Fiorinal with Codeine

Browse PDR's full list of drug information

Fiorinal with Codeine

Classes

Analgesics with Antipyretic Activity Combinations
Opioid Agonists and Other Drug Combinations

Administration
Oral Administration

Storage: Keep secured in a location not accessible by others.
Disposal: If a drug take-back option is not readily available, mix butalbital; aspirin; caffeine; codeine with an unpalatable substance (e.g., dirt, cat litter, used coffee grounds), place the mixture in a sealed container, and throw the container in the household trash.[28948]

Adverse Reactions
Severe

peptic ulcer / Delayed / Incidence not known
interstitial nephritis / Delayed / Incidence not known
renal failure / Delayed / Incidence not known
renal papillary necrosis / Delayed / Incidence not known
toxic epidermal necrolysis / Delayed / Incidence not known
erythema multiforme / Delayed / Incidence not known
exfoliative dermatitis / Delayed / Incidence not known
anaphylactic shock / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
hearing loss / Delayed / Incidence not known
neonatal opioid withdrawal syndrome / Delayed / Incidence not known
hemolytic anemia / Delayed / Incidence not known
Reye's syndrome / Delayed / Incidence not known
SIADH / Delayed / Incidence not known
serotonin syndrome / Delayed / Incidence not known
respiratory arrest / Rapid / Incidence not known
Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) / Delayed / Incidence not known

Moderate

sinus tachycardia / Rapid / 0.1-1.0
depression / Delayed / Incidence not known
hallucinations / Early / Incidence not known
psychosis / Early / Incidence not known
constipation / Delayed / Incidence not known
esophagitis / Delayed / Incidence not known
hyperglycemia / Delayed / Incidence not known
medication overuse headache / Delayed / Incidence not known
withdrawal / Early / Incidence not known
dysuria / Early / Incidence not known
proteinuria / Delayed / Incidence not known
erythema / Early / Incidence not known
palpitations / Early / Incidence not known
chest pain (unspecified) / Early / Incidence not known
hypotension / Rapid / Incidence not known
edema / Delayed / Incidence not known
physiological dependence / Delayed / Incidence not known
psychological dependence / Delayed / Incidence not known
hepatitis / Delayed / Incidence not known
prolonged bleeding time / Delayed / Incidence not known
anemia / Delayed / Incidence not known
impotence (erectile dysfunction) / Delayed / Incidence not known
hyponatremia / Delayed / Incidence not known
infertility / Delayed / Incidence not known
adrenocortical insufficiency / Delayed / Incidence not known
respiratory depression / Rapid / Incidence not known
hyperalgesia / Delayed / Incidence not known
tolerance / Delayed / Incidence not known

Mild

abdominal pain / Early / 3.7-3.7
nausea / Early / 3.7-3.7
dizziness / Early / 2.6-2.6
drowsiness / Early / 2.4-2.4
lethargy / Early / 0.1-1.0
agitation / Early / 0.1-1.0
fatigue / Early / 0.1-1.0
pyrosis (heartburn) / Early / 0.1-1.0
vomiting / Early / 0.1-1.0
headache / Early / 0.1-1.0
diuresis / Early / 0.1-1.0
pruritus / Rapid / 0.1-1.0
hyperhidrosis / Delayed / 0.1-1.0
xerostomia / Early / 0.1-1.0
tinnitus / Delayed / 0.1-1.0
fever / Early / 0.1-1.0
nasal congestion / Early / 0.1-1.0
weakness / Early / 0.1-1.0
musculoskeletal pain / Early / 0.1-1.0
anxiety / Delayed / Incidence not known
hyperactivity / Early / Incidence not known
insomnia / Early / Incidence not known
irritability / Delayed / Incidence not known
tremor / Early / Incidence not known
vertigo / Early / Incidence not known
anorexia / Delayed / Incidence not known
appetite stimulation / Delayed / Incidence not known
diarrhea / Early / Incidence not known
hiccups / Early / Incidence not known
rash / Early / Incidence not known
urticaria / Rapid / Incidence not known
miosis / Early / Incidence not known
epistaxis / Delayed / Incidence not known
flushing / Rapid / Incidence not known
hypersalivation / Early / Incidence not known
syncope / Early / Incidence not known
gonadal suppression / Delayed / Incidence not known
libido decrease / Delayed / Incidence not known
amenorrhea / Delayed / Incidence not known

Boxed Warning
Accidental exposure, alcoholism, depression, opioid overdose, opioid use disorder, potential for overdose or poisoning, requires an experienced clinician, substance abuse

Opioid use requires an experienced clinician who is knowledgeable about the use of opioids, and how to mitigate the associated risks. Opioids expose users to the risks of addiction, abuse, and misuse, which can occur at any dosage or duration. Barbiturates may be habit-forming. Although the risk of addiction in any individual is unknown, it can occur in persons appropriately prescribed opioids. Addiction can occur at recommended dosages and if the drug is misused or abused. Assess each individual's risk for addiction, abuse, or misuse before prescribing butalbital; aspirin; caffeine; codeine, and monitor for the development of these behaviors or conditions. Risks are increased in persons with a personal or family history of substance abuse (including alcoholism) or mental illness (e.g., major depression). The potential for these risks should not prevent the proper management of pain in any given individual. Persons at increased risk may be prescribed butalbital; aspirin; caffeine; codeine, but use in such persons necessitates intensive counseling about the risks and proper use of the opioid along with intensive monitoring for signs of addiction, abuse, and misuse. Abuse and addiction are separate and distinct from physical dependence and tolerance; persons with addiction may not exhibit tolerance and symptoms of physical dependence. Opioids and barbituates are sought by drug abusers and persons with addiction disorders and are subject to criminal diversion. Abuse of opioids and barbiturates has the potential for overdose or poisoning and death. Consider these risks when prescribing or dispensing butalbital; aspirin; caffeine; codeine. Strategies to reduce these risks include prescribing the drug in the smallest appropriate quantity. Keep butalbital; aspirin; caffeine; codeine out of the reach of pediatric persons, others for whom the drug was not prescribed, and pets as accidental exposure or improper use may cause respiratory failure and a fatal overdose. Accidental exposure of even a single dose of an opioid or barbiturate, especially by younger persons, can result in a fatal overdose. Because the risk of overdose increases as opioid dose increases, reserve titration to higher doses of an opioid for persons in whom lower doses are insufficiently effective and in whom the expected benefits of using a higher dose opioid clearly outweigh the substantial risks. Do not use immediate-release opioids for an extended period unless the pain remains severe enough to require an opioid and for which alternative treatment options continue to be inadequate. Many acute pain conditions (e.g., pain occurring with surgical procedures or acute musculoskeletal injuries) require no more than a few days of an opioid. Clinical guidelines on opioid prescribing for some acute pain conditions are available. Discuss the availability of naloxone with all persons and consider prescribing it in persons who are at increased risk of opioid overdose, such as persons who are also using other CNS depressants, who have a history of opioid use disorder (OUD), who have experienced a previous opioid overdose, or who have household members or other close contacts at risk for accidental exposure or opioid overdose.

Asthma, chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, cor pulmonale, hypoxemia, nasal polyps, respiratory depression, respiratory insufficiency, sleep apnea

Butalbital; aspirin; caffeine; codeine is contraindicated in persons with significant respiratory depression and those with acute or severe asthma in an unmonitored setting or in the absence of resuscitative equipment. Butalbital; aspirin; caffeine; codeine is also contraindicated in persons with the syndrome of asthma, rhinitis, and nasal polyps; aspirin may cause severe urticaria, angioedema, or bronchospasm. Avoid coadministration with other CNS depressants when possible, as this significantly increases the risk for profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of these drugs for use in persons for whom alternative treatment options are inadequate; if concurrent use is necessary, use the lowest effective dosages and minimum treatment durations needed. Monitor closely for signs or symptoms of respiratory depression and sedation. Persons with chronic obstructive pulmonary disease (COPD), cor pulmonale, respiratory insufficiency, hypoxemia, hypercapnia, or preexisting respiratory depression are at increased risk of decreased respiratory drive even at recommended doses. Persons with advanced age, cachexia, or debilitation are also at an increased risk for opioid-induced respiratory depression. Monitor such persons closely, particularly when initiating and titrating the opioid; consider the use of non-opioid analgesics. Opioids increase the risk of central sleep apnea (CSA) and sleep-related hypoxemia in a dose-dependent fashion. Consider decreasing the opioid dosage in persons with CSA. Respiratory depression, if left untreated, may cause respiratory arrest and death. Carbon dioxide retention from respiratory depression may also worsen opioid sedating effects. Careful monitoring and dose titration is required, particularly when CYP3A4 and/or CYP2D6 inhibitors or inducers are used concomitantly; concurrent use of a CYP3A4 inhibitor or discontinuation of a concurrently used CYP3A4 inducer may increase plasma codeine concentrations with subsequent greater metabolism by CYP2D6, resulting in greater morphine concentrations that may potentiate the risk of fatal respiratory depression or discontinuation of a concomitantly used CYP2D6 inhibitor may decrease plasma codeine concentrations and increase morphine concentrations that may increase the risk for respiratory depression. Management of respiratory depression may include observation, necessary supportive measures, and opioid antagonist use when indicated.

Adenoidectomy, children, infants, influenza, neonates, neuromuscular disease, obesity, respiratory infection, Reye's syndrome, tonsillectomy, varicella, viral infection

Butalbital; aspirin; caffeine; codeine is contraindicated in neonates, infants, and children younger than 12 years and for postoperative pain management in pediatric patients younger than 18 years after a tonsillectomy and/or adenoidectomy. The American Academy of Pediatrics (AAP) recommends against the use of codeine in all pediatric patients for any indication. Avoid use in patients 12 to 18 years of age who have other risk factors for respiratory depression unless the benefits outweigh the risks. Risk factors include conditions associated with hypoventilation such as postoperative status, obstructive sleep apnea, obesity, respiratory infection, asthma, severe pulmonary disease, neuromuscular disease, and concomitant use of other respiratory depressants. When prescribing codeine for adolescents, choose the lowest effective dose for the shortest period of time and inform patients and caregivers of the risks and the signs of opioid overdose. Codeine metabolism is highly variable and unpredictable, particularly in children younger than 12 years; therapeutic response to recommended doses can range from lack of effect in poor metabolizers to fatality in ultrarapid metabolizers. Ultrarapid metabolizers are more likely to convert codeine to morphine quickly, leading to excessive morphine blood concentrations that can result in fatal respiratory depression. Because some children who are normal metabolizers can convert codeine to morphine at rates similar to ultra-metabolizers, this concern extends to all pediatric patients. Butalbital; aspirin; caffeine; codeine is contraindicated in Reye's Syndrome. Do not use aspirin in children for viral infection, with or without fever, because of the risk of Reye's syndrome. Do not use aspirin in children recovering from varicella infection or influenza.

