PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors

    DEA CLASS

    Rx

    DESCRIPTION

    Oral sodium-glucose co-transporter 2 (SGLT2) inhibitor.
    Used to improve glycemic control in adults with type 2 diabetes.
    Works by blocking reabsorption of glucose by kidneys, increasing glucose excretion; not effective in patients with severe renal impairment.

    COMMON BRAND NAMES

    Farxiga

    HOW SUPPLIED

    Farxiga Oral Tab: 5mg, 10mg

    DOSAGE & INDICATIONS

    For the treatment of type 2 diabetes mellitus in combination with diet and exercise.
    Oral dosage
    Adults

    5 mg PO once daily, taken in the morning, with or without food. The dose can be increased to 10 mg PO once daily in those who require additional glycemic control.

    MAXIMUM DOSAGE

    Adults

    10 mg/day PO.

    Geriatric

    10 mg/day PO.

    Adolescents

    Safety and efficacy have not been established.

    Children

    Safety and efficacy have not been established.

    Infants

    Not indicated.

    Neonates

    Not indicated.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    No dosage adjustment is needed in patients with mild, moderate, or severe hepatic impairment. The use of dapagliflozin has not been studied in patients with severe hepatic impairment and therefore the benefit-risk for the use of dapagliflozin in patients with severe hepatic impairment should be individually assessed.

    Renal Impairment

    eGFR 60 mL/min/1.73 m2 or more: No dosage adjustment needed.
    eGFR less than 60 mL/min/1.73 m2: Do not initiate dapagliflozin in these patients.  Use is not recommended in patient with eGFR persistently between 30 and less than 60 mL/min/1.73 m2. In patients currently taking the drug, dapagliflozin should be discontinued when eGFR is persistently less than 60 mL/min/1.73 m2.
    eGFR less than 30 mL/min/1.73 m2: Use is contraindicated.

    ADMINISTRATION

    Oral Administration
    Oral Solid Formulations

    Administer tablets once daily in the morning, with or without food.

    STORAGE

    Farxiga:
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F

    CONTRAINDICATIONS / PRECAUTIONS

    General Information

    Do not use dapagliflozin in patients with a known history of a serious dapagliflozin hypersensitivity reaction. Hypersensitivity reactions, including urticaria, serious anaphylactic reactions, severe cutaneous reactions, and angioedema were reported in patients treated with dapagliflozin. Discontinue use of dapagliflozin if hypersensitivity reactions occur, and treat per standard of care; monitor until signs and symptoms resolve.
     
    Monitoring of glycemic control with urine glucose tests and the 1,5 Anhydroglucitol assay (1,5-AG assay) is not recommended in patients receiving dapagliflozin. Use of urine glucose tests will result in positive urine glucose tests and measurements of 1,5-AG are unreliable. Use alternative methods to monitor glycemic control.

    Diabetic ketoacidosis, type 1 diabetes mellitus

    Dapagliflozin should not be used in patients with type 1 diabetes mellitus or for the treatment of diabetic ketoacidosis (DKA). Fatal cases of ketoacidosis have been reported in patients receiving dapagliflozin. In addition, the FDA has identified 73 cases of ketoacidosis in patients with type 1 or type 2 diabetes treated with SGLT2 inhibitors. All patients required emergency room visits or hospitalization to treat the ketoacidosis. Signs and symptoms at presentation were consistent with severe metabolic acidosis and included nausea, vomiting, abdominal pain, generalized malaise, and shortness of breath. However, the presence of ketoacidosis was not immediately recognized, and treatment was delayed because the presenting blood glucose levels were below those typically expected for DKA (often less than 250 mg/dL). Factors identified in some reports as having potentially triggered the ketoacidosis included infection, low carbohydrate diet or an overall reduction of caloric intake, reduction in dose of exogenous insulin or discontinuation of exogenous insulin, discontinuation of an oral insulin secretagogue, and alcohol use. The FDA is continuing to investigate this issue and is requiring manufacturers of SGLT2 inhibitors to conduct a required postmarketing study, including specialized follow-up to collect additional information for a period of 5 years. Before initiating an SGLT2 inhibitor, consider factors in the patients’ histories that may predispose them to ketoacidosis, including pancreatic insulin deficiency from any cause, caloric restriction, and alcohol abuse. In patients treated with an SGLT2 inhibitor, consider monitoring for ketoacidosis and temporarily discontinuing the drug in clinical situations known to predispose to ketoacidosis, such as prolonged fasting due to acute illness or surgery. Patients should report any signs of ketoacidosis and immediately seek medical attention if they experience symptoms such as difficulty breathing, nausea, vomiting, abdominal pain, confusion, and unusual fatigue or sleepiness. Health care professionals should evaluate for the presence of acidosis, including ketoacidosis, in patients experiencing these signs or symptoms. If ketoacidosis is suspected, discontinue dapagliflozin and institute treatment, which may include insulin, fluids, and carbohydrate replacement.

    Dialysis, hypovolemia, renal disease, renal failure, renal impairment

    Dapagliflozin is contraindicated in patients with severe renal impairment (eGFR less than 30 mL/min/1.73 m2), end stage renal failure or patients on dialysis. Initiation of dapagliflozin is not recommended in those patients with renal impairment whose eGFR is persistently less than 60 mL/min/1.73 m2. Use of dapagliflozin is not recommended in patients with an eGFR persistently between 30 and less than 60 mL/min/1.73 m2. Assess renal function in all patients prior to initiation of dapagliflozin therapy and periodically thereafter. The efficacy and safety of dapagliflozin were evaluated in a study that included patients with moderate renal impairment (eGFR 30 to 59 mL/min/1.73 m2); these patients did not have improvement in glycemic control and had a higher occurrence of renal-related adverse reactions and more fractures of the bone compared to placebo-treated patients. Dapagliflozin increases serum creatinine and decreases eGFR; patients with hypovolemia or the elderly may be more susceptible to these changes. Renal function abnormalities can occur. Acute kidney injury, some requiring hospitalization and dialysis, has been reported during the postmarketing period; some reports involved patients younger than 65 years of age. The FDA has identified 101 confirmable cases of acute kidney injury, some requiring hospitalization and dialysis, with canagliflozin (73 patients) or dapagliflozin (28 patients) use during the time period from March 2013 to October 2015. There are likely additional cases. In approximately half of the cases, acute kidney injury occurred within 1 month of starting the drug, and most patients improved after drug discontinuation. Hospitalization for evaluation and management of acute kidney injury was necessary in 96 of the 101 cases, and 22 cases involved admission to an intensive care unit. Four deaths occurred during hospitalization, 2 of which were cardiac-related. Fifteen patients received dialysis. Of the 101 cases, 51 reported concomitant angiotensin converting enzyme (ACE) inhibitor use, 26 reported concomitant diuretic use, and 6 reported concomitant nonsteroidal anti-inflammatory drug (NSAID) use. A prior history of chronic renal disease was reported in 10 of the 101 cases. Forty-five of the 101 cases reported a change in serum creatinine or eGFR at the time of diagnosis. Eleven patients did not recover, which included the 4 deaths noted previously. Three patients recovered with sequelae upon discontinuation. If acute kidney injury occurs, promptly discontinue the drug and treat the renal impairment. Consider factors that may predispose patients to acute kidney injury prior to starting them on dapagliflozin, including hypovolemia; chronic renal insufficiency; congestive heart failure; and concomitant medications such as diuretics, ACE inhibitors, angiotensin II receptor blockers (ARBs),and NSAIDs. Consider temporarily discontinuing dapagliflozin in any setting of reduced oral intake such as acute illness or fasting, or with fluid losses such as gastrointestinal illness or excessive heat exposure.

