratio (INR). INR measurements made in patients being treated with bivalirudin may not be useful for determining the appropriate warfarin dose.

How Supplied

Angiomax/Bivalirudin Intravenous Inj Pwd F/Sol: 250mg
Bivalirudin/Bivalirudin, Sodium Chloride Intravenous Inj Sol: 1mL, 5mg, 5-0.9%

Maximum Dosage
Adults

1.75 mg/kg/hour continuous IV infusion.

Geriatric

1.75 mg/kg/hour continuous IV infusion.

Adolescents

Safety and efficacy have not been established; however, continuous infusions up to 0.55 mg/kg/hour IV for thrombosis not associated with mechanical circulatory support systems, and up 1.8 mg/kg/hour for ECMO and 3.9 mg/kg/hour for VAD anticoagulation have been reported.

Children

Safety and efficacy have not been established; however, continuous infusions up to 0.55 mg/kg/hour IV for thrombosis not associated with mechanical circulatory support systems, and up 5 mg/kg/hour for CPB, 1.8 mg/kg/hour for ECMO, and 3.9 mg/kg/hour for VAD anticoagulation have been reported.

Infants

Safety and efficacy have not been established; however, continuous infusions up to 0.55 mg/kg/hour IV for thrombosis not associated with mechanical circulatory support systems, and up to 1.8 mg/kg/hour for ECMO and 3.9 mg/kg/hour for VAD anticoagulation have been reported.

Neonates

Safety and efficacy have not been established; however, continuous infusions up to 0.55 mg/kg/hour IV for thrombosis not associated with mechanical circulatory support systems, and up to 1.8 mg/kg/hour for ECMO anticoagulation have been reported.

Mechanism Of Action

Bivalirudin is a specific and reversible direct thrombin inhibitor. Bivalirudin directly inhibits thrombin by binding to both the catalytic site and to the anion-binding exosite of circulating and clot-bound thrombin. Thrombin, a serine proteinase, cleaves fibrinogen into fibrin monomers and activates factor XIII to factor XIIIa, allowing fibrin to develop a covalently cross-linked framework which stabilizes the thrombus; thrombin also actives factor V and factor VIII, which promotes further thrombin generation and activates platelets, stimulating aggregation and granule release. The binding of bivalirudin to thrombin is reversible. There is no known antidote to bivalirudin.

Pharmacokinetics

Bivalirudin is administered intravenously. Bivalirudin exhibits linear pharmacokinetics. It does not bind to plasma proteins (other than thrombin) or to red blood cells. Metabolism and excretion occur via proteolytic cleavage and glomerular filtration, respectively. Tubular secretion and tubular reabsorption are also implicated in excretion, although the extent is unknown. Bivalirudin elimination half-life is 25 minutes in patients with normal renal function. The total body clearance of bivalirudin is 3.4 mL/kg/minute.
 
Affected cytochrome P450 isoenzymes and drug transporters: none

Intravenous Route

Intravenous administration of bivalirudin produces an immediately anticoagulant effect. Coagulation times return to baseline approximately 1 hour after infusion cessation.

Subcutaneous Route

Bioavailability after subcutaneous administration of bivalirudin is at least 40% with peak plasma concentrations occurring within 2 hours.

Pregnancy And Lactation
Pregnancy

It is not known if bivalirudin is present in human milk. No data are available on the effects of bivalirudin on the breast-fed child or milk production. Consider the developmental and health benefits of breast-feeding along with the mother's clinical need for bivalirudin and any potential adverse effects on the breast-fed child from bivalirudin or the underlying maternal condition.[29586] While bivalirudin is not specifically addressed, guidelines suggest r-hirudin, a similar medication, may be continued while breast-feeding.[49216]