Labor, neonatal opioid withdrawal syndrome, obstetric delivery, pregnancy

Available data with butalbital; aspirin; caffeine; codeine use during pregnancy are insufficient to inform a drug associated risk for major birth defects and miscarriage. Withdrawal seizures were reported in a 2-day-old male infant whose mother had taken a butalbital-containing drug during the last 2 months of pregnancy. Butalbital was found in the infant's serum. The infant was given phenobarbital 5 mg/kg, which was tapered without further seizure or other withdrawal symptoms. Avoid aspirin use during the third trimester of pregnancy (starting at 30 weeks of gestation) due to the risk of premature closure of the fetal ductus arteriosus and persistent pulmonary hypertension in the neonate. If NSAID treatment is deemed necessary between 20 to 30 weeks of pregnancy, limit use to the lowest effective dose and shortest duration possible. Consider ultrasound monitoring of amniotic fluid if NSAID treatment extends beyond 48 hours. Discontinue the NSAID if oligohydramnios occurs and follow up according to clinical practice. These recommendations do not apply to low-dose 81 mg aspirin prescribed for certain conditions in pregnancy. Use of NSAIDs around 20 weeks gestation or later in pregnancy may cause fetal renal dysfunction leading to oligohydramnios, and in some cases, neonatal renal impairment. These adverse outcomes are seen, on average, after days to weeks of treatment, although oligohydramnios has been infrequently reported as soon as 48 hours after NSAID initiation. Oligohydramnios is often, but not always, reversible with treatment discontinuation. Complications of prolonged oligohydramnios may include limb contractures and delayed lung maturation. In some postmarketing cases of impaired neonatal renal function, invasive procedures such as exchange transfusion or dialysis were required. Salicylates have also been associated with alterations in maternal and neonatal hemostasis mechanisms, decreased birth weight, and perinatal mortality. Avoid aspirin 1 week prior to and during labor and obstetric delivery because it can result in excessive blood loss at delivery. Prolonged gestation and labor due to prostaglandin inhibition have been reported. Limit the use of caffeine-containing medications during pregnancy only when absolutely necessary. Neonatal arrhythmias (e.g., tachycardia, premature atrial contractions) and tachypnea have been reported when caffeine was consumed during pregnancy in amounts more than 500 mg/day. Caffeine withdrawal in the neonate after birth may account for these symptoms.[47012] [47014] Codeine is not recommended for use during and immediately before labor when other analgesic techniques are more appropriate. Opioids can prolong labor and obstetric delivery by temporarily reducing the strength, duration, and frequency of uterine contractions. This effect is not consistent and may be offset by an increased rate of cervical dilatation, which may shorten labor. Opioids cross the placenta and may produce respiratory depression and psycho-physiologic effects in the neonate. An opioid antagonist (e.g., naloxone) should be available for reversal of opioid-induced respiratory depression in the neonate. Further, prolonged maternal use of opioids during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). Monitor the exposed neonate for withdrawal symptoms, including irritability, hyperactivity and abnormal sleep pattern, high-pitched cry, tremor, vomiting, diarrhea, and failure to gain weight, and manage accordingly. Onset, duration, and severity of opioid withdrawal may vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination by the newborn. [55881] Guidelines recommend early universal screening of pregnant patients for opioid use and opioid use disorder at the first prenatal visit. Obtain a thorough history of substance use and review the Prescription Drug Monitoring Program to determine if patients have received prior prescriptions for opioids or other high-risk drugs such as benzodiazepines. Discuss the risks and benefits of opioid use during pregnancy, including the risk of becoming physiologically dependent on opioids, the possibility for NOWS, and how long-term opioid use may affect care during a future pregnancy.[64838] [64909] In women undergoing uncomplicated normal spontaneous vaginal birth, consider opioid therapy only if expected benefits for both pain and function are anticipated to outweigh risks to the patient. If opioids are used, use in combination with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate. Use immediate-release opioids instead of extended-release or long-acting opioids; order the lowest effective dosage and prescribe no greater quantity of opioids than needed for the expected duration of such pain severe enough to require opioids.[64909] For women using opioids for chronic pain, consider strategies to avoid or minimize the use of opioids, including alternative pain therapies (i.e., nonpharmacologic) and nonopioid pharmacologic treatments. Opioid agonist pharmacotherapy (e.g., methadone or buprenorphine) is preferable to medically supervised withdrawal in pregnant women with opioid use disorder.[64838]

Common Brand Names

Ascomp, Fiorinal with Codeine

Dea Class

Rx, schedule III

Description

Oral combination of a barbiturate, non-steroidal anti-inflammatory drug (NSAID), methylxanthine, and opioid
Used for the treatment of tension headache, when other non-opioid analgesic and alternative treatments are inadequate
Associated with risk for respiratory depression

Dosage And Indications
For the treatment of tension headache where treatment with an opioid is appropriate and for which alternative treatments are inadequate. Oral dosage (capsules containing butalbital 50 mg, aspirin 325 mg, caffeine 40 mg, and codeine 30 mg) Adults

50 to 100 mg butalbital/325 to 650 mg aspirin/40 to 80 mg caffeine/30 to 60 mg codeine (1 to 2 capsules) PO every 4 hours as needed. Max: 300 mg butalbital/1,950 mg aspirin/240 mg caffeine/180 mg codeine (6 capsules)/day.

Dosing Considerations
Hepatic Impairment

Start patients with hepatic disease with a lower than normal dosage of butalbital; aspirin; caffeine; codeine or with longer dosing intervals and titrate slowly while monitoring for side effects.

Renal Impairment

Avoid aspirin in persons with severe renal failure (glomerular filtration rate less than 10 mL/minute). Start persons with renal impairment or renal failure with a lower than normal dosage of butalbital; aspirin; caffeine; codeine or with longer dosing intervals and titrate slowly while monitoring for side effects.

Drug Interactions

Abciximab: (Moderate) Unless contraindicated, aspirin is used in combination with abciximab. However, both drugs are associated with bleeding. Monitor for bleeding during concomitant therapy.
Abemaciclib: (Major) Avoid coadministration of butalbital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and butalbital is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Abiraterone: (Moderate) Concomitant use of codeine with abiraterone may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of abiraterone could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If abiraterone is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Abiraterone is a moderate inhibitor of CYP2D6.
Abrocitinib: (Contraindicated) Concurrent use with daily aspirin doses higher than 81 mg is contraindicated during the first 3 months of abrocitinib therapy due to an increased risk of bleeding with thrombocytopenia.
Acetaminophen: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur. (Minor) Caffeine has been reported to increase the metabolism of aspirin. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Aspirin: (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Aspirin; Diphenhydramine: (Major) Because diphenhydramine can cause pronounced sedation, an enhanced CNS depressant effect may occur when it is combined with other CNS depressants including anxiolytics, sedatives, and hypnotics, such as barbiturates. (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Caffeine: (Minor) Caffeine has been reported to increase the metabolism of aspirin. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Caffeine; Dihydrocodeine: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Caffeine has been reported to increase the metabolism of aspirin. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Minor) Caffeine has been reported to increase the metabolism of aspirin. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Chlorpheniramine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Codeine: (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Dextromethorphan; Doxylamine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Because doxylamine can cause pronounced sedation, an enhanced CNS depressant effect may occur when it is combined with other CNS depressants including anxiolytics, sedatives, and hypnotics, such as barbiturates. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Dichloralphenazone; Isometheptene: (Major) Additive CNS depression may occur if barbiturates are used concomitantly with dichloralphenazone. (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Diphenhydramine: (Major) Because diphenhydramine can cause pronounced sedation, an enhanced CNS depressant effect may occur when it is combined with other CNS depressants including anxiolytics, sedatives, and hypnotics, such as barbiturates. (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Hydrocodone: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Ibuprofen: (Major) Concomitant use of analgesic doses of aspirin and ibuprofen is generally not recommended due to the increased risk of bleeding and renal impairment. Because there may be an increased risk of cardiovascular events due to the interference of ibuprofen with the antiplatelet effect of aspirin, for patients taking low-dose aspirin for cardioprotection who require analgesics, consider use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or non-NSAID analgesics, as appropriate. Administer single doses of ibuprofen at least 2 to 4 hours or more after aspirin and wait 8 hours after ibuprofen administration before administering aspirin to avoid significant interference. Monitor for signs and symptoms of renal impairment. Pharmacodynamic studies have demonstrated interference with the antiplatelet activity of aspirin when ibuprofen 400 mg 3 times daily is administered with enteric-coated low-dose aspirin. The interaction exists even after ibuprofen 400 mg once daily, particularly when ibuprofen is dosed prior to aspirin. The interaction is alleviated if immediate-release low-dose aspirin is dosed at least 2 hours prior to a once daily regimen of ibuprofen; however, this finding cannot be extended to enteric-coated low-dose aspirin. A decrease in antiplatelet activity (53%) was observed when ibuprofen 400 mg once daily was administered 2 hours before low-dose immediate-release aspirin 81 mg/day for 6 days. An interaction was still observed, but minimized, when ibuprofen 400 mg once daily was administered as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction with the antiplatelet activity of aspirin when ibuprofen 400 mg once daily was administered 2 hours after immediate-release aspirin (99.2%). In another study of low-dose immediate-release aspirin 81 mg/day and ibuprofen 400 mg 3 times daily (1, 7, and 13 hours post-aspirin dose) for 10 consecutive days, there was no interaction with the antiplatelet activity of aspirin (98.3%); however, there were individuals with aspirin antiplatelet activity below 95%, with the lowest being 90.2%. When a similarly designed study was conducted with enteric-coated aspirin 81 mg/day for 6 days and ibuprofen 400 mg 3 times daily (2, 7 and 12 h post-aspirin dose) for 6 days, there was an interaction with the antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Ibuprofen is not a substitute for low dose aspirin for cardiovascular protection. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Oxycodone: (Major) Concomitant use of oxycodone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of oxycodone with a barbiturate may decrease oxycodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; oxycodone is a CYP3A4 substrate. (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Pamabrom; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetaminophen; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Acetazolamide: (Major) Avoid the coadministration of high-dose salicylates and carbonic anhydrase inhibitors whenever possible. There were reports of anorexia, tachypnea, lethargy, metabolic acidosis, coma, and death with high-dose aspirin and acetazolamide. Two mechanisms could cause increased acetazolamide concentrations, resulting in CNS depression and metabolic acidosis: first, competition with aspirin for renal tubular secretion and, second, displacement by salicylates from plasma protein binding sites. Additionally, carbonic anhydrase inhibitors alkalinize urine and increase the excretion of normal doses of salicylates; decreased plasma salicylate concentrations may or may not be clinically significant. (Minor) Acetazolamide can induce osteomalacia in patients treated chronically with barbiturates. Potential mechanisms for this interaction include a carbonic anhydrase inhibitor induced increase in the urinary excretion of calcium and an increase in barbiturate effects resulting from metabolic acidosis. Acetazolamide can also increase the rate of excretion of weakly acidic drugs, such as barbiturates.
Acidifying Agents: (Moderate) Acidification of the urine may increase serum concentrations of salicylates by increasing tubular reabsorption of salicylates, however, this interaction is not likely to be clinically significant since the urine is normally acidic.
Aclidinium; Formoterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Acrivastine; Pseudoephedrine: (Major) Avoid coadministration of opioid agonists with acrivastine due to the risk of additive CNS depression. (Moderate) Additive CNS depression may occur if barbiturates are used concomitantly with acrivastine. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acyclovir: (Moderate) Monitor for an increase in caffeine-related adverse reactions, including nervousness, irritability, insomnia, tachycardia, or tremor, if concomitant use of acyclovir is necessary; lower caffeine doses may be necessary. Concomitant use may increase caffeine exposure; caffeine is a CYP1A2 substrate and acyclovir is a CYP1A2 inhibitor.
Adagrasib: (Major) Avoid concurrent use of adagrasib and barbiturates due to the risk of decreased adagrasib exposure which may reduce its efficacy. Adagrasib is a CYP3A substrate and barbiturates is a strong CYP3A inducer. Concomitant use with another strong CYP3A inducer reduced adagrasib exposure by more than 66%. (Moderate) Concomitant use of codeine with adagrasib may alter codeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of codeine until stable drug effects are achieved. Discontinuation of adagrasib could alter codeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If adagrasib is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Adagrasib is a dual moderate CYP2D6 and strong CYP3A inhibitor. CYP3A inhibitors may increase codeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Adenosine: (Major) Larger doses of adenosine may be required or adenosine may not be effective in the presence of methylxanthines. The effects of adenosine are antagonized by methylxanthines. When used for diagnostic purposes, instruct patients to avoid consumption of methylxanthine-containing products, including caffeinated beverages, for at least 5 half-lives prior to the imaging study.
Ado-Trastuzumab emtansine: (Moderate) Use caution if coadministration of aspirin with ado-trastuzumab emtansine is necessary due to reports of severe and sometimes fatal hemorrhage, including intracranial bleeding, with ado-trastuzumab emtansine therapy. Consider additional monitoring when concomitant use is medically necessary. While some patients who experienced bleeding during ado-trastuzumab therapy were also receiving anticoagulation therapy, others had no known additional risk factors.
Albuterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Albuterol; Budesonide: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists. (Moderate) Coadministration may result in decreased exposure to budesonide. Butalbital is a CYP3A4 inducer; budesonide is a CYP3A4 substrate. Monitor for decreased response to budesonide during concurrent use.
Aldesleukin, IL-2: (Moderate) Aldesleukin, IL-2 may affect CNS function significantly. Therefore, psychotropic pharmacodynamic interactions could occur following concomitant administration of drugs with significant CNS activity. Use with caution. (Moderate) Aldesleukin, IL-2 may affect CNS function significantly. Therefore, psychotropic pharmacodynamic interactions could occur following concomitant administration of drugs with significant CNS or psychotropic activity such as opiate agonists. In addition, aldesleukin, IL-2, is a CYP3A4 inhibitor and may increase oxycodone plasma concentrations and related toxicities including potentially fatal respiratory depression. If therapy with both agents is necessary, monitor patients for an extended period and adjust oxycodone dosage as necessary.
Alendronate: (Minor) Monitor for gastrointestinal adverse events during concurrent use of alendronate and aspirin. Both medications have been associated with gastrointestinal irritation although data suggest concomitant use introduces little additional risk for adverse effects for most patients.
Alendronate; Cholecalciferol: (Minor) Monitor for gastrointestinal adverse events during concurrent use of alendronate and aspirin. Both medications have been associated with gastrointestinal irritation although data suggest concomitant use introduces little additional risk for adverse effects for most patients.
Alfentanil: (Major) Concomitant use of alfentanil with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of alfentanil with a barbiturate may decrease alfentanil plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; alfentanil is a CYP3A4 substrate.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Alkalinizing Agents: (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid.
Almotriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Alogliptin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Alogliptin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Alogliptin; Pioglitazone: (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Alosetron: (Major) Patients taking medications that decrease GI motility may be at greater risk for serious complications from alosetron, like constipation, via a pharmacodynamic interaction. Constipation is the most frequently reported adverse effect with alosetron. Alosetron, if used with drugs such as opiate agonists, may seriously worsen constipation, leading to events such as GI obstruction/impaction or paralytic ileus.
Alpha-glucosidase Inhibitors: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Alprazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Monitor for reduced efficacy of alprazolam and signs of benzodiazepine withdrawal if coadministration with barbiturates is necessary. Alprazolam is a CYP3A4 substrate and barbiturates are strong CYP3A4 inducers. Concomitant use with CYP3A4 inducers can decrease alprazolam concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Additionally, monitor for excessive sedation and somnolence during coadministration of alprazolam and barbiturates. Concurrent use may result in additive CNS depression.
Altretamine: (Minor) Because altretamine undergoes significant metabolism by the cytochrome P450 system, agents that stimulate CYP450 enzymes, such as barbiturates, increase the metabolism of altretamine and may result in decreased therapeutic effects.
Alvimopan: (Moderate) Patients should not take alvimopan if they have received therapeutic doses of opiate agonists for more than seven consecutive days immediately before initiation of alvimopan therapy. Patients recently exposed to opioids are expected to be more sensitive to the effects of mu-opioid receptor antagonists and may experience adverse effects localized to the gastrointestinal tract such as abdominal pain, nausea, vomiting, and diarrhea.
Amantadine: (Major) Amantadine used concomitantly with psychostimulants, such as caffeine, can result in increased stimulant effects, such as nervousness, irritability, or insomnia, and can lead to seizures or cardiac arrhythmias. Close monitoring of the patient is recommended.
Amide local anesthetics: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Amiloride: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when amiloride is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when amiloride is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia.
Aminoglycosides: (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents like the aminoglycosides may lead to additive nephrotoxicity.
Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Amiodarone: (Moderate) Concomitant use of codeine with amiodarone may alter codeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of codeine until stable drug effects are achieved. Discontinuation of amiodarone could alter codeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If amiodarone is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amiodarone is a moderate inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase codeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy. (Minor) Amiodarone is an inhibitor of CYP1A2 isoenzymes, and could theoretically reduce CYP1A2-mediated caffeine metabolism. The clinical significance of this potential interaction is not known.
Amitriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Amlodipine: (Major) Barbiturates may induce the CYP3A4 metabolism of calcium-channel blockers such as amlodipine, and thereby reduce their oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers; monitor blood pressure closely. (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Amlodipine; Atorvastatin: (Major) Barbiturates may induce the CYP3A4 metabolism of calcium-channel blockers such as amlodipine, and thereby reduce their oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers; monitor blood pressure closely. (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Minor) CYP3A4 inducers like the barbiturates may decrease the efficacy of atorvastatin, a CYP3A4 substrate. Monitor for potential reduced cholesterol-lowering efficacy when these drugs are co-administered.
Amlodipine; Benazepril: (Major) Barbiturates may induce the CYP3A4 metabolism of calcium-channel blockers such as amlodipine, and thereby reduce their oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers; monitor blood pressure closely. (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Amlodipine; Celecoxib: (Major) Barbiturates may induce the CYP3A4 metabolism of calcium-channel blockers such as amlodipine, and thereby reduce their oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers; monitor blood pressure closely. (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection. (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6. (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Amlodipine; Olmesartan: (Major) Barbiturates may induce the CYP3A4 metabolism of calcium-channel blockers such as amlodipine, and thereby reduce their oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers; monitor blood pressure closely. (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Amlodipine; Valsartan: (Major) Barbiturates may induce the CYP3A4 metabolism of calcium-channel blockers such as amlodipine, and thereby reduce their oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers; monitor blood pressure closely. (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Major) Barbiturates may induce the CYP3A4 metabolism of calcium-channel blockers such as amlodipine, and thereby reduce their oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers; monitor blood pressure closely. (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Amobarbital: (Major) Concomitant use of codeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when codeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of codeine with a barbiturate can decrease codeine concentrations, resulting in less metabolism by CYP2D6 and decreased morphine concen