    Dehydration, hypotension

    Dapagliflozin causes intravascular volume contraction. Symptomatic hypotension can occur after initiating dapagliflozin. Patients at risk include those with dehydration or hypovolemia, particularly in patients with impaired renal function (i.e., eGFR < 60 ml/min/1.73 m2),the elderly, patients receiving diuretics, or patients with low systolic blood pressure. Volume status should be assessed and corrected before initiating dapagliflozin in patients with one or more of these characteristics. Monitor for signs and symptoms after initiating therapy.

    Balanitis, pyelonephritis, vaginitis

    In December 2015 the FDA required manufacturers of sodium-glucose co-transporter 2 (SGLT2) inhibitors to update the prescribing information to include warnings of serious urinary tract infections, including urosepsis and pyelonephritis. The FDA has identified 19 cases of urosepsis reported with the SGLT2 inhibitors (10 patients were receiving canagliflozin and 9 patients were receiving dapagliflozin). All cases resulted in hospitalization. No deaths were reported. Patients should be told to report any signs of urinary tract infection and seek medical attention if they experience symptoms such as a feeling of burning when urinating or the need to urinate often or right away, pain in the lower part of the stomach area or pelvis, fever, or blood in the urine. If urinary tract infection is suspected, treat promptly if indicated. In addition, use dapagliflozin cautiously in patients with a history of genital fungal infection, including vaginitis or balanitis, and in uncircumcised males since these patients were more likely to develop genital mycotic infections during treatment with dapagliflozin. Monitor and treat appropriately.

    Bladder cancer

    Dapagliflozin should not be used in patients with active bladder cancer. In patients with prior history of bladder cancer, consider the benefits of glycemic control versus unknown risks for cancer recurrence, as data is insufficient to determine whether dapagliflozin has an effect on pre-existing bladder tumors. Across 22 clinical studies, newly diagnosed cases of bladder cancer were reported in 10/6045 patients (0.17%) treated with dapagliflozin and 1/3512 patients (0.03%) treated with placebo or comparator. After excluding patients in whom exposure to study drug was < 1 year at the time of diagnosis of bladder cancer, there were 4 cases with dapagliflozin and no cases with placebo or comparator. Bladder cancer risk factors and hematuria (a potential indicator of preexisting tumors) were balanced between treatment arms at baseline. There were too few cases to determine whether the emergence of these events is related to dapagliflozin.

    Adrenal insufficiency, hypoglycemia, hypothyroidism, malnutrition, pituitary insufficiency

    Conditions that predispose patients to developing hypoglycemia may alter antidiabetic agent needs, and may require close monitoring during the use of dapagliflozin. Conditions associated with hypoglycemia include debilitated physical condition, drug interactions, malnutrition, uncontrolled adrenal insufficiency, pituitary insufficiency or hypothyroidism. More frequent blood glucose monitoring may be necessary in patients with these conditions. Insulin and insulin secretagogues are also known to cause hypoglycemia. Dapagliflozin can increase the risk of hypoglycemia when combined with insulin or an insulin secretagogue. Therefore, a lower dose of insulin or insulin secretagogue may be required to minimize the risk of hypoglycemia when used in combination with dapagliflozin.

    Fever, hypercortisolism, hyperglycemia, hyperthyroidism

    Conditions that predispose patients to developing hyperglycemia may alter dapagliflozin efficacy. Hyperglycemia related conditions include drug interactions, female hormonal changes, high fever, severe psychological stress, and uncontrolled hypercortisolism or hyperthyroidism. More frequent blood glucose monitoring may be necessary in patients with these conditions.

    Hypercholesterolemia

    Dose-related increases in LDL-C occur with dapagliflozin, and these changes may require treatment or adjustment of previous therapy in patients with pre-existing hypercholesterolemia. Monitor LDL-C and treat per standard of care after initiating dapagliflozin therapy.

    Geriatric

    In dapagliflozin clinical trials, 1,424 patients were 65 years of age or older and 207 patients were 75 years or older. After controlling for level of renal function (eGFR), efficacy was similar for younger adults and geriatric adults. Geriatric patients receiving dapagliflozin experienced a higher incidence of adverse reactions related to reduced intravascular volume and renal impairment or failure compared to patients treated with placebo. The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities (LTCFs). According to OBRA, the use of antidiabetic medications should include monitoring (e.g., periodic blood glucose) for effectiveness based on desired goals for that individual and to identify complications of treatment such as hypoglycemia or impaired renal function.

    Pregnancy

    There are no adequate and well-controlled studies of dapagliflozin during human pregnancy. During pregnancy, consider appropriate alternative therapies, especially during the second and third trimesters. The potential risks to human kidney development are of concern. When dapagliflozin was administered to juvenile rats during periods of animal development that correspond to the late second and third trimester of human development, increased incidence and/or severity of renal pelvic and tubular dilatation were evident at the lowest tested dose which was approximately 15 times human clinical exposure from a 10 mg dose. When dapagliflozin was studied in rabbits during intervals coinciding with the first trimester period of organogenesis in humans, no developmental toxicities were observed at any dose tested. The American College of Obstetrician and Gynecologists recommends insulin as the therapy of choice to maintain blood glucose as close to normal as possible during pregnancy in patients with type 1 or 2 diabetes mellitus, and, if diet therapy alone is not successful, for those patients with gestational diabetes.

    Breast-feeding

    There is no information regarding the presence of dapagliflozin in human milk, the effects on breast-feeding infants, or the effects on milk production. Since dapagliflozin is present in the milk of lactating rats and human kidney maturation occurs in utero and during the first 2 years of life when lactational exposure may occur, there may be risk to the developing human kidney. Due to the potential for serious adverse reactions in a breast-feeing infant, breast-feeding during use of dapagliflozin is not recommended. Other oral hypoglycemics may be considered as possible alternatives during breast-feeding. Because acarbose has limited systemic absorption, which results in minimal maternal plasma concentrations, clinically significant exposure via breast milk is not expected. Metformin monotherapy may also be a consideration; data have shown that metformin is excreted into breast milk in small amounts and adverse effects on infant plasma glucose have not been reported in human studies. Tolbutamide is usually considered compatible with breast-feeding. Glyburide may be a suitable alternative since it was not detected in the breast milk of lactating women who received single and multiple doses of glyburide. If any oral hypoglycemics are used during breast-feeding, the nursing infant should be monitored for signs of hypoglycemia, such as increased fussiness or somnolence. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to a maternally ingested drug, healthcare providers are encouraged to report the adverse effect to the FDA.