trations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of codeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration.
Amoxapine: (Major) Concomitant use of opioid agonists with amoxapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking amoxapine. Limit the use of opioid pain medications with amoxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Major) Monitor for excessive sedation and somnolence during coadministration of amoxapine and barbiturates. Concurrent use may result in additive CNS depression.
Amoxicillin: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Amoxicillin; Clarithromycin; Omeprazole: (Major) Avoid coadministration of omeprazole with barbiturates because it can result in decreased efficacy of omeprazole. Omeprazole is extensively metabolized in the liver by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. (Moderate) Concomitant use of codeine with clarithromycin may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of clarithromycin could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If clarithromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Clarithromycin is a strong inhibitor of CYP3A4. (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Amoxicillin; Clavulanic Acid: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Amphetamine: (Moderate) Avoid excessive caffeine intake during use of the amphetamine salts. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine. (Moderate) If concomitant use of codeine and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Amphetamine; Dextroamphetamine Salts: (Moderate) Avoid excessive caffeine intake during use of the amphetamine salts. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Amphetamine; Dextroamphetamine: (Moderate) Avoid excessive caffeine intake during use of the amphetamine salts. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine. (Moderate) If concomitant use of codeine and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Amphetamines: (Moderate) If concomitant use of codeine and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Amphotericin B lipid complex (ABLC): (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
Amphotericin B liposomal (LAmB): (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
Amphotericin B: (Minor) Concurrent use of amphotericin B and other potentially nephrotoxic medications, like the salicylates, may enhance the potential for drug-induced renal toxicity.
Ampicillin: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Ampicillin; Sulbactam: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Anagrelide: (Moderate) Anagrelide has been shown to inhibit CYP1A2. In theory, coadministration of anagrelide with substrates of CYP1A2, including caffeine, could lead to increases in the serum concentrations of caffeine and, thus, adverse effects. (Moderate) Anagrelide is partially metabolized by CYP1A2. Coadministration of anagrelide with drugs that induce CYP1A2, such as barbiturates, could theoretically increase the elimination of anagrelide and decrease the efficacy of anagrelide. (Moderate) Use caution with the coadministration of aspirin and anagrelide. The coadministration of single or repeated doses of anagrelide and aspirin resulted in greater ex vivo anti-platelet aggregation effects than administration of aspirin alone. In an observational study, the concomitant use of anagrelide and aspirin increased the rate of major hemorrhagic events compared to patients receiving other cytoreductive therapy. Assess the risks and benefits of concomitant aspirin and anagrelide use, particularly in patients at high risk for hemorrhage. Monitor for bleeding during concomitant therapy.
Angiotensin-converting enzyme inhibitors: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Antithrombin III: (Moderate) Large doses of salicylates (more than 3 to 4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Patients taking large doses of salicylates and antithrombin III should be monitored closely for bleeding.
Apalutamide: (Moderate) Concomitant use of codeine with apalutamide can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If apalutamide is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Apalutamide is a strong CYP3A4 inducer.
Apixaban: (Major) Large doses of salicylates (3 to 4 g/day or more) can cause hypoprothrombinemia, an additional risk factor for bleeding. Patients taking large doses of salicylates and apixaban should be monitored closely for bleeding.
Apomorphine: (Major) Concomitant use of opioid agonists with apomorphine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking apomorphine. Limit the use of opioid pain medications with apomorphine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like apomorphine have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. (Moderate) Apomorphine causes significant somnolence. Concomitant administration of apomorphine and CNS depressants could result in additive depressant effects.
Apraclonidine: (Minor) No specific drug interactions were identified with systemic agents and apraclonidine during clinical trials. Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as the anxiolytics, sedatives, and hypnotics, including barbiturates or benzodiazepines. (Minor) Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as opiate agonists. Although no specific drug interactions were identified with systemic agents and apraclonidine during clinical trials, apraclonidine can cause dizziness and somnolence.
Apremilast: (Major) The coadministration of apremilast and barbiturates is not recommended. Apremilast is metabolized primarily by CYP3A4, with minor metabolism by CYP1A2; barbiturates are strong CYP3A4 inducers and also induce CYP1A2. Coadministration of rifampin, another strong CYP3A4 inducer, with a single dose of apremilast resulted in a decrease in apremilast AUC and Cmax by 72% and 43%, respectively. A similar reduction in systemic exposure may be seen with coadministration of apremilast and barbiturates which may result in a loss of efficacy of apremilast.
Aprepitant, Fosaprepitant: (Moderate) Concomitant use of codeine with oral, multi-day regimens of aprepitant, fosaprepitant may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of aprepitant, fosaprepitant could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If aprepitant, fosaprepitant is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Aprepitant, fosaprepitant, when administered as an oral, 3-day regimen, is a moderate inhibitor of CYP3A4.
Arformoterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Aripiprazole: (Major) Because aripiprazole is metabolized by CYP3A4, the manufacturer recommends that the oral aripiprazole dose be doubled over 1 to 2 weeks when strong CYP3A4 inducers, such as barbiturates, are added to aripiprazole therapy. If these agents are used in combination, the patient should be carefully monitored for a decrease in aripiprazole efficacy. When the CYP3A4 inducer is withdrawn from the combination therapy, the aripiprazole dose in adults should be reduced over 1 to 2 weeks to the original level. Avoid concurrent use of Abilify Maintena with a CYP3A4 inducer when the combined treatment period exceeds 14 days because aripiprazole blood concentrations decline and may become suboptimal. In adults receiving 662 mg, 882 mg, or 1,064 mg of Aristada and receiving a strong CYP3A4 inducer, no dosage adjustment is necessary; however, the 441 mg dose should be increased to 662 mg if the CYP inducer is added for more than 2 weeks. Avoid concurrent use of Aristada Initio and strong CYP3A4 inducers. Additive CNS effects are possible, including drowsiness or dizziness. Patients should report any unusual changes in moods or behaviors while taking this combination. (Moderate) Concomitant use of opioid agonists with aripiprazole may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking aripiprazole. Limit the use of opioid pain medications with aripiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Armodafinil: (Major) It is not clear how armodafinil interacts with barbiturates like phenobarbital. Armodafinil is partially metabolized by CYP3A4 and combined use with CYP3A4 inducers such as phenobarbital and other barbiturates may result in decreased armodafinil efficacy. Barbiturates used for sleep could counteract the effect of armodafinil on wakefulness, and would not ordinarily be prescribed. The potential effects of combining armodafinil with anticonvulsant barbiturate medications are unclear. Many psychostimulants can reduce the seizure threshold, but it is not clear if armodafinil can affect seizure control. (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with armodafinil. Caffeine should be used cautiously with armodafinil. Intake of caffeine should be limited. Excessive intake may cause nervousness, irritability, insomnia, or other side effects.
Artemether; Lumefantrine: (Major) The barbiturates are inducers and both components of artemether; lumefantrine are substrates of the CYP3A4 isoenzyme; therefore, coadministration may lead to decreased artemether; lumefantrine concentrations. Concomitant use warrants caution due to a possible reduction in antimalarial activity. (Moderate) Concomitant use of codeine with lumefantrine may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of lumefantrine could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If lumefantrine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Lumefantrine is a moderate inhibitor of CYP2D6.
Articaine; Epinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Asciminib: (Moderate) Concomitant use of codeine with asciminib may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of asciminib could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If asciminib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Asciminib is a weak inhibitor of CYP3A.
Ascorbic Acid, Vitamin C: (Minor) Agents that acidify the urine should be avoided in patients receiving high-dose salicylates. Urinary pH changes can decrease salicylate excretion. However, if the urine is acidic prior to administration of an acidifying agent, the increase in salicylic acid concentrations should be minimal.
Asenapine: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Aspirin, ASA: (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Aspirin, ASA; Butalbital; Caffeine: (Major) Concomitant use of codeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when codeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of codeine with a barbiturate can decrease codeine concentrations, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of codeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur. (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Aspirin, ASA; Caffeine: (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur. (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Aspirin, ASA; Caffeine; Orphenadrine: (Major) Concomitant use of opioid agonists with orphenadrine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with orphenadrine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking orphenadrine. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur. (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Aspirin, ASA; Carisoprodol: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking carisoprodol. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking carisoprodol. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Aspirin, ASA; Dipyridamole: (Major) Methylxanthines, through antagonism of adenosine and thus pharmacologic-induced coronary vasodilation, have been associated with false-negative results during dipyridamole-thallium 201 stress testing. It is recommended that methylxanthines (caffeine, caffeinated beverages and foods, theophylline, etc.) be discontinued for at least 24 hours prior to stress testing. An interaction is not expected when methylxanthines are used concomitantly with chronic dipyridamole therapy. (Moderate) Although aspirin may be used in combination with dipyridamole, both drugs are associated with bleeding. Monitor for bleeding during concomitant therapy. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Aspirin, ASA; Omeprazole: (Major) Avoid coadministration of omeprazole with barbiturates because it can result in decreased efficacy of omeprazole. Omeprazole is extensively metabolized in the liver by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Aspirin, ASA; Oxycodone: (Major) Concomitant use of oxycodone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of oxycodone with a barbiturate may decrease oxycodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; oxycodone is a CYP3A4 substrate. (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Atazanavir: (Major) Coadministration of butalbital and atazanavir may increase the metabolism of atazanavir and lead to decreased atazanavir concentrations resulting in reduction of antiretroviral efficacy and development of viral resistance. If atazanavir and butalbital are used together, the patient must be closely monitored for antiviral efficacy. (Moderate) Concomitant use of codeine with atazanavir may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of atazanavir could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If atazanavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Atazanavir is a strong inhibitor of CYP3A4.
Atazanavir; Cobicistat: (Major) Coadministration of butalbital and atazanavir may increase the metabolism of atazanavir and lead to decreased atazanavir concentrations resulting in reduction of antiretroviral efficacy and development of viral resistance. If atazanavir and butalbital are used together, the patient must be closely monitored for antiviral efficacy. (Moderate) Concomitant use of codeine with atazanavir may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of atazanavir could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If atazanavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Atazanavir is a strong inhibitor of CYP3A4. (Moderate) Concomitant use of codeine with cobicistat may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Cobicistat is a strong inhibitor of CYP3A4.
Atenolol; Chlorthalidone: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Atogepant: (Major) Avoid use of atogepant and barbiturates when atogepant is used for chronic migraine. Use an atogepant dose of 30 or 60 mg PO once daily for episodic migraine if coadministered with barbiturates. Concurrent use may decrease atogepant exposure and reduce efficacy. Atogepant is a CYP3A substrate and barbiturates are strong CYP3A inducers. Coadministration with a strong CYP3A inducer resulted in a 60% reduction in atogepant overall exposure and a 30% reduction in atogepant peak concentration.
Atorvastatin: (Minor) CYP3A4 inducers like the barbiturates may decrease the efficacy of atorvastatin, a CYP3A4 substrate. Monitor for potential reduced cholesterol-lowering efficacy when these drugs are co-administered.
Atorvastatin; Ezetimibe: (Minor) CYP3A4 inducers like the barbiturates may decrease the efficacy of atorvastatin, a CYP3A4 substrate. Monitor for potential reduced cholesterol-lowering efficacy when these drugs are co-administered.
Atropine: (Major) Reserve concomitant use of codeine and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Atropine; Difenoxin: (Major) Reserve concomitant use of codeine and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Concurrent administration of diphenoxylate/difenoxin with barbiturates can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events.
Avacopan: (Major) Avoid concomitant use of avacopan and barbiturates due to the risk of decreased avacopan exposure which may reduce its efficacy. Avacopan is a CYP3A substrate and barbiturates are strong CYP3A inducers. Concomitant use of another strong CYP3A inducer decreased avacopan overall exposure by 93%. (Moderate) Concomitant use of codeine with avacopan may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of avacopan could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If avacopan is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Avacopan is a weak inhibitor of CYP3A.
Avanafil: (Minor) Avanafil is a substrate of and primarily metabolized by CYP3A4. It can be expected that concomitant administration of CYP3A4 enzyme-inducers will decrease plasma levels of avanafil, however, no interaction studies have been performed. CYP3A4 inducers include barbiturates.
Avapritinib: (Major) Avoid coadministration of avapritinib with butalbital due to the risk of decreased avapritinib efficacy. Avapritinib is a CYP3A4 substrate and butalbital is a moderate CYP3A4 inducer. Coadministration with another moderate CYP3A4 inducer is predicted to decrease the AUC and Cmax of avapritinib by 62% and 55%, respectively.
Avatrombopag: (Major) In patients with chronic immune thrombocytopenia (ITP), increase the starting dose of avatrombopag to 40 mg PO once daily when used concomitantly with barbiturates. In patients starting barbiturates while receiving avatrombopag, monitor platelet counts and adjust the avatrombopag dose as necessary. Dosage adjustments are not required for patients with chronic liver disease. Avatrombopag is a CYP2C9 and CYP3A4 substrate, and dual moderate or strong inducers such as barbiturates decrease avatrombopag exposure, which may reduce efficacy.
Axitinib: (Major) Avoid coadministration of axitinib with butalbital if possible due to the risk of decreased efficacy of axitinib. Selection of a concomitant medication with no or minimal CYP3A4 induction potential is recommended. Axitinib is a CYP3A4/5 substrate and butalbital is a moderate CYP3A4 inducer.
Azelastine: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking azelastine. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) An enhanced CNS depressant effect may occur when azelastine, an antihistamine, is combined with CNS depressants including the barbiturates.
Azelastine; Fluticasone: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking azelastine. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) An enhanced CNS depressant effect may occur when azelastine, an antihistamine, is combined with CNS depressants including the barbiturates. (Moderate) Coadministration may result in decreased exposure to fluticasone. Butalbital is a CYP3A4 inducer; fluticasone is a CYP3A4 substrate. Monitor for decreased response to fluticasone during concurrent use.
Azilsartan; Chlorthalidone: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Bacitracin: (Minor) Additive nephrotoxicity may occur with concurrent use of systemic bacitracin and other nephrotoxic agents, including salicylates. Topical administration of any preparation containing bacitracin, especially when applied to large surface areas, also should not be given with other drugs that have a nephrotoxic potential.
Baclofen: (Major) Concomitant use of opioid agonists with baclofen may cause excessive sedation and somnolence. Limit the use of opioid pain medications with baclofen to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking baclofen.
Barbiturates: (Major) Concomitant use of codeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when codeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of codeine with a barbiturate can decrease codeine concentrations, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of codeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Bedaquiline: (Major) Avoid concurrent use of barbiturates with bedaquiline. Barbiturates may induce CYP3A4 metabolism resulting in decreased bedaquiline systemic exposure (AUC) and possibly reduced therapeutic effect.
Belladonna; Opium: (Major) Concomitant use of opium with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and belladonna use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Belumosudil: (Moderate) Concomitant use of codeine with belumosudil may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of belumosudil could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If belumosudil is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Belumosudil is a weak inhibitor of CYP3A.
Belzutifan: (Moderate) Monitor for reduced efficacy of codeine and signs of opioid withdrawal in patients who have developed physical dependence if coadministration with belzutifan is necessary; consider increasing the dose of codeine as needed. It is recommended to avoid this combination when codeine is being used for cough. If belzutifan is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Belzutifan is a weak CYP3A inducer. Concomitant use with belzutifan can increase norcodeine levels via increased CYP3A metabolism, resulting in decreased metabolism via CYP2D6 resulting in lower morphine levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Benazepril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Bendamustine: (Major) Consider the use of an alternative therapy if barbiturate treatment is needed in patients receiving bendamustine. Barbiturates may decrease bendamustine exposure, which may result in decreased efficacy. Bendamustine is a CYP1A2 substrate and barbiturates are CYP1A2 inducers.
Benzhydrocodone; Acetaminophen: (Major) Concomitant use of benzhydrocodone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of benzhydrocodone with a barbiturate may decrease benzhydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; benzhydrocodone is a CYP3A4 substrate. (Major) Concomitant use of opioid agonists with benzhydrocodone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of benzhydrocodone with opioid agonists to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If benzhydrocodone is initiated in a patient taking codeine, reduce initial dosage and titrate to clinical response. If codeine is prescribed in a patient taking benzhydrocodone, use a lower initial dose of codeine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking other opioid agonists. Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of benzhydrocodone and codeine because of the potential risk of serotonin syndrome. Discontinue benzhydrocodone if serotonin syndrome is suspected. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Benzodiazepines: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Benzphetamine: (Moderate) Avoid excessive caffeine intake during use of benzphetamine. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine. (Moderate) If concomitant use of codeine and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Benztropine: (Moderate) CNS depressants, such as anxiolytics, sedatives, and hypnotics, can increase the sedative effects of benztropine. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and benztropine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Berotralstat: (Moderate) Concomitant use of codeine with berotralstat may alter codeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of codeine until stable drug effects are achieved. Discontinuation of berotralstat could alter codeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If berotralstat is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Berotralstat is a moderate inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase codeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Beta-agonists: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Beta-blockers: (Moderate) Concurrent use of beta-blockers with aspirin and other salicylates may result in loss of antihypertensive activity due to inhibition of renal prostaglandins and thus, salt and water retention and decreased renal blood flow.
Bethanechol: (Moderate) Bethanechol facilitates intestinal and bladder function via parasympathomimetic actions. Opiate agonists impair the peristaltic activity of the intestine. Thus, these drugs can antagonize the beneficial actions of bethanechol on GI motility.
Betrixaban: (Major) Monitor patients closely and promptly evaluate any signs or symptoms of bleeding if betrixaban and aspirin are used concomitantly. Coadministration of betrixaban and aspirin may increase the risk of bleeding.
Bexarotene: (Moderate) Concomitant use of codeine with bexarotene can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If bexarotene is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Bexarotene is a moderate CYP3A4 inducer.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Minor) Barbiturates may decrease the half-life and plasma concentrations of metronidazole. The clinical significance of this effect is uncertain.
Bismuth Subsalicylate: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur. (Moderate) Monitor for salicylate-related adverse effects, including salicylate toxicity, if concomitant use of aspirin and bismuth subsalicylate is necessary. Adverse reactions, such as bleeding, renal impairment, and tinnitus, may occur.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur. (Moderate) Monitor for salicylate-related adverse effects, including salicylate toxicity, if concomitant use of aspirin and bismuth subsalicylate is necessary. Adverse reactions, such as bleeding, renal impairment, and tinnitus, may occur. (Minor) Barbiturates may decrease the half-life and plasma concentrations of metronidazole. The clinical significance of this effect is uncertain.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as n eeded. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Bortezomib: (Moderate) Because bortezomib undergoes significant metabolism by the cytochrome P450 system, induction of CYP450 enzymes by the barbiturates may increase the clearance and metabolism of this drug and may result in decreased therapeutic effects.
Bosentan: (Moderate) Concomitant use of codeine with bosentan can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If bosentan is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Bosentan is a moderate CYP3A4 inducer.
Brexanolone: (Moderate) Concomitant use of brexanolone with CNS depressants like the opiate agonists may increase the likelihood or severity of adverse reactions related to sedation and additive CNS depression. Monitor for excessive sedation, dizziness, and a potential for loss of consciousness during brexanolone use.
Brexpiprazole: (Major) Because brexpiprazole is partially metabolized by CYP3A4, the manufacturer recommends that the brexpiprazole dose be doubled over 1 to 2 weeks when strong CYP3A4 inducers, such as barbiturates and primidone, are added to brexpiprazole therapy. If these agents are used in combination, the patient should be carefully monitored for a decrease in brexpiprazole efficacy. When the CYP3A4 inducer is withdrawn from the combination therapy, the brexpiprazole dose should be reduced over 1 to 2 weeks to the original level. (Major) Concomitant use of opioid agonists with brexpiprazole may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking brexpiprazole. Limit the use of opioid pain medications with brexpiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Brigatinib: (Major) Avoid coadministration of brigatinib with butalbital due to decreased plasma exposure to brigatinib which may result in decreased efficacy. If concomitant use is unavoidable, after 7 days of concomitant treatment with butalbital, increase the dose of brigatinib as tolerated in 30 mg increments to a maximum of twice the original brigatinib dose. After discontinuation of butalbital, resume the brigatinib dose that was tolerated prior to initiation of butalbital. Brigatinib is a CYP3A4 substrate and butalbital is a moderate CYP3A4 inducer. Coadministration with a moderate CYP3A inducer is predicted to decrease the AUC of brigatinib by approximately 50%. (Moderate) Monitor for reduced efficacy of codeine and signs of opioid withdrawal in patients who have developed physical dependence if coadministration with brigatinib is necessary; consider increasing the dose of codeine as needed. It is recommended to avoid this combination when codeine is being used for cough. If brigatinib is discontinued, consider a dose reduction of codeine, and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Brigatinib is a weak CYP3A4 inducer. Concomitant use with brigatinib can increase norcodeine levels via increased CYP3A4 metabolism, resulting in decreased metabolism via CYP2D6 resulting in lower morphine levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Brimonidine: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists. (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of the anxiolytics, sedatives, and hypnotics including barbiturates.
Brimonidine; Brinzolamide: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists. (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of the anxiolytics, sedatives, and hypnotics including barbiturates.
Brimonidine; Timolol: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists. (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of the anxiolytics, sedatives, and hypnotics including barbiturates.
Brivaracetam: (Minor) Plasma concentrations of brivaracetam may decrease during co-administration with barbiturates. A 19% decrease in the plasma concentration of brivaracetam was observed during co-administration with phenobarbital; however, no dose adjustment is recommended for brivaracetam during concomitant therapy.
Bromocriptine: (Moderate) Caution and close monitoring are advised if bromocriptine and butalbital are used together. Concurrent use may decrease the plasma concentrations of bromocriptine resulting in loss of efficacy. Bromocriptine is extensively metabolized by the liver via CYP3A4; butalbital is a moderate inducer of CYP3A4. (Minor) Bromocriptine is highly bound (more than 90%) to serum proteins. Therefore, it may increase the unbound fraction of other highly protein-bound medications (e.g., aspirin and other salicylates), which may alter their effectiveness and risk for side effects.
Brompheniramine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as brompheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as brompheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Phenylephrine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as brompheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Pseudoephedrine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as brompheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as brompheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Budesonide: (Moderate) Coadministration may result in decreased exposure to budesonide. Butalbital is a CYP3A4 inducer; budesonide is a CYP3A4 substrate. Monitor for decreased response to budesonide during concurrent use.
Budesonide; Formoterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists. (Moderate) Coadministration may result in decreased exposure to budesonide. Butalbital is a CYP3A4 inducer; budesonide is a CYP3A4 substrate. Monitor for decreased response to budesonide during concurrent use.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists. (Moderate) Coadministration may result in decreased exposure to budesonide. Butalbital is a CYP3A4 inducer; budesonide is a CYP3A4 substrate. Monitor for decreased response to budesonide during concurrent use. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Bumetanide: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and codeine; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Bupivacaine Liposomal: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Bupivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Bupivacaine; Epinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Bupivacaine; Lidocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Bupivacaine; Meloxicam: (Major) Concomitant use of low dose aspirin or analgesic doses of aspirin and meloxicam is generally not recommended due to the increased risk of bleeding and renal impairment. Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Meloxicam is not a substitute for low dose aspirin for cardiovascular protection. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. (Minor) Bupivacaine is metabolized by CYP3A4. Barbiturates induce these isoenzymes and if given concurrently with bupivacaine may decrease the efficacy of bupivacaine.