    Children, infants, neonates

    The safety and effectiveness of dapagliflozin have not been established in children under the age of 18 years; there is no role of dapagliflozin in the treatment of infants or neonates.

    ADVERSE REACTIONS

    Severe

    renal failure (unspecified) / Delayed / 0-1.0
    anaphylactoid reactions / Rapid / 0.3-0.3
    angioedema / Rapid / 0.3-0.3
    bone fractures / Delayed / Incidence not known
    diabetic ketoacidosis / Delayed / Incidence not known

    Moderate

    vaginitis / Delayed / 6.9-8.4
    candidiasis / Delayed / 2.7-8.4
    prostatitis / Delayed / 4.3-5.7
    cystitis / Delayed / 4.3-5.7
    balanitis / Delayed / 2.7-2.8
    hypercholesterolemia / Delayed / 2.1-2.5
    hyperlipidemia / Delayed / 0-2.5
    constipation / Delayed / 1.9-2.2
    hypoglycemia / Early / 0.5-2.1
    hyperphosphatemia / Delayed / 1.7-1.7
    hypovolemia / Early / 0.6-1.1
    secondary malignancy / Delayed / 0-0.2
    dehydration / Delayed / Incidence not known
    orthostatic hypotension / Delayed / Incidence not known
    hypotension / Rapid / Incidence not known

    Mild

    pharyngitis / Delayed / 6.3-6.6
    increased urinary frequency / Early / 2.9-3.8
    nausea / Early / 2.5-2.8
    influenza / Delayed / 2.3-2.7
    urticaria / Rapid / 0-1.0
    diuresis / Early / Incidence not known
    polyuria / Early / Incidence not known
    rash (unspecified) / Early / Incidence not known