Buprenorphine: (Major) Avoid concomitant use of codeine and a mixed opioid agonist/antagonist, such as buprenorphine, due to risk for reduced analgesic effect of codeine and/or precipitation of withdrawal symptoms. (Moderate) Close monitoring of the patient is recommended if a CYP3A4 inducer is used with buprenorphine. Inducers of CYP3A4 such as phenobarbital may induce the hepatic metabolism of buprenorphine, which may lead to opiate withdrawal or inadequate pain control. It is likely that all barbiturates exert the same effect as phenobarbital. This interaction is most significant if the enzyme-inducing agent is added after buprenorphine therapy has begun. Buprenorphine doses may need to be increased if any of these agents are added. Conversely, buprenorphine doses may need to be decreased if these drugs are discontinued. Additive CNS depression may be the more important issue initially when barbiturates are given with buprenorphine; the induction of buprenorphine metabolism may take several days. Prior to concurrent use of buprenorphine in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A dose reduction of one or both drugs may be warranted. It is recommended that the injectable buprenorphine dose be halved for patients who receive other drugs with CNS depressant effects; for the buprenorphine transdermal patch, start with the 5 mcg/hour patch. Monitor patients for sedation or respiratory depression.
Buprenorphine; Naloxone: (Major) Avoid concomitant use of codeine and a mixed opioid agonist/antagonist, such as buprenorphine, due to risk for reduced analgesic effect of codeine and/or precipitation of withdrawal symptoms. (Moderate) Close monitoring of the patient is recommended if a CYP3A4 inducer is used with buprenorphine. Inducers of CYP3A4 such as phenobarbital may induce the hepatic metabolism of buprenorphine, which may lead to opiate withdrawal or inadequate pain control. It is likely that all barbiturates exert the same effect as phenobarbital. This interaction is most significant if the enzyme-inducing agent is added after buprenorphine therapy has begun. Buprenorphine doses may need to be increased if any of these agents are added. Conversely, buprenorphine doses may need to be decreased if these drugs are discontinued. Additive CNS depression may be the more important issue initially when barbiturates are given with buprenorphine; the induction of buprenorphine metabolism may take several days. Prior to concurrent use of buprenorphine in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A dose reduction of one or both drugs may be warranted. It is recommended that the injectable buprenorphine dose be halved for patients who receive other drugs with CNS depressant effects; for the buprenorphine transdermal patch, start with the 5 mcg/hour patch. Monitor patients for sedation or respiratory depression.
Bupropion: (Moderate) Bupropion is associated with a dose-related risk of seizures. Excessive use of psychostimulants, including caffeine, is associated with an increased seizure risk and may increase this risk during the concurrent use of bupropion. Carefully consider a patient's caffeine intake from all sources, including medicines. Monitor for irritability, tremor, increased blood pressure, insomnia and seizures. Many non-prescription medicines and weight loss aids may contain caffeine and patients should read labels carefully. Examples of foods and beverages containing caffeine include coffee, teas, colas, energy drinks, chocolate, and some herbal or dietary supplements. Patients should be advised to limit excessive caffeine intake during bupropion therapy. (Moderate) Bupropion may interact with drugs that induce hepatic microsomal isoenzyme function via CYP2B6 such as the barbiturates. While not systematically studied, these drugs may induce the metabolism of bupropion and may decrease bupropion exposure. If bupropion is used concomitantly with a CYP inducer, it may be necessary to increase the dose of bupropion, but the maximum recommended dose should not be exceeded. Advise patients that until they are reasonably certain that the combination does not adversely affect their performance, they should refrain from driving an automobile or operating complex, hazardous machinery. (Moderate) Concomitant use of codeine with bupropion may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of bupropion could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If bupropion is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Bupropion is a strong inhibitor of CYP2D6.
Bupropion; Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. An opiate antagonist should only be administered to a patient taking codeine with clinically significant respiratory or cardiovascular depression. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur. (Moderate) Bupropion is associated with a dose-related risk of seizures. Excessive use of psychostimulants, including caffeine, is associated with an increased seizure risk and may increase this risk during the concurrent use of bupropion. Carefully consider a patient's caffeine intake from all sources, including medicines. Monitor for irritability, tremor, increased blood pressure, insomnia and seizures. Many non-prescription medicines and weight loss aids may contain caffeine and patients should read labels carefully. Examples of foods and beverages containing caffeine include coffee, teas, colas, energy drinks, chocolate, and some herbal or dietary supplements. Patients should be advised to limit excessive caffeine intake during bupropion therapy. (Moderate) Bupropion may interact with drugs that induce hepatic microsomal isoenzyme function via CYP2B6 such as the barbiturates. While not systematically studied, these drugs may induce the metabolism of bupropion and may decrease bupropion exposure. If bupropion is used concomitantly with a CYP inducer, it may be necessary to increase the dose of bupropion, but the maximum recommended dose should not be exceeded. Advise patients that until they are reasonably certain that the combination does not adversely affect their performance, they should refrain from driving an automobile or operating complex, hazardous machinery. (Moderate) Concomitant use of codeine with bupropion may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of bupropion could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If bupropion is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Bupropion is a strong inhibitor of CYP2D6.
Buspirone: (Moderate) Concomitant use of CNS depressants, such as buspirone, can potentiate the effects of codeine, which may potentially lead to respiratory depression, CNS depression, sedation, or hypotensive responses. If concurrent use of codeine and buspirone is imperative, reduce the dose of one or both drugs. (Moderate) Monitor for reduced anxiolytic effect of buspirone. Potent inducers of CYP3A4, such as the barbiturates, may increase the rate of buspirone metabolism. If a patient has been titrated to a stable dosage on buspirone, a dose adjustment of buspirone may be necessary to maintain anxiolytic effect. There is also a risk of additive CNS depression (drowsiness) when buspirone is given concomitantly with barbiturates. In a study in healthy volunteers, co-administration of buspirone with a potent CYP3A4 inducer decreased the plasma concentrations (83.7% decrease in Cmax; 89.6% decrease in AUC) and pharmacodynamic effects of buspirone. (Minor) In vitro studies showed that therapeutic levels of aspirin, ASA increased the plasma concentrations of free buspirone by 23% through plasma protein binding displacement. In vivo interaction studies with these drugs have not been performed.
Butabarbital: (Major) Concomitant use of codeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when codeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of codeine with a barbiturate can decrease codeine concentrations, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of codeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration.
Butalbital; Acetaminophen: (Major) Concomitant use of codeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when codeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of codeine with a barbiturate can decrease codeine concentrations, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of codeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Acetaminophen; Caffeine: (Major) Concomitant use of codeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when codeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of codeine with a barbiturate can decrease codeine concentrations, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of codeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Caffeine has been reported to increase the metabolism of aspirin. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Concomitant use of codeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when codeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of codeine with a barbiturate can decrease codeine concentrations, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of codeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Caffeine has been reported to increase the metabolism of aspirin. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butorphanol: (Major) Avoid the concomitant use of butorphanol and opiate agonists, such as codeine. Butorphanol is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of codeine. Butorphanol may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of butorphanol with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist. (Moderate) Concomitant use of butorphanol with other CNS depressants, such as barbiturates, can potentiate the effects of butorphanol on respiratory depression, CNS depression, and sedation.
Cabotegravir; Rilpivirine: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Caffeine: (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Moderate) Certain foods that contain high amounts of caffeine or theobromine should be limited during the therapeutic use of caffeine in order to limit additive methylxanthine effects. While taking Caffeine-containing medicines, limit the use of foods, beverages (examples: coffee, tea, colas), herbs (examples: guarana, green tea) and other products that contain additional caffeine, such as chocolate and some non-prescription medications or dietary supplements for headache, insomnia, or weight loss. Too much Caffeine can cause effects like nausea, nervousness, or sleeplessness. Some drug products for adults that contain caffeine have about as much caffeine as a cup of coffee. (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Caffeine; Sodium Benzoate: (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Calcifediol: (Moderate) Dose adjustment of calcifediol may be necessary during coadministration with barbiturates. Additionally, serum 25-hydroxyvitamin D, intact PTH, and calcium concentrations should be closely monitored if a patient initiates or discontinues therapy with barbiturates. Barbiturates stimulate microsomal hydroxylation and reduce the half-life of calcifediol. In rare cases, this has caused anticonvulsant-induced rickets and osteomalacia.
Calcitriol: (Moderate) Barbiturates can decrease the activity of vitamin D by increasing its metabolism. In rare cases, this has caused anticonvulsant-induced rickets and osteomalacia. Vitamin D supplementation may be required in patients with inadequate dietary intake of vitamin D who are receiving chronic treatment with barbiturates.
Calcium, Magnesium, Potassium, Sodium Oxybates: (Contraindicated) Sodium oxybate should not be used in combination with CNS depressant anxiolytics, sedatives, and hypnotics or other sedative CNS depressant drugs. Specifically, sodium oxybate use is contraindicated in patients being treated with sedative hypnotic drugs. Sodium oxybate (GHB) has the potential to impair cognitive and motor skills. For example, the concomitant use of barbiturates and benzodiazepines increases sleep duration and may contribute to rapid onset, pronounced CNS depression, respiratory depression, or coma when combined with sodium oxybate. (Major) Concomitant use of opioid agonists with sodium oxybate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with sodium oxybate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Caffeine should be avoided or used cautiously with oxybates. Monitor for potential side effects such as nervousness, irritability, insomnia, and/or cardiac arrhythmias.
Canagliflozin: (Moderate) Monitor blood glucose during concomitant canagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Canagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant canagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Cannabidiol: (Moderate) Concomitant use of opioid agonists with cannabidiol may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking cannabidiol. Limit the use of opioid pain medications with cannabidiol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Consider a dose reduction of caffeine as clinically appropriate, if adverse reactions occur when administered with cannabidiol. Increased caffeine exposure is possible. Caffeine is a CYP1A2 substrate and cannabidiol is a weak CYP1A2 inhibitor. (Moderate) Monitor for excessive sedation and somnolence during coadministration of cannabidiol and butalbital. CNS depressants can potentiate the effects of cannabidiol.
Caplacizumab: (Major) Avoid concomitant use of caplacizumab and aspirin when possible. Assess and monitor closely for bleeding if use together is necessary. Interrupt use of caplacizumab if clinically significant bleeding occurs.
Capmatinib: (Major) Avoid coadministration of capmatinib and butalbital due to the risk of decreased capmatinib exposure, which may reduce its efficacy. Capmatinib is a CYP3A substrate and butalbital is a moderate CYP3A4 inducer. Coadministration with another moderate CYP3A4 inducer decreased capmatinib exposure by 44%. (Moderate) Monitor for an increase in caffeine-related adverse reactions, including nervousness, irritability, insomnia, tachycardia, or tremor, if concomitant use of capmatinib is necessary; lower caffeine doses may be necessary. Concomitant use may increase caffeine exposure; caffeine is a CYP1A2 substrate and capmatinib is a CYP1A2 inhibitor. Coadministration with capmatinib increased caffeine exposure by 134%.
Capreomycin: (Major) Since capreomycin is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including salicylates, may increase serum concentrations of either drug. Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered.
Capsaicin; Metaxalone: (Major) Concomitant use of opioid agonists with metaxalone may cause respiratory depression, profound sedation, and death. Limit the use of opioid pain medication with metaxalone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking metaxalone. Educate patients about the risks and symptoms of respiratory depression and sedation. Consider prescribing naloxone for the emergency treatment of opioid overdose. Concomitant use of metaxalone and opioid agonists increases the risk for serotonin syndrome. Avoid concomitant use if possible and monitor for serotonin syndrome if use is necessary.
Captopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Carbamazepine: (Moderate) Barbiturates can accelerate hepatic metabolism of carbamazepine due to induction of hepatic microsomal enzyme activity. Carbamazepine serum concentrations should be monitored closely if a barbiturate is added or discontinued during therapy. (Moderate) Concomitant use of codeine with carbamazepine can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If carbamazepine is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Carbamazepine is a strong CYP3A4 inducer. (Minor) Carbamazepine may induce caffeine metabolism via induction of the hepatic CYP1A2 isoenzyme.
Carbidopa; Levodopa; Entacapone: (Major) COMT inhibitors should be given cautiously with other agents that cause CNS depression, such as barbiturates, due to the possibility of additive sedation. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. Patients should avoid driving or other hazardous tasks until the effects of the drug combination are known.
Carbinoxamine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as carbinoxamine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Cardiac glycosides: (Moderate) Hepatic enzyme inducing drugs, such as barbiturates, can accelerate the metabolism of digoxin, decreasing its serum concentrations. It is recommended that digoxin concentrations be monitored if used with barbiturates.
Cariprazine: (Major) Concomitant use of cariprazine and barbiturates is not recommended because the net effect on cariprazine and its equipotent active metabolites is unclear. CYP3A is responsible for both the formation and elimination of cariprazine's major active metabolites. Barbiturates are CYP3A inducers, however, concurrent use of cariprazine with CYP3A inducers has not been evaluated, and the net effect is unclear. In addition, due to the CNS effects of cariprazine, caution should be used when cariprazine is given in combination with other centrally-acting medications including benzodiazepines and other anxiolytics, sedatives, and hypnotics. (Moderate) Concomitant use of opioid agonists lik codeine with cariprazine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cariprazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking cariprazine.
Carisoprodol: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking carisoprodol.
Cefixime: (Minor) In vitro, salicylates have displaced cefixime from its protein-binding sites, resulting in a 50% increase in free cefixime levels. The clinical significance of this effect is unclear at this time.
Cefotetan: (Minor) Cefotetan has been associated with hypoprothrombinemia and may cause additive effects when given concurrently with salicylates.
Celecoxib: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection. (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6.
Celecoxib; Tramadol: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection. (Major) Concomitant use of codeine with tramadol may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of codeine with tramadol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Additionally, monitor patients for seizures and/or the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Major) Concomitant use of tramadol with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of tramadol with a barbiturate can decrease tramadol concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of tramadol and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of seizures, serotonin syndrome, and the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; tramadol is a CYP3A4 substrate. (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6.
Cenobamate: (Moderate) Concomitant use of codeine with cenobamate may cause excessive sedation and somnolence. Limit the use of codeine with cenobamate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Avoid prescribing codeine cough medication in patients taking cenobamate. Additionally, monitor for reduced efficacy of codeine and signs of opioid withdrawal in patients who have developed physical dependence if coadministration with cenobamate is necessary; consider increasing the dose of codeine as needed. If cenobamate is discontinued, consider a dose reduction of codeine and frequently monitor for signs of respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Cenobamate is a moderate CYP3A4 inducer. Concomitant use with cenobamate can increase norcodeine concentrations via increased CYP3A4 metabolism, resulting in decreased metabolism via CYP2D6 resulting in lower morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. (Moderate) Monitor for excessive sedation and somnolence during coadministration of cenobamate and butalbital. Concurrent use may result in additive CNS depression.
Ceritinib: (Moderate) Concomitant use of codeine with ceritinib may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of ceritinib could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If ceritinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Ceritinib is a strong inhibitor of CYP3A4.
Cetirizine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Concurrent use of cetirizine/levocetirizine with barbiturates should generally be avoided. Coadministration may increase the risk of CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive sedation and somnolence.
Cetirizine; Pseudoephedrine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concurrent use of cetirizine/levocetirizine with barbiturates should generally be avoided. Coadministration may increase the risk of CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive sedation and somnolence.
Chlophedianol; Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as dexchlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorambucil: (Minor) Barbiturates appear to increase the hepatic activation of chlorambucil to its active metabolite than to inactive metabolite. Clinicians should be alert for a potential increase in chlorambucil related activity and/or toxicity.
Chloramphenicol: (Moderate) Chloramphenicol inhibits the cytochrome P-450 enzyme system and can affect the hepatic metabolism of phenobarbital. Phenobarbital levels rise modestly. It is also possible that plasma concentrations of chloramphenicol can be reduced by concomitant use of barbiturates, agents that are known to stimulate hepatic microsomal enzymes responsible for chloramphenicol metabolism. (Moderate) Concomitant use of codeine with chloramphenicol may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of chloramphenicol could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If chloramphenicol is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Chloramphenicol is a strong inhibitor of CYP3A4.
Chlorcyclizine: (Moderate) Concomitant use of opioid agonists with chlorcyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorcyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlordiazepoxide: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of chlordiazepoxide. Chlordiazepoxide is a CYP3A4 substrate. Barbiturates are CYP3A4 inducers.
Chlordiazepoxide; Amitriptyline: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of chlordiazepoxide. Chlordiazepoxide is a CYP3A4 substrate. Barbiturates are CYP3A4 inducers.
Chlordiazepoxide; Clidinium: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of chlordiazepoxide. Chlordiazepoxide is a CYP3A4 substrate. Barbiturates are CYP3A4 inducers.
Chloroprocaine: (Minor) Due to the CNS depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists.
Chlorothiazide: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Chlorpheniramine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Codeine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dextromethorphan: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Hydrocodone: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Major) Concomitant use of analgesic doses of aspirin and ibuprofen is generally not recommended due to the increased risk of bleeding and renal impairment. Because there may be an increased risk of cardiovascular events due to the interference of ibuprofen with the antiplatelet effect of aspirin, for patients taking low-dose aspirin for cardioprotection who require analgesics, consider use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or non-NSAID analgesics, as appropriate. Administer single doses of ibuprofen at least 2 to 4 hours or more after aspirin and wait 8 hours after ibuprofen administration before administering aspirin to avoid significant interference. Monitor for signs and symptoms of renal impairment. Pharmacodynamic studies have demonstrated interference with the antiplatelet activity of aspirin when ibuprofen 400 mg 3 times daily is administered with enteric-coated low-dose aspirin. The interaction exists even after ibuprofen 400 mg once daily, particularly when ibuprofen is dosed prior to aspirin. The interaction is alleviated if immediate-release low-dose aspirin is dosed at least 2 hours prior to a once daily regimen of ibuprofen; however, this finding cannot be extended to enteric-coated low-dose aspirin. A decrease in antiplatelet activity (53%) was observed when ibuprofen 400 mg once daily was administered 2 hours before low-dose immediate-release aspirin 81 mg/day for 6 days. An interaction was still observed, but minimized, when ibuprofen 400 mg once daily was administered as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction with the antiplatelet activity of aspirin when ibuprofen 400 mg once daily was administered 2 hours after immediate-release aspirin (99.2%). In another study of low-dose immediate-release aspirin 81 mg/day and ibuprofen 400 mg 3 times daily (1, 7, and 13 hours post-aspirin dose) for 10 consecutive days, there was no interaction with the antiplatelet activity of aspirin (98.3%); however, there were individuals with aspirin antiplatelet activity below 95%, with the lowest being 90.2%. When a similarly designed study was conducted with enteric-coated aspirin 81 mg/day for 6 days and ibuprofen 400 mg 3 times daily (2, 7 and 12 h post-aspirin dose) for 6 days, there was an interaction with the antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Ibuprofen is not a substitute for low dose aspirin for cardiovascular protection. (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Phenylephrine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Pseudoephedrine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpromazine: (Major) Concomitant use of opioid agonists with chlorpromazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking chlorpromazine. Limit the use of opioid pain medications with chlorpromazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpropamide: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Chlorthalidone: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Chlorthalidone; Clonidine: (Major) Concomitant use of opioid agonists with clonidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clonidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Chlorzoxazone: (Major) Concomitant use of opioid agonists with chlorzoxazone may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorzoxazone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking chlorzoxazone.
Choline Salicylate; Magnesium Salicylate: (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Cidofovir: (Contraindicated) The concomitant administration of cidofovir and NSAIDs, such as aspirin, is contraindicated due to the potential for increased nephrotoxicity. Aspirin should be discontinued 7 days prior to beginning cidofovir.
Cilostazol: (Moderate) Use caution with the coadministration of aspirin and cilostazol. Although the short-term (<= 4 days) coadministration of aspirin and cilostazol increased the inhibition of ADP-induced platelet aggregation by 22% to 37% compared to aspirin or cilostazol use alone, no clinically significant effect on PT, aPTT, or bleeding time was observed compared to aspirin alone. In clinical trials, there was no apparent increase in hemorrhagic adverse effects in patients taking cilostazol and aspirin compared to aspirin alone. The effects of long-term coadministration are unknown. Monitor for bleeding during concomitant therapy.
Cimetidine: (Minor) Cimetidine may inhibit the conversion of codeine to morphine, codeine's active metabolite, via the CYP2D6 hepatic isoenzyme and therefore may decrease the ability for codeine to produce analgesic effect. (Minor) Inhibitors of CYP1A2, such as cimetidine, may inhibit the hepatic oxidative metabolism of caffeine. In patients who complain of caffeine-related side effects caffeine dosage or intake may need to be reduced.
Cinacalcet: (Moderate) Concomitant use of codeine with cinacalcet may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of cinacalcet could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If cinacalcet is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Cinacalcet is a moderate inhibitor of CYP2D6.
Ciprofloxacin: (Moderate) Concomitant use of codeine with ciprofloxacin may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of ciprofloxacin could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If ciprofloxacin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Ciprofloxacin is a moderate inhibitor of CYP3A4. (Moderate) Reduction or limitation of the caffeine dosage in medications and limitation of caffeine in beverages and food may be necessary during concurrent ciprofloxacin therapy. Ciprofloxacin can decrease the clearance of caffeine. Caffeine toxicity may occur and can manifest as nausea, vomiting, anxiety, tachycardia, or seizures. Ciprofloxacin is a CYP1A2 inhibitor and caffeine is a CYP1A2 substrate.
Citalopram: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like codeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Citric Acid; Potassium Citrate; Sodium Citrate: (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid. (Moderate) Urinary alkalinizing agents, like potassium citrate, increase the excretion of salicylates by increasing renal clearance.
Clarithromycin: (Moderate) Concomitant use of codeine with clarithromycin may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of clarithromycin could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If clarithromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Clarithromycin is a strong inhibitor of CYP3A4.
Clemastine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as clemastine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Concomitant use of opioid agonists with clemastine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clemastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Clobazam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Concomitant of clobazam with other CNS-depressant drugs including barbiturates can potentiate the CNS effects (i.e., increased sedation or respiratory depression) of either agent. The primary metabolic pathway of clobazam is CYP3A4, and to a lesser extent, CYP2C19 and CYP2B6. Metabolism of N-desmethylclobazam occurs primarily through CYP2C19. Results of a population pharmacokinetic analysis showed that concurrent use of phenobarbital, a CYP3A4 and CYP2C9 inducer, did not significantly alter the kinetics of clobazam or its active metabolite N-desmethylclobazam at steady-state. It should be noted that because clobazam is metabolized by multiple enzyme systems, induction of one pathway may not appreciably increase its clearance.
Clomipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Clomipramine may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. This may increase the risk for an upper GI bleed.
Clonazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Monitoring of clonazepam concentrations or dosage adjustment may be necessary if used concurrently with barbiturates due to decreased clonazepam concentrations. Clonazepam concentration decreases of approximately 38% have been reported when clonazepam is used with strong CYP3A4 inducers. Clonazepam is a CYP3A4 substrate. Barbiturates are strong CYP3A4 inducers. Additive CNS and/or respiratory depression may also occur.
Clonidine: (Major) Concomitant use of opioid agonists with clonidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clonidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Clopidogrel: (Moderate) Coadministration of opioid agonists, such as codeine, delay and reduce the absorption of clopidogrel resulting in reduced exposure to active metabolites and diminished inhibition of platelet aggregation. Consider the use of a parenteral antiplatelet agent in acute coronary syndrome patients requiring an opioid agonist. Coadministration of intravenous morphine decreased the Cmax and AUC of clopidogrel's active metabolites by 34%. Time required for maximal inhibition of platelet aggregation (median 3 hours vs. 1.25 hours) was significantly delayed; times up to 5 hours were reported. Inhibition of platelet plug formation was delayed and residual platelet aggregation was significantly greater 1 to 4 hours after morphine administration. (Moderate) Monitor for bleeding if aspirin and clopidogrel are used together as concomitant has an additive effect on platelet function.
Clorazepate: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of N-desmethyldiazepam, the active metabolite of clorazepate. N-desmethyldiazepam is a CYP3A4 and CYP2C19 substrate. Barbiturates are CYP3A4 and CYP2C19 inducers.