    DRUG INTERACTIONS

    Acebutolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Acetaminophen; Caffeine; Magnesium Salicylate; Phenyltoloxamine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Acetaminophen; Caffeine; Phenyltoloxamine; Salicylamide: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Acetaminophen; Chlorpheniramine; Phenylephrine; Phenyltoloxamine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Acetaminophen; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Acetazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Acrivastine; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Aliskiren; Valsartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Amlodipine; Benazepril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Amlodipine; Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Amlodipine; Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Amlodipine; Olmesartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Amlodipine; Telmisartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Amlodipine; Valsartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Amphetamine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Amphetamine; Dextroamphetamine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Amprenavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Androgens: (Moderate) Exogenously administered androgens have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance, and may worsen hyperglycemia.However, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. Some patients may experience hypoglycemia. Other patients receiving androgen replacement may not have significant changes in blood glucose. Moniitor blood glucose and HbA1C in patients receiving antidiabetic agents and androgens. In some cases, dosage adjustments of the antidiabetic agent may be necessary.
    Angiotensin II receptor antagonists: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Angiotensin-converting enzyme inhibitors: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Aripiprazole: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Articaine; Epinephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Asenapine: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Aspirin, ASA: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Aspirin, ASA; Butalbital; Caffeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Aspirin, ASA; Caffeine; Dihydrocodeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Aspirin, ASA; Carisoprodol: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Aspirin, ASA; Dipyridamole: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Aspirin, ASA; Omeprazole: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Aspirin, ASA; Oxycodone: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Aspirin, ASA; Pravastatin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Atazanavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Atazanavir; Cobicistat: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Atenolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Atenolol; Chlorthalidone: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Atropine; Hyoscyamine; Phenobarbital; Scopolamine: (Major) The metabolism of dapagliflozin is primarily mediated by UGT1A9. Coadministration of dapagliflozin with phenobarbital, a UGT enzyme inducer, may theoretically decrease serum concentrations of dapagliflozin leading to decreased efficacy of dapagliflozin. Monitor for changes in blood glucose control.
    atypical antipsychotic: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Azelaic Acid; Copper; Folic Acid; Nicotinamide; Pyridoxine; Zinc: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
    Azelastine; Fluticasone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Azilsartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Azilsartan; Chlorthalidone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Baclofen: (Minor) Because baclofen can increase blood glucose, doses of antidiabetic agents may need adjustment in patients receiving these drugs concomitantly.
    Beclomethasone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Belladonna Alkaloids; Ergotamine; Phenobarbital: (Major) The metabolism of dapagliflozin is primarily mediated by UGT1A9. Coadministration of dapagliflozin with phenobarbital, a UGT enzyme inducer, may theoretically decrease serum concentrations of dapagliflozin leading to decreased efficacy of dapagliflozin. Monitor for changes in blood glucose control.
    Benazepril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Bendroflumethiazide; Nadolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Benzphetamine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Beta-adrenergic blockers: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Betamethasone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Betaxolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Bismuth Subsalicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Bisoprolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Bortezomib: (Minor) Patients on antidiabetic agents receiving bortezomib treatment may require close monitoring of their blood glucose concentrations; medication dosage adjustment may be needed. During clinical trials of bortezomib, hypoglycemia and hyperglycemia were reported in patients with diabetes receiving oral hypoglycemics.
    Brexpiprazole: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Brimonidine; Timolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Brompheniramine; Carbetapentane; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Brompheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Brompheniramine; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Budesonide: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Budesonide; Formoterol: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Bumetanide: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Candesartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Captopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Carbetapentane; Chlorpheniramine; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Carbetapentane; Diphenhydramine; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Carbetapentane; Guaifenesin; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Carbetapentane; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Carbetapentane; Phenylephrine; Pyrilamine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Carbetapentane; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Carbinoxamine; Dextromethorphan; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Carbinoxamine; Hydrocodone; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Carbinoxamine; Hydrocodone; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Carbinoxamine; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Carbinoxamine; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Carbonic anhydrase inhibitors: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Cariprazine: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Carteolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Carvedilol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Cetirizine; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Chlophedianol; Guaifenesin; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Chloroquine: (Major) Careful monitoring of blood glucose is recommended when chloroquine and antidiabetic agents, including the SGLT2 inhibitors, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with chloroquine and an antidiabetic agent.
    Chlorothiazide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Chlorpheniramine; Dihydrocodeine; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Chlorpheniramine; Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Chlorpheniramine; Hydrocodone; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Chlorpheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Chlorpheniramine; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Chlorpheniramine; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Chlorpromazine: (Minor) The phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients should be closely monitored for worsening glycemic control.
    Chlorthalidone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Chlorthalidone; Clonidine: (Moderate) Clonidine may potentiate or weaken the hypoglycemic effects of antidiabetic agents and may mask the signs and symptoms of hypoglycemia. While clonidine has not been shown to significantly impair glucose tolerance in most human studies, patients receiving clonidine concomitantly with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Choline Salicylate; Magnesium Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Chromium: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended.
    Ciclesonide: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Cimetidine: (Moderate) Because cisapride can enhance gastric emptying in patients with diabetes, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents.The dosing of antidiabetic agents may require adjustment in patients who receive cisapride concomitantly.
    Ciprofloxacin: (Moderate) Careful monitoring of blood glucose is recommended when quinolones and antidiabetic agents, including the sodium-glucose co-transporter 2 (SGLT2) inhibitors, are coadministered. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent.
    Clonidine: (Moderate) Clonidine may potentiate or weaken the hypoglycemic effects of antidiabetic agents and may mask the signs and symptoms of hypoglycemia. While clonidine has not been shown to significantly impair glucose tolerance in most human studies, patients receiving clonidine concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Clozapine: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Codeine; Phenylephrine; Promethazine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Conjugated Estrogens: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued.
    Conjugated Estrogens; Bazedoxifene: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued.
    Conjugated Estrogens; Medroxyprogesterone: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Corticosteroids: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Corticotropin, ACTH: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Cortisone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Cyclosporine: (Moderate) Both cyclosporine and tacrolimus have been reported to cause hyperglycemia. Tacrolimus has been implicated in causing insulin-dependent diabetes mellitus in patients after renal transplantation. Both of these drugs may have direct beta-cell toxicity; the effects from cyclosporine may be dose-related. Patients should be monitored for changes in glycemic control if therapy with either of these immunosuppressant drugs is initiated in patients receiving dapagliflozin.
    Danazol: (Moderate) Exogenously administered androgens have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance, and may worsen hyperglycemia.However, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. Some patients may experience hypoglycemia. Other patients receiving androgen replacement may not have significant changes in blood glucose. Moniitor blood glucose and HbA1C in patients receiving antidiabetic agents and androgens. In some cases, dosage adjustments of the antidiabetic agent may be necessary.
    Darunavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Darunavir; Cobicistat: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Deflazacort: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Desiccated Thyroid: (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use oral antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued
    Desloratadine; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Dexamethasone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Dexmethylphenidate: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Dextroamphetamine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Diazoxide: (Minor) Diazoxide increases blood glucose by inhibiting insulin release from the pancreas and/or by stimulating the release of catecholamines, which in turn stimulate glycogenolysis. The dosage of antidiabetic agents may need to be adjusted when diazoxide is added to the regimen.
    Dienogest; Estradiol valerate: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Diethylpropion: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Diethylstilbestrol, DES: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued.
    Dihydrocodeine; Guaifenesin; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Diphenhydramine; Hydrocodone; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Diphenhydramine; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Dobutamine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Dopamine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Dorzolamide; Timolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Drospirenone; Estradiol: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Drospirenone; Ethinyl Estradiol: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Enalapril, Enalaprilat: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Enalapril; Felodipine: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Ephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Epinephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Eprosartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Erythromycin; Sulfisoxazole: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides. Patients should be closely monitored while receiving any of these drugs in combination with antidiabetic agents.
    Esmolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Esterified Estrogens: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued.
    Esterified Estrogens; Methyltestosterone: (Moderate) Exogenously administered androgens have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance, and may worsen hyperglycemia.However, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. Some patients may experience hypoglycemia. Other patients receiving androgen replacement may not have significant changes in blood glucose. Moniitor blood glucose and HbA1C in patients receiving antidiabetic agents and androgens. In some cases, dosage adjustments of the antidiabetic agent may be necessary. (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued.
    Estradiol Cypionate; Medroxyprogesterone: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estradiol: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued.
    Estradiol; Levonorgestrel: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estradiol; Norethindrone: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estradiol; Norgestimate: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Estrogens: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued.
    Estropipate: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued.
    Ethacrynic Acid: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Ethanol: (Moderate) Alcohol (ethanol) may cause variable effects on glycemic control when used in patients receiving antidiabetic therapy. Alcohol ingestion can decrease endogenous glucose production potentiating the risk of hypoglycemia. Alternatively, alcohol can worsen glycemic control as it provides a source of additional calories. Blood glucose concentrations should be closely monitored and dosage adjustments of antidiabetic agents may be necessary if alcohol is consumed. Patients should be encouraged to limit or moderate their intake of alcoholic beverages. Because of its effects on endogenous glucose production, patients should be encouraged to avoid alcohol ingestion during the fasting state. Many non-prescription drug products may be formulated with ethanol; have patients scrutinize product labels prior to consumption.
    Ethinyl Estradiol: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued.
    Ethinyl Estradiol; Desogestrel: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Ethynodiol Diacetate: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Etonogestrel: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Levonorgestrel: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Levonorgestrel; Folic Acid; Levomefolate: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norelgestromin: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norethindrone Acetate: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norethindrone Acetate; Ferrous fumarate: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norethindrone: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norethindrone; Ferrous fumarate: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norgestimate: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethinyl Estradiol; Norgestrel: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Ethotoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
    Etonogestrel: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Fenofibrate: (Moderate) Fibric acid derivatives may enhance the hypoglycemic effects of antidiabetic agents through increased insulin sensitivity and decreased glucagon secretion; monitor for changes in glycemic control and for needed dose adjustments. Gemfibrozil increases the systemic exposure of pioglitazone or rosiglitazone. Administration of 600 mg of gemfibrozil twice daily with pioglitazone 30 mg/day resulted in a higher pioglitazone exposure of 226%. If coadministered with a strong CYP2C8 inhibitor like gemfibrozil, the maximum recommended dose of pioglitazone is 15 mg daily.
    Fenofibric Acid: (Moderate) Fibric acid derivatives may enhance the hypoglycemic effects of antidiabetic agents through increased insulin sensitivity and decreased glucagon secretion; monitor for changes in glycemic control and for needed dose adjustments. Gemfibrozil increases the systemic exposure of pioglitazone or rosiglitazone. Administration of 600 mg of gemfibrozil twice daily with pioglitazone 30 mg/day resulted in a higher pioglitazone exposure of 226%. If coadministered with a strong CYP2C8 inhibitor like gemfibrozil, the maximum recommended dose of pioglitazone is 15 mg daily.
    Fexofenadine; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Fibric acid derivatives: (Moderate) Fibric acid derivatives may enhance the hypoglycemic effects of antidiabetic agents through increased insulin sensitivity and decreased glucagon secretion; monitor for changes in glycemic control and for needed dose adjustments. Gemfibrozil increases the systemic exposure of pioglitazone or rosiglitazone. Administration of 600 mg of gemfibrozil twice daily with pioglitazone 30 mg/day resulted in a higher pioglitazone exposure of 226%. If coadministered with a strong CYP2C8 inhibitor like gemfibrozil, the maximum recommended dose of pioglitazone is 15 mg daily.
    Fludrocortisone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Flunisolide: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Fluoxetine: (Moderate) Fluoxetine may enhance the hypoglycemic effects of antidiabetic agents. Fluoxetine may help to normalize blood glucose and increase insulin sensitivity. Serum glucose should be monitored closely when fluoxetine is added to any regimen containing antidiabetic agents.
    Fluoxetine; Olanzapine: (Moderate) Fluoxetine may enhance the hypoglycemic effects of antidiabetic agents. Fluoxetine may help to normalize blood glucose and increase insulin sensitivity. Serum glucose should be monitored closely when fluoxetine is added to any regimen containing antidiabetic agents. (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Fluoxymesterone: (Moderate) Exogenously administered androgens have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance, and may worsen hyperglycemia.However, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. Some patients may experience hypoglycemia. Other patients receiving androgen replacement may not have significant changes in blood glucose. Moniitor blood glucose and HbA1C in patients receiving antidiabetic agents and androgens. In some cases, dosage adjustments of the antidiabetic agent may be necessary.
    Fluphenazine: (Minor) The phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients should be closely monitored for worsening glycemic control.
    Fluticasone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Fluticasone; Salmeterol: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Fluticasone; Umeclidinium; Vilanterol: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Fluticasone; Vilanterol: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Formoterol; Mometasone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Fosamprenavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Fosinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Fosphenytoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
    Furosemide: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Garlic, Allium sativum: (Moderate) Limited animal data suggest that selected constituents in Garlic, Allium sativum might have some antidiabetic activity, resulting in increased serum insulin concentrations and increased glycogen storage in the liver. Patients with diabetes frequently purchase alternative remedies that have been purported to improve glycemic control, but there is no scientific or controlled evidence in humans of this action. Limited clinical evidence suggests that garlic does not affect blood glucose in those without diabetes. Until more data are available, individuals receiving antidiabetic agents should use caution in consuming dietary supplements containing garlic, and follow their normally recommended strategies for blood glucose monitoring.
    Gemfibrozil: (Moderate) Fibric acid derivatives may enhance the hypoglycemic effects of antidiabetic agents through increased insulin sensitivity and decreased glucagon secretion; monitor for changes in glycemic control and for needed dose adjustments. Gemfibrozil increases the systemic exposure of pioglitazone or rosiglitazone. Administration of 600 mg of gemfibrozil twice daily with pioglitazone 30 mg/day resulted in a higher pioglitazone exposure of 226%. If coadministered with a strong CYP2C8 inhibitor like gemfibrozil, the maximum recommended dose of pioglitazone is 15 mg daily.
    Gemifloxacin: (Moderate) Careful monitoring of blood glucose is recommended when other quinolones andantidiabetic agents, including the sodium-glucose co-transporter 2 (SGLT2) inhibitors, are coadministered. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent.
    Glucagon: (Minor) Endogenous counter-regulatory hormones such as glucagon are released in response to hypoglycemia. When released, blood glucose concentrations rise. When glucagon is administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Clinically, glucagon is often used to increase blood glucose concentrations in patients with severe hypoglycemia.
    Green Tea: (Moderate) Green tea catechins have been shown to decrease serum glucose concentrations in vitro. Patients with diabetes mellitus taking antidiabetic agents should be monitored closely for hypoglycemia if consuming green tea products.
    Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Guaifenesin; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Guaifenesin; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Hydantoins: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
    Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Hydrochlorothiazide, HCTZ: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Hydrochlorothiazide, HCTZ; Irbesartan: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Hydrochlorothiazide, HCTZ; Lisinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Hydrochlorothiazide, HCTZ; Losartan: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Hydrochlorothiazide, HCTZ; Metoprolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Hydrochlorothiazide, HCTZ; Propranolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Hydrochlorothiazide, HCTZ; Quinapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Hydrochlorothiazide, HCTZ; Spironolactone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Hydrochlorothiazide, HCTZ; Telmisartan: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Hydrochlorothiazide, HCTZ; Triamterene: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Hydrocodone; Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Hydrocodone; Potassium Guaiacolsulfonate; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Hydrocodone; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Hydrocortisone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Hydroxychloroquine: (Major) Careful monitoring of blood glucose is recommended when hydroxychloroquine and antidiabetic agents, including the SGLT2 inhibitors, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with hydroxychloroquine and an antidiabetic agent.
    Hydroxyprogesterone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Ibuprofen; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Iloperidone: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Indinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Irbesartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Isocarboxazid: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
    Isoniazid, INH: (Minor) Although rare, isoniazid, INH may increase blood glucose concentrations. Patients should be closely monitored for changes in glycemic control if isoniazid therapy is initiated or discontinued.
    Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) The metabolism of dapagliflozin is primarily mediated by UGT1A9. Coadministration of dapagliflozin with rifampin, a nonselective inducer of several UGT enzymes, including UGT1A9, UGT2B4, may theoretically decrease serum concentrations of dapagliflozin leading to decreased efficacy of dapagliflozin. Monitor for changes in blood glucose control. (Minor) Although rare, isoniazid, INH may increase blood glucose concentrations. Patients should be closely monitored for changes in glycemic control if isoniazid therapy is initiated or discontinued.
    Isoniazid, INH; Rifampin: (Major) The metabolism of dapagliflozin is primarily mediated by UGT1A9. Coadministration of dapagliflozin with rifampin, a nonselective inducer of several UGT enzymes, including UGT1A9, UGT2B4, may theoretically decrease serum concentrations of dapagliflozin leading to decreased efficacy of dapagliflozin. Monitor for changes in blood glucose control. (Minor) Although rare, isoniazid, INH may increase blood glucose concentrations. Patients should be closely monitored for changes in glycemic control if isoniazid therapy is initiated or discontinued.
    Isoproterenol: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Labetalol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Lanreotide: (Moderate) Monitor blood glucose levels if administration of lanreotide is necessary with antidiabetic agents; adjust the dosage of the antidiabetic agent as clinically appropriate. Lanreotide inhibits the secretion of insulin and glucagon.
    Leuprolide; Norethindrone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Levobetaxolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Levobunolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Levocarnitine: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended.
    Levofloxacin: (Moderate) Careful monitoring of blood glucose is recommended when levofloxacin and antidiabetic agents, including the sodium-glucose co-transporter 2 (SGLT2) inhibitors, are coadministered. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent.
    Levonorgestrel: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Levothyroxine: (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use oral antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued
    Liothyronine: (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use oral antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued
    Liotrix: (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use oral antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued
    Lisdexamfetamine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Lisinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Lithium: (Moderate) Lithium may cause variable effects on glycemic control when used in patients receiving antidiabetic agents. While early reports of hyperglycemia in patients treated with lithium have not been confirmed by more recent studies, it may be prudent to monitor blood glucose concentrations closely if lithium is coadministered with antidiabetic agents. Dosage adjustments of antidiabetic agents may be necessary.
    Lomefloxacin: (Moderate) Careful monitoring of blood glucose is recommended when other quinolones andantidiabetic agents, including the sodium-glucose co-transporter 2 (SGLT2) inhibitors, are coadministered. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent.
    Loop diuretics: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Lopinavir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Loratadine; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Losartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Lovastatin; Niacin: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
    Lurasidone: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Magnesium Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Mecasermin rinfabate: (Moderate) Use caution in coadministering mecasermin rinfabate with antidiabetic agents. Although the rh-IGF-1/rh-IGFBP-3 complex has less propensity to rapidly lower blood glucose compared to unbound mecasermin, a hypoglycemic effect may be exacerbated in some patients.The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with the insulin receptor is possible. Treatment with unbound rh-IGF-1 has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus, when used alone or in conjunction with insulin. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms.
    Mecasermin, Recombinant, rh-IGF-1: (Moderate) Use caution in coadministering mecasermin rinfabate with antidiabetic agents. Although the rh-IGF-1/rh-IGFBP-3 complex has less propensity to rapidly lower blood glucose compared to unbound mecasermin, a hypoglycemic effect may be exacerbated in some patients.The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with the insulin receptor is possible. Treatment with unbound rh-IGF-1 has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus, when used alone or in conjunction with insulin. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms.
    Medroxyprogesterone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Megestrol: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Mepivacaine; Levonordefrin: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Mesoridazine: (Minor) The phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients should be closely monitored for worsening glycemic control.
    Mestranol; Norethindrone: (Minor) Estrogens can impair glucose tolerance and may decrease the hypoglycemic effects of antidiabetic agents. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of concomitant progestin use may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when therapy with any of these agents is instituted. In addition, patients receiving antidiabetic agents should be closely monitored for signs of hypoglycemia when estrogen therapy is discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Methamphetamine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Methazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Methyclothiazide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Methylphenidate: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Methylprednisolone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Methyltestosterone: (Moderate) Exogenously administered androgens have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance, and may worsen hyperglycemia.However, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. Some patients may experience hypoglycemia. Other patients receiving androgen replacement may not have significant changes in blood glucose. Moniitor blood glucose and HbA1C in patients receiving antidiabetic agents and androgens. In some cases, dosage adjustments of the antidiabetic agent may be necessary.
    Metoclopramide: (Moderate) Because metoclopramide can enhance gastric emptying in patients with diabetes, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents, including dapagliflozin.The dosing of antidiabetic agents may require adjustment in patients who receive metoclopramide concomitantly.
    Metolazone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Metoprolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Midodrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Moexipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Mometasone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Monoamine oxidase inhibitors: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
    Moxifloxacin: (Moderate) Careful monitoring of blood glucose is recommended when other quinolones andantidiabetic agents, including the sodium-glucose co-transporter 2 (SGLT2) inhibitors, are coadministered. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent.
    Nadolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Nandrolone Decanoate: (Moderate) Exogenously administered androgens have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance, and may worsen hyperglycemia.However, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. Some patients may experience hypoglycemia. Other patients receiving androgen replacement may not have significant changes in blood glucose. Moniitor blood glucose and HbA1C in patients receiving antidiabetic agents and androgens. In some cases, dosage adjustments of the antidiabetic agent may be necessary.
    Naproxen; Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Nebivolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Nebivolol; Valsartan: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus. (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Nelfinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Niacin, Niacinamide: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
    Niacin; Simvastatin: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
    Nicotine: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
    Norepinephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Norethindrone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Norfloxacin: (Moderate) Careful monitoring of blood glucose is recommended when other quinolones andantidiabetic agents, including the sodium-glucose co-transporter 2 (SGLT2) inhibitors, are coadministered. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent.
    Norgestrel: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Octreotide: (Moderate) Administration of octreotide to patients receiving oral antidiabetic agents can produce hypoglycemia due to slowing of gut motility which leads to decreased postprandial glucose concentrations. Patients should be monitored closely and doses of these medications adjusted accordingly if octreotide is added.
    Ofloxacin: (Moderate) Careful monitoring of blood glucose is recommended when other quinolones andantidiabetic agents, including the sodium-glucose co-transporter 2 (SGLT2) inhibitors, are coadministered. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent.
    Olanzapine: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Olmesartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Ombitasvir; Paritaprevir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Orlistat: (Minor) Changes in dietary intake and weight loss induced by orlistat may improve metabolic control in diabetic patients. A statistically significant number of obese, type 2 diabetics stabilized on sulfonylureas who received orlistat during a one-year double-blind, placebo-controlled study required a reduction in dose or discontinuation of drug therapy compared to the placebo group. Lower blood glucose may necessitate a dosage reduction of antidiabetic agents.
    Oxandrolone: (Moderate) Exogenously administered androgens have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance, and may worsen hyperglycemia.However, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. Some patients may experience hypoglycemia. Other patients receiving androgen replacement may not have significant changes in blood glucose. Moniitor blood glucose and HbA1C in patients receiving antidiabetic agents and androgens. In some cases, dosage adjustments of the antidiabetic agent may be necessary.
    Oxymetholone: (Moderate) Exogenously administered androgens have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance, and may worsen hyperglycemia.However, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. Some patients may experience hypoglycemia. Other patients receiving androgen replacement may not have significant changes in blood glucose. Moniitor blood glucose and HbA1C in patients receiving antidiabetic agents and androgens. In some cases, dosage adjustments of the antidiabetic agent may be necessary.
    Paliperidone: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Pegvisomant: (Moderate) Patients who have both acromegaly and diabetes mellitus and are being treated with insulins and/or oral antidiabetic agents may require dose reductions of these medications after the initiation of pegvisomant. Growth hormone decreases insulin sensitivity by opposing the effects of insulin on carbohydrate metabolism; therefore, pegvisomant, which antagonizes growth hormone, is expected to have the opposite effect. Although none of the acromegalic patients with diabetes mellitus who were treated with pegvisomant during the clinical studies developed clinically relevant hypoglycemia, such patients should monitor their blood glucose regularly, with doses of anti-diabetic medications reduced as necessary.
    Pemoline: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Penbutolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Pentamidine: (Moderate) Pentamidine can be harmful to pancreatic cells. This effect may lead to hypoglycemia acutely, followed by hyperglycemia with prolonged pentamidine therapy. Patients on antidiabetic agents should be monitored for the need for dosage adjustments during the use of pentamidine.
    Perindopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Perindopril; Amlodipine: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Perphenazine: (Minor) The phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients should be closely monitored for worsening glycemic control.
    Perphenazine; Amitriptyline: (Minor) The phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients should be closely monitored for worsening glycemic control.
    Phendimetrazine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Phenelzine: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
    Phenobarbital: (Major) The metabolism of dapagliflozin is primarily mediated by UGT1A9. Coadministration of dapagliflozin with phenobarbital, a UGT enzyme inducer, may theoretically decrease serum concentrations of dapagliflozin leading to decreased efficacy of dapagliflozin. Monitor for changes in blood glucose control.