Clozapine: (Major) Caffeine may inhibit clozapine metabolism via CYP1A2. Clozapine clearance has been decreased by roughly 14 percent during coadministration of caffeine, and a documented increase in clozapine serum concentrations has occurred in selected patients. In addition, a single case report associates the appearance of psychiatric symptoms with caffeine ingestion in one patient taking clozapine. Until more data are available, caffeine consumption should be minimized during clozapine treatment. (Moderate) Concomitant use of central nervous system depressants, such as clozapine, can potentiate the effects of codeine, which may lead to respiratory depression, CNS depression, sedation, or hypotensive responses. Combining clozapine with opiate agonists may also lead to additive effects on intestinal motility or bladder function, resulting in constipation or urinary retention. (Moderate) Patients on certain anticonvulsant therapies should receive clozapine with caution. Clozapine may interact with anticonvulsants in several ways; concurrent use of clozapine in patients on antiepileptic medications is not recommended in seizures that are not well controlled. Clozapine lowers the seizure threshold in a dose-dependent manner and thus may induce seizures; dosage adjustments of clozapine should be cautious. CYP1A2, CYP3A4, and CYP2D6 isoenzymes metabolize clozapine; anticonvulsant drugs known to induce one or more of these isoenzymes include barbiturates. Clinicians should monitor for reduced clozapine effectiveness during concurrent use of anticonvulsants that are weak to moderate CYP inducers. Additive sedation may be noted initially with concurrent clozapine and barbiturate use; enzyme induction by barbiturates takes several days to become clinically apparent.
Cobicistat: (Moderate) Concomitant use of codeine with cobicistat may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Cobicistat is a strong inhibitor of CYP3A4.
Cobimetinib: (Major) Avoid the concurrent use of cobimetinib with butalbital due to decreased cobimetinib efficacy. Cobimetinib is a CYP3A substrate in vitro, and butalbital is a moderate inducer of CYP3A. Based on simulations, cobimetinib exposure would decrease by 73% when coadministered with a moderate CYP3A inducer.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Codeine; Phenylephrine; Promethazine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Codeine; Promethazine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Colistimethate, Colistin, Polymyxin E: (Major) Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including salicylates, may increase serum concentrations of either drug.
Colistin: (Major) Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including salicylates, may increase serum concentrations of either drug.
Collagenase: (Moderate) Cautious use of injectable collagenase by patients taking more than 150 mg/day of aspirin is advised. The efficacy and safety of administering injectable collagenase to a patient taking more than 150 mg/day of aspirin within 7 days before the injection are unknown. Receipt of injectable collagenase may cause an ecchymosis or bleeding at the injection site.
COMT inhibitors: (Major) COMT inhibitors should be given cautiously with other agents that cause CNS depression, such as barbiturates, due to the possibility of additive sedation. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. Patients should avoid driving or other hazardous tasks until the effects of the drug combination are known. (Major) Concomitant use of opioid agonists with COMT inhibitors may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking COMT inhibitors. Limit the use of opioid pain medications with COMT inhibitors to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Conivaptan: (Moderate) Concomitant use of codeine with conivaptan may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of conivaptan could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If conivaptan is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Conivaptan is a moderate inhibitor of CYP3A.
Corticosteroids: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and salicylate use. Concomitant use increases the risk of GI bleeding. In patients receiving concomitant corticosteroids and chronic use of salicylates, withdrawal of corticosteroids may result in salicylism because corticosteroids enhance renal clearance of salicylates and their withdrawal is followed by return to normal rates of renal clearance.
Crizotinib: (Moderate) Concomitant use of codeine with crizotinib may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of crizotinib could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If crizotinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Crizotinib is a moderate inhibitor of CYP3A.
Crofelemer: (Moderate) Pharmacodynamic interactions between crofelemer and opiate agonists are theoretically possible. Crofelemer does not affect GI motility mechanisms, but does have antidiarrheal effects. Patients taking medications that decrease GI motility, such as opiate agonists, may be at greater risk for serious complications from crofelemer, such as constipation with chronic use. Use caution and monitor GI symptoms during coadministration.
Cyclizine: (Moderate) Concomitant use of opioid agonists with cyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Cyclobenzaprine: (Major) Concomitant use of codeine with cyclobenzaprine may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome and anticholinergic effects. Limit the use of opioid pain medications with cyclobenzaprine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking cyclobenzaprine. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Cyclosporine: (Major) Phenobarbital may induce cyclosporine metabolism, thereby increasing the clearance of cyclosporine. It is likely that other barbiturates would interact similarly with cyclosporine; however no supportive data are available. If phenobarbital is added to an existing cyclosporine regimen, monitor cyclosporine concentrations closely to avoid loss of clinical efficacy until a new steady-state concentration is achieved. Conversely, if phenobarbital is discontinued, cyclosporine concentrations could increase. (Moderate) Concomitant use of codeine with cyclosporine may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of cyclosporine could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If cyclosporine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Cyclosporine is a moderate inhibitor of CYP3A4. (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents like cyclosporine may lead to additive nephrotoxicity.
Cyproheptadine: (Moderate) Additive CNS depression may occur if barbiturates are used concomitantly with cyproheptadine. (Moderate) Concomitant use of opioid agonists with cyproheptadine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cyproheptadine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dabigatran: (Major) Educate patients about the signs of increased bleeding and the need to report these signs to a healthcare provider immediately if coadministration of dabigatran and aspirin or another salicylate is necessary. Dabigatran can cause significant and, sometimes, fatal bleeding. This risk may be increased by concurrent use of chronic salicylate therapy.
Dabrafenib: (Moderate) Concomitant use of codeine with dabrafenib can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If dabrafenib is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Dabrafenib is a moderate CYP3A4 inducer.
Dacomitinib: (Moderate) Concomitant use of codeine with dacomitinib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of dacomitinib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If dacomitinib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Dacomitinib is a strong inhibitor of CYP2D6.
Dalfopristin; Quinupristin: (Moderate) Concomitant use of codeine with dalfopristin; quinupristin may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of dalfopristin; quinupristin could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If dalfopristin; quinupristin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Dalfopristin; quinupristin is a weak inhibitor of CYP3A4.
Dalteparin: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
Danazol: (Moderate) Concomitant use of codeine with danazol may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of danazol could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If danazol is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Danazol is a moderate inhibitor of CYP3A4. (Moderate) Danazol can decrease hepatic synthesis of procoagulant factors, increasing the possibility of bleeding when used concurrently with platelet inhibitors.
Dantrolene: (Major) Concomitant use of opioid agonists with dantrolene may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid agonists with dantrolene to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking dantrolene.
Dapagliflozin: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Dapagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Dapagliflozin; Saxagliptin: (Moderate) Monitor blood glucose during concomitant dapagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Daratumumab; Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Daridorexant: (Major) Avoid concomitant use of daridorexant and butalbital. Coadministration may decrease daridorexant exposure which may reduce its efficacy. Additive CNS effects, such as sedation and psychomotor impairment, are also possible. Daridorexant is a CYP3A substrate and butalbital is a moderate CYP3A inducer. Concomitant use of another moderate CYP3A inducer decreased daridorexant overall exposure by over 50%. (Major) Concomitant use of opiate agonists with daridorexant may cause excessive sedation and somnolence. Limit the use of opiates with daridorexant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Avoid prescribing cough medicines that contain opiates in patients taking daridorexant.
Darifenacin: (Moderate) Concomitant use of codeine with darifenacin may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Avoid this combination when codeine is being used for cough; consider alternative therapy for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of darifenacin could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If darifenacin is discontinued, monitor the patient carefully and consider reducing the codeine dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Darifenacin is a moderate inhibitor of CYP2D6. In addition, the concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Darifenacin has anticholinergic actions that may produce additive effects. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known. (Minor) Barbiturates (e.g., phenobarbital or primidone) may induce the CYP3A4 metabolism of darifenacin. The dosage requirements of darifenacin may be increased in patients receiving concurrent enzyme inducers. (Minor) Consuming > 400 mg/day caffeine has been associated with the development of urinary incontinence. Caffeine may aggravate bladder symptoms, increase urination, and counteract the effectiveness of darifenacin to some degree. Patients may wish to limit their intake of caffeinated drugs, dietary supplements (e.g., guarana), or beverages (e.g., green tea, other teas, coffee, colas).
Darunavir: (Major) Coadministration of darunavir with barbiturates is not recommended as there is a potential for decreased darunavir concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Darunavir is a CYP3A4 substrate; barbiturates as a class are CYP3A4 inducers. Most reports of clinically significant drug interactions occurring with the barbiturates have involved phenobarbital, a known potent CYP3A4 inducer. (Moderate) Concomitant use of codeine with darunavir may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of darunavir could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If darunavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Darunavir is a strong inhibitor of CYP3A4.
Darunavir; Cobicistat: (Major) Coadministration of darunavir with barbiturates is not recommended as there is a potential for decreased darunavir concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Darunavir is a CYP3A4 substrate; barbiturates as a class are CYP3A4 inducers. Most reports of clinically significant drug interactions occurring with the barbiturates have involved phenobarbital, a known potent CYP3A4 inducer. (Moderate) Concomitant use of codeine with cobicistat may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Cobicistat is a strong inhibitor of CYP3A4. (Moderate) Concomitant use of codeine with darunavir may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of darunavir could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If darunavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Darunavir is a strong inhibitor of CYP3A4.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Major) Coadministration of darunavir with barbiturates is not recommended as there is a potential for decreased darunavir concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Darunavir is a CYP3A4 substrate; barbiturates as a class are CYP3A4 inducers. Most reports of clinically significant drug interactions occurring with the barbiturates have involved phenobarbital, a known potent CYP3A4 inducer. (Moderate) Concomitant use of codeine with cobicistat may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Cobicistat is a strong inhibitor of CYP3A4. (Moderate) Concomitant use of codeine with darunavir may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of darunavir could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If darunavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Darunavir is a strong inhibitor of CYP3A4.
Deferasirox: (Moderate) Because gastric ulceration and GI bleeding have been reported in patients taking deferasirox, use caution when coadministering with other drugs known to increase the risk of peptic ulcers or gastric hemorrhage including salicylates.
Defibrotide: (Contraindicated) Coadministration of defibrotide with antithrombotic agents like aspirin is contraindicated. The pharmacodynamic activity and risk of hemorrhage with antithrombotic agents are increased if coadministered with defibrotide. If therapy with defibrotide is necessary, discontinue antithrombotic agents prior to initiation of defibrotide therapy. Consider delaying the onset of defibrotide treatment until the effects of the antithrombotic agent have abated.
Deflazacort: (Major) Avoid concomitant use of deflazacort and butalbital. Concurrent use may significantly decrease concentrations of 21-desDFZ, the active metabolite of deflazacort, resulting in loss of efficacy. Deflazacort is a CYP3A4 substrate; butalbital is a moderate inducer of CYP3A4. Administration of deflazacort with multiple doses of rifampin (a strong CYP3A4 inducer) resulted in geometric mean exposures that were approximately 95% lower compared to administration alone.
Delavirdine: (Major) Barbiturates may increase the metabolism of delavirdine, lead to substantial reductions in delavirdine concentrations and efficacy. The manufacturer recommends that delavirdine not be given with barbiturates when used as anticonvulsants due to the potential for subtherapeutic antiretroviral activity and the subsequent possibility for the development of resistant mutations of HIV. In addition, delavirdine may inhibit the metabolism of the barbiturates. If used concomitantly, the patient should be observed for changes in the clinical efficacy and concentrations of the antiretroviral and anticonvulsant regimens. (Moderate) Concomitant use of codeine with delavirdine may alter codeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of codeine until stable drug effects are achieved. Discontinuation of delavirdine could alter codeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If delavirdine is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Delavirdine is a strong inhibitor of CYP3A4 and a moderate inhibitor of CYP2D6. CYP3A4 inhibitors may increase codeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Desflurane: (Moderate) Concurrent use with opiate agonists can decrease the minimum alveolar concentration (MAC) of desflurane needed to produce anesthesia.
Desipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Desloratadine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Desmopressin: (Major) Additive hyponatremic effects may be seen in patients treated with desmopressin and drugs associated with water intoxication, hyponatremia, or SIADH including opiate agonists. Use combination with caution, and monitor patients for signs and symptoms of hyponatremia.