    Phenothiazines: (Minor) The phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients should be closely monitored for worsening glycemic control.
    Phentermine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Phentermine; Topiramate: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Phenylephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Phenylephrine; Promethazine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Phenytoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
    Pindolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Exogenously administered androgens have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance, and may worsen hyperglycemia.However, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. Some patients may experience hypoglycemia. Other patients receiving androgen replacement may not have significant changes in blood glucose. Moniitor blood glucose and HbA1C in patients receiving antidiabetic agents and androgens. In some cases, dosage adjustments of the antidiabetic agent may be necessary.
    Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Exogenously administered androgens have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance, and may worsen hyperglycemia.However, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. Some patients may experience hypoglycemia. Other patients receiving androgen replacement may not have significant changes in blood glucose. Moniitor blood glucose and HbA1C in patients receiving antidiabetic agents and androgens. In some cases, dosage adjustments of the antidiabetic agent may be necessary.
    Prednisolone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Prednisone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Prilocaine; Epinephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Prochlorperazine: (Minor) The phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients should be closely monitored for worsening glycemic control.
    Progesterone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Progestins: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
    Propranolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Protease inhibitors: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Pseudoephedrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Pyrimethamine; Sulfadoxine: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides. Patients should be closely monitored while receiving any of these drugs in combination with antidiabetic agents.
    Quetiapine: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Quinapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Racepinephrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Ramipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Rasagiline: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAO inhibitors) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOI-type medications, including the selective MAO-B inhibitor rasagiline, are added to any regimen containing antidiabetic agents.
    Reserpine: (Moderate) Reserpine may mask the signs and symptoms of hypoglycemia. Patients receiving reserpine concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Rifampin: (Major) The metabolism of dapagliflozin is primarily mediated by UGT1A9. Coadministration of dapagliflozin with rifampin, a nonselective inducer of several UGT enzymes, including UGT1A9, UGT2B4, may theoretically decrease serum concentrations of dapagliflozin leading to decreased efficacy of dapagliflozin. Monitor for changes in blood glucose control.
    Risperidone: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.
    Ritodrine: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Sacubitril; Valsartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Salicylates: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Salsalate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
    Saquinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Selegiline: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
    Somatropin, rh-GH: (Minor) Endogenous counter-regulatory hormones such as growth hormone are released in response to hypoglycemia. When released, blood glucose concentrations rise. When somatropin, rh-GH, growth hormone is administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when growth hormone is instituted.
    Sparfloxacin: (Moderate) Careful monitoring of blood glucose is recommended when other quinolones andantidiabetic agents, including the sodium-glucose co-transporter 2 (SGLT2) inhibitors, are coadministered. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent.
    Sulfadiazine: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides. Patients should be closely monitored while receiving any of these drugs in combination with antidiabetic agents.
    Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides. Patients should be closely monitored while receiving any of these drugs in combination with antidiabetic agents.
    Sulfasalazine: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides. Patients should be closely monitored while receiving any of these drugs in combination with antidiabetic agents.
    Sulfisoxazole: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides. Patients should be closely monitored while receiving any of these drugs in combination with antidiabetic agents.
    Sulfonamides: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides. Patients should be closely monitored while receiving any of these drugs in combination with antidiabetic agents.
    Sympathomimetics: (Moderate) Endogenous epinephrine is released in response to hypoglycemia; epinephrine, through stimulation of alpha- and beta- receptors, increases hepatic glucose production and glycogenolysis and inhibits insulin secretion in order to increase serum glucose concentrations. A pharmacodynamic interaction may occur when pseudoephedrine and other sympathomimetics are administered to patients as these agents may increase blood glucose concentrations by a similar mechanism. Patients receiving dapagliflozin should be closely monitored for loss of diabetic control when therapy with sympathomimetic agents is instituted.
    Tacrolimus: (Moderate) Both cyclosporine and tacrolimus have been reported to cause hyperglycemia. Tacrolimus has been implicated in causing insulin-dependent diabetes mellitus in patients after renal transplantation. Both of these drugs may have direct beta-cell toxicity; the effects from cyclosporine may be dose-related. Patients should be monitored for changes in glycemic control if therapy with either of these immunosuppressant drugs is initiated in patients receiving dapagliflozin.
    Tegaserod: (Moderate) Because tegaserod can enhance gastric emptying in patients with diabetes, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents.The dosing of antidiabetic agents may require adjustment in patients who receive tegaserod concomitantly.
    Telmisartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Testolactone: (Moderate) Exogenously administered androgens have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance, and may worsen hyperglycemia.However, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. Some patients may experience hypoglycemia. Other patients receiving androgen replacement may not have significant changes in blood glucose. Moniitor blood glucose and HbA1C in patients receiving antidiabetic agents and androgens. In some cases, dosage adjustments of the antidiabetic agent may be necessary.
    Testosterone: (Moderate) Exogenously administered androgens have variable effects on blood glucose control in patients with diabetes mellitus. In general, low testosterone concentrations are associated with insulin resistance, and may worsen hyperglycemia.However, when hypogonadal men (with or without diabetes) are administered exogenous androgens, glycemic control typically improves as indicated by significant reductions in fasting plasma glucose concentrations and HbA1c. Some patients may experience hypoglycemia. Other patients receiving androgen replacement may not have significant changes in blood glucose. Moniitor blood glucose and HbA1C in patients receiving antidiabetic agents and androgens. In some cases, dosage adjustments of the antidiabetic agent may be necessary.
    Thiazide diuretics: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Thiethylperazine: (Minor) The phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients should be closely monitored for worsening glycemic control.
    Thioridazine: (Minor) The phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients should be closely monitored for worsening glycemic control.
    Thyroid hormones: (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use oral antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued
    Timolol: (Moderate) Beta-blockers exert complex actions on the body's ability to regulate blood glucose. Because of this, beta-blockers may cause a pharmacodynamic interaction with antidiabetic agents. Beta-blockers can prolong hypoglycemia by interfering with glycogenolysis (secondary to blocking the compensatory actions of epinephrine) or can promote hyperglycemia (by inhibiting insulin secretion and decreasing tissue sensitivity to insulin). Furthermore, a prospective trial in non-diabetic patients with hypertension indicated that treatment with beta-blockers increased the risk of the development of diabetes by 28% at six years. In addition, beta-blockers may mask the signs and symptoms of hypoglycemia, specifically the tachycardic response, and exaggerate the hypertensive response to hypoglycemia. Although no pharmacokinetic interaction has been observed between beta-blockers and antidiabetic agents, patients receiving beta-blockers and antidiabetic agents concomitantly should be closely monitored for an inappropriate response. Selective beta-blockers, such as acebutolol, atenolol, or metoprolol, can cause fewer problems with blood glucose regulation, although these agents can still mask the symptoms of hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes. Furthermore, their use should not be avoided in patients with compelling indications for beta-blocker therapy (i.e., post-MI, heart failure, etc.) when no other contraindications are present. Decreased mortality has been shown in the post-MI and heart failure populations when beta-blockers are used, especially in patients with coexisting diabetes mellitus.
    Tipranavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors. A possible mechanism is impairment of beta-cell function. Onset averaged approximately 63 days after initiating protease inhibitor therapy, but has occurred as early as 4 days after beginning therapy. Diabetic ketoacidosis has occurred in some patients including patients who were not diabetic prior to protease inhibitor treatment. Patients on antidiabetic therapy should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Tobacco: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
    Torsemide: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Trandolapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Trandolapril; Verapamil: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors (i.e., captopril or enalapril) are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Tranylcypromine: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
    Triamcinolone: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Trifluoperazine: (Minor) The phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients should be closely monitored for worsening glycemic control.
    Trovafloxacin, Alatrofloxacin: (Moderate) Careful monitoring of blood glucose is recommended when other quinolones andantidiabetic agents, including the sodium-glucose co-transporter 2 (SGLT2) inhibitors, are coadministered. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent.
    Valsartan: (Moderate) When dapagliflozin is initiated in patients already receiving angiotensin II receptor antagonists (ARBs), symptomatic hypotension can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may be at a greater risk. Before initiating dapagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, dapagliflozin can lead to hyperkalemia. Patients with renal impairment who are taking medications that interfere with potassium excretion, such as medications that interfere with the renin-angiotensin-aldosterone (RAA) system, are more likely to develop hyperkalemia. Monitor serum potassium levels periodically. ARBs may enhance the hypoglycemic effects of dapagliflozin by improving insulin sensitivity.ARBs have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in volume status, renal function, and glycemic control.
    Ziprasidone: (Moderate) Patients taking dapagliflozin should be closely monitored for worsening glycemic control when an atypical antipsychotic is instituted. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. While a causal relationship has not been established, temporal associations of atypical antipsychotic therapy with the aggravation of diabetes mellitus have been reported.

    PREGNANCY AND LACTATION

    Pregnancy

    There are no adequate and well-controlled studies of dapagliflozin during human pregnancy. During pregnancy, consider appropriate alternative therapies, especially during the second and third trimesters. The potential risks to human kidney development are of concern. When dapagliflozin was administered to juvenile rats during periods of animal development that correspond to the late second and third trimester of human development, increased incidence and/or severity of renal pelvic and tubular dilatation were evident at the lowest tested dose which was approximately 15 times human clinical exposure from a 10 mg dose. When dapagliflozin was studied in rabbits during intervals coinciding with the first trimester period of organogenesis in humans, no developmental toxicities were observed at any dose tested. The American College of Obstetrician and Gynecologists recommends insulin as the therapy of choice to maintain blood glucose as close to normal as possible during pregnancy in patients with type 1 or 2 diabetes mellitus, and, if diet therapy alone is not successful, for those patients with gestational diabetes.

    There is no information regarding the presence of dapagliflozin in human milk, the effects on breast-feeding infants, or the effects on milk production. Since dapagliflozin is present in the milk of lactating rats and human kidney maturation occurs in utero and during the first 2 years of life when lactational exposure may occur, there may be risk to the developing human kidney. Due to the potential for serious adverse reactions in a breast-feeing infant, breast-feeding during use of dapagliflozin is not recommended. Other oral hypoglycemics may be considered as possible alternatives during breast-feeding. Because acarbose has limited systemic absorption, which results in minimal maternal plasma concentrations, clinically significant exposure via breast milk is not expected. Metformin monotherapy may also be a consideration; data have shown that metformin is excreted into breast milk in small amounts and adverse effects on infant plasma glucose have not been reported in human studies. Tolbutamide is usually considered compatible with breast-feeding. Glyburide may be a suitable alternative since it was not detected in the breast milk of lactating women who received single and multiple doses of glyburide. If any oral hypoglycemics are used during breast-feeding, the nursing infant should be monitored for signs of hypoglycemia, such as increased fussiness or somnolence. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to a maternally ingested drug, healthcare providers are encouraged to report the adverse effect to the FDA.

    MECHANISM OF ACTION

    Dapagliflozin is an inhibitor of sodium-glucose co-transporter 2 (SGLT2), the transporter responsible for reabsorbing the majority of glucose filtered by the tubular lumen in the kidney. SGLT2 is expressed in the proximal renal tubules. By inhibiting SGLT2, dapagliflozin reduces reabsorption of filtered glucose and lowers the renal threshold for glucose (RTG), and thereby increases urinary glucose excretion, improving blood glucose control. In adult patients with type 2 diabetes mellitus, dapagliflozin 10 mg/day for 12 weeks resulted in excretion of approximately 70 grams of glucose in the urine per day at Week 12. A near maximum glucose excretion was observed at the dapagliflozin dose of 20 mg/day. This urinary glucose excretion with dapagliflozin also results in increased urinary volume.

    PHARMACOKINETICS

    Dapagliflozin is administered orally. Dapagliflozin is approximately 91% protein bound. Dapagliflozin is mainly metabolized via O-glucuronidation by UGT1A9; CYP3A4-mediated metabolism is a minor clearance pathway in humans. Dapagliflozin is extensively metabolized, primarily to yield dapagliflozin 3-O-glucuronide, which is an inactive metabolite. Dapagliflozin 3-O-glucuronide accounted for 61% of an oral dose and is the predominant drug-related component in human plasma. Elimination of dapagliflozin and its metabolites occurs primarily via the renal pathway. Following oral administration, 75% and 21% of the dose is excreted in urine and feces, respectively. In the urine, less than 2% of the dose is excreted as the parent drug. In the feces, approximately 15% of the dose is excreted as the parent drug. Following a single oral dose of dapagliflozin 10 mg, the mean plasma terminal half-life is approximately 12.9 hours.
     
    Affected Cytochrome P450 (CYP450) enzymes and drug transporters: None
    Dapagliflozin and dapagliflozin 3-O-glucuronide neither inhibit CYP1A2, 2C9, 2C19, 2D6, or 3A4, nor induce CYP1A2, 2B6, or 3A4 based on in vitro studies. Dapagliflozin is a weak substrate of the P-glycoprotein (P-gp) active transporter, and dapagliflozin 3-O-glucuronide is a substrate for the OAT3 active transporter. Dapagliflozin or dapagliflozin 3-O-glucuronide did not meaningfully inhibit P-gp, OCT2, OAT1, or OAT3 active transporters. Overall, dapagliflozin is unlikely to affect the pharmacokinetics of concurrently administered medications that are P-gp, OCT2, OAT1, or OAT3 substrates.

    Oral Route

    Following oral administration of dapagliflozin, the maximum plasma concentration (Cmax) is usually attained within 2 hours under fasting state. The Cmax and AUC values increase dose proportionally with increases in dapagliflozin dose within the therapeutic dose range. The absolute oral bioavailability is 78% following a 10 mg oral dose. Administration with a high-fat meal decreases the Cmax by up to 50% and prolongs the time to maximum concentration (Tmax) by approximately 1 hour, but does not alter AUC as compared with the fasted state. These changes are not considered to be clinically meaningful. Dapagliflozin can be administered with or without food.