Desogestrel; Ethinyl Estradiol: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Desvenlafaxine: (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of codeine and desvenlafaxine because of the potential risk of serotonin syndrome and decreased codeine efficacy. Discontinue codeine if serotonin syndrome is suspected. Additionally, concomitant use of codeine with desvenlafaxine may decrease codeine plasma concentrations resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of desvenlafaxine could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If desvenlafaxine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Desvenlafaxine is a weak inhibitor of CYP2D6.
Deutetrabenazine: (Major) Concomitant use of opiate agonists with deutetrabenazine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with deutetrabenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking deutetrabenazine, use a lower initial dose of the opiate and titrate to clinical response. If deutetrabenazine is prescribed for a patient taking an opiate agonist, use a lower initial dose of deutetrabenazine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking deutetrabenazine. (Moderate) Advise patients that concurrent use of deutetrabenazine and drugs that can cause CNS depression, such as barbiturates, may have additive effects and worsen drowsiness or sedation.
Dexamethasone: (Moderate) Monitor for decreased efficacy of dexamethasone if coadministration with barbiturates is necessary; consider increasing the dose of dexamethasone if clinically appropriate. Dexamethasone is a CYP3A substrate and barbiturates are strong CYP3A inducers. (Moderate) Monitor for reduced efficacy of codeine and signs of opioid withdrawal in patients who have developed physical dependence if coadministration with dexamethasone is necessary; consider increasing the dose of codeine as needed. It is recommended to avoid this combination when codeine is being used for cough. If dexamethasone is discontinued, consider a dose reduction of codeine and frequently monitor for signs of respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Dexamethasone is a weak CYP3A inducer. Concomitant use with dexamethasone can increase norcodeine levels via increased CYP3A metabolism, resulting in decreased metabolism via CYP2D6 resulting in lower morphine levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexbrompheniramine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexchlorpheniramine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as dexchlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as dexchlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexmedetomidine: (Moderate) Co-administration of dexmedetomidine with barbiturates is likely to lead to an enhancement of CNS depression. (Moderate) Concomitant use of opioid agonists with dexmedetomidine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with dexmedetomidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dextroamphetamine: (Moderate) Avoid excessive caffeine intake during use of the amphetamine salts. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine. (Moderate) If concomitant use of codeine and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Bupropion: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Bupropion is associated with a dose-related risk of seizures. Excessive use of psychostimulants, including caffeine, is associated with an increased seizure risk and may increase this risk during the concurrent use of bupropion. Carefully consider a patient's caffeine intake from all sources, including medicines. Monitor for irritability, tremor, increased blood pressure, insomnia and seizures. Many non-prescription medicines and weight loss aids may contain caffeine and patients should read labels carefully. Examples of foods and beverages containing caffeine include coffee, teas, colas, energy drinks, chocolate, and some herbal or dietary supplements. Patients should be advised to limit excessive caffeine intake during bupropion therapy. (Moderate) Bupropion may interact with drugs that induce hepatic microsomal isoenzyme function via CYP2B6 such as the barbiturates. While not systematically studied, these drugs may induce the metabolism of bupropion and may decrease bupropion exposure. If bupropion is used concomitantly with a CYP inducer, it may be necessary to increase the dose of bupropion, but the maximum recommended dose should not be exceeded. Advise patients that until they are reasonably certain that the combination does not adversely affect their performance, they should refrain from driving an automobile or operating complex, hazardous machinery. (Moderate) Concomitant use of codeine with bupropion may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of bupropion could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If bupropion is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Bupropion is a strong inhibitor of CYP2D6.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Major) Because diphenhydramine can cause pronounced sedation, an enhanced CNS depressant effect may occur when it is combined with other CNS depressants including anxiolytics, sedatives, and hypnotics, such as barbiturates. (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Dextromethorphan; Guaifenesin: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Dextromethorphan; Guaifenesin; Potassium Guaiacolsulfonate: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Dextromethorphan; Quinidine: (Major) Quinidine is eliminated primarily via hepatic metabolism, primarily by the CYP3A4 isoenzyme. Administration of other hepatic enzyme inducers, such as barbiturates, can accelerate quinidine elimination and decrease its serum concentrations. Phenobarbital may decrease quinidine half-life and corresponding AUC by about 50 to 60%. Quinidine concentrations should be monitored closely after one of these agents is added. No special precautions appear necessary if these agents are begun several weeks before quinidine is added but quinidine doses may require adjustment if one of these agents is added or discontinued during quinidine therapy. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with dextromethorphan. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Concomitant use of codeine with quinidine may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of quinidine could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If quinidine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Quinidine is a strong inhibitor of CYP2D6.
Diazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If parental diazepam is used with an opiate agonist, reduce the opiate agonist dosage by at least 1/3. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of diazepam. Diazepam is a CYP2C9, CYP2C19, and CYP3A4 substrate. Barbiturates are CYP2C9, CYP2C19, and CYP3A4 inducers.
Dichlorphenamide: (Major) Dichlorphenamide is contraindicated with the concomitant use of high dose aspirin, ASA and should be used cautiously in patients receiving low dose aspirin. Dichlorphenamide may cause an elevation in salicylate concentrations in patients receiving aspirin. Adverse reactions including anorexia, tachypnea, lethargy, and coma have been reported with the concomitant use of dichlorphenamide and high dose aspirin.
Diclofenac: (Major) Concomitant use of analgesic doses of aspirin and diclofenac is generally not recommended due to the increased risk of bleeding and renal impairment. Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Diclofenac is not a substitute for low dose aspirin for cardiovascular protection. (Moderate) Caution is advised when administering diclofenac with inducers of CYP2C9, such as barbiturates. When used together, the systemic exposure to diclofenac (a CYP2C9 substrate) may decrease, potentially resulting in impaired efficacy. Higher diclofenac doses may be needed. In addition, phenobarbital toxicity has been reported to have occurred in a patient on chronic phenobarbital treatment after diclofenac initiation.
Diclofenac; Misoprostol: (Major) Concomitant use of analgesic doses of aspirin and diclofenac is generally not recommended due to the increased risk of bleeding and renal impairment. Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Diclofenac is not a substitute for low dose aspirin for cardiovascular protection. (Moderate) Caution is advised when administering diclofenac with inducers of CYP2C9, such as barbiturates. When used together, the systemic exposure to diclofenac (a CYP2C9 substrate) may decrease, potentially resulting in impaired efficacy. Higher diclofenac doses may be needed. In addition, phenobarbital toxicity has been reported to have occurred in a patient on chronic phenobarbital treatment after diclofenac initiation.
Dicloxacillin: (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Dicyclomine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and dicyclomine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diethylpropion: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Difelikefalin: (Major) Avoid concomitant use of opioids and other CNS depressants, such as difelikefalin. Concomitant use can increase the risk of respiratory depression, hypotension, profound sedation, and death. If alternate treatment options are inadequate and coadministration is necessary, limit dosages and durations to the minimum required, monitor patients closely for respiratory depression and sedation, and consider prescribing naloxone for the emergency treatment of opioid overdose. (Moderate) Monitor for dizziness, somnolence, mental status changes, and gait disturbances if concomitant use of difelikefalin with CNS depressants is necessary. Concomitant use may increase the risk for these adverse reactions.
Diflunisal: (Major) The concurrent use of diflunisal and salicylates is not recommended due to the increased risk of gastrointestinal toxicity with little or no increase in anti-inflammatory efficacy.
Diltiazem: (Major) Diltiazem is a CYP3A4 substrate. Coadministration of diltiazem with known CYP3A4 inducers, such as barbiturates, may significantly decrease the bioavailability of diltiazem. When possible, avoid coadministration of these drugs and consider alternative therapy. When an alternative therapy is not possible, patients should be monitored for the desired cardiovascular effects on heart rate, chest pain, or blood pressure. (Moderate) Concomitant use of codeine with diltiazem may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of diltiazem could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If diltiazem is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Diltiazem is a moderate inhibitor of CYP3A4.
Dimenhydrinate: (Moderate) Additive CNS depression may occur if barbiturates are used concomitantly with dimenhydrinate. (Moderate) Concomitant use of opioid agonists with dimenhydrinate may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dimenhydrinate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Diphenhydramine: (Major) Because diphenhydramine can cause pronounced sedation, an enhanced CNS depressant effect may occur when it is combined with other CNS depressants including anxiolytics, sedatives, and hypnotics, such as barbiturates. (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenhydramine; Ibuprofen: (Major) Because diphenhydramine can cause pronounced sedation, an enhanced CNS depressant effect may occur when it is combined with other CNS depressants including anxiolytics, sedatives, and hypnotics, such as barbiturates. (Major) Concomitant use of analgesic doses of aspirin and ibuprofen is generally not recommended due to the increased risk of bleeding and renal impairment. Because there may be an increased risk of cardiovascular events due to the interference of ibuprofen with the antiplatelet effect of aspirin, for patients taking low-dose aspirin for cardioprotection who require analgesics, consider use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or non-NSAID analgesics, as appropriate. Administer single doses of ibuprofen at least 2 to 4 hours or more after aspirin and wait 8 hours after ibuprofen administration before administering aspirin to avoid significant interference. Monitor for signs and symptoms of renal impairment. Pharmacodynamic studies have demonstrated interference with the antiplatelet activity of aspirin when ibuprofen 400 mg 3 times daily is administered with enteric-coated low-dose aspirin. The interaction exists even after ibuprofen 400 mg once daily, particularly when ibuprofen is dosed prior to aspirin. The interaction is alleviated if immediate-release low-dose aspirin is dosed at least 2 hours prior to a once daily regimen of ibuprofen; however, this finding cannot be extended to enteric-coated low-dose aspirin. A decrease in antiplatelet activity (53%) was observed when ibuprofen 400 mg once daily was administered 2 hours before low-dose immediate-release aspirin 81 mg/day for 6 days. An interaction was still observed, but minimized, when ibuprofen 400 mg once daily was administered as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction with the antiplatelet activity of aspirin when ibuprofen 400 mg once daily was administered 2 hours after immediate-release aspirin (99.2%). In another study of low-dose immediate-release aspirin 81 mg/day and ibuprofen 400 mg 3 times daily (1, 7, and 13 hours post-aspirin dose) for 10 consecutive days, there was no interaction with the antiplatelet activity of aspirin (98.3%); however, there were individuals with aspirin antiplatelet activity below 95%, with the lowest being 90.2%. When a similarly designed study was conducted with enteric-coated aspirin 81 mg/day for 6 days and ibuprofen 400 mg 3 times daily (2, 7 and 12 h post-aspirin dose) for 6 days, there was an interaction with the antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Ibuprofen is not a substitute for low dose aspirin for cardiovascular protection. (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenhydramine; Naproxen: (Major) Because diphenhydramine can cause pronounced sedation, an enhanced CNS depressant effect may occur when it is combined with other CNS depressants including anxiolytics, sedatives, and hypnotics, such as barbiturates. (Major) Concomitant use of analgesic doses of aspirin and naproxen is generally not recommended due to the increased risk of bleeding and renal impairment. Because there may be an increased risk of cardiovascular events after discontinuation of naproxen due to the interference with the antiplatelet effect of aspirin during the washout period, for patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or non-NSAID analgesics as appropriate. A pharmacodynamic study demonstrated that lower dose naproxen (220mg/day or 220mg twice daily) interfered with the antiplatelet effect of low-dose immediate-release aspirin, with the interaction most marked during the washout period of naproxen. There is reason to expect that the interaction would be present with prescription doses of naproxen or with enteric-coated low-dose aspirin; however, the peak interference with aspirin function may be later than observed in the study due to the longer washout period. A decrease in antiplatelet activity was observed at 24 hours after 10 days of naproxen 220 mg/day with low-dose immediate-release aspirin 81 mg/day (93.1%) vs. aspirin alone (98.7%). The interaction was observed even after discontinuation of naproxen on day 11 while aspirin therapy continued but normalized by day 13. The interaction was greater when naproxen was given 30 minutes before aspirin (87.7% vs. 98.7%) and minimal when aspirin was administered 30 minutes before naproxen (95.4% vs. 98.7%). The interaction was minimal at 24 hours after day 10 when naproxen 220 mg twice daily was given 30 minutes before low-dose immediate-release aspirin (95.7% vs. 98.7%); however, the interaction was greater on day 11 after naproxen discontinuation (84.3% vs. 98.7%) and did not normalize by day 13 (90.7% vs. 98.5%). Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Naproxen is not a substitute for low dose aspirin for cardiovascular protection. (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenhydramine; Phenylephrine: (Major) Because diphenhydramine can cause pronounced sedation, an enhanced CNS depressant effect may occur when it is combined with other CNS depressants including anxiolytics, sedatives, and hypnotics, such as barbiturates. (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Diphenoxylate; Atropine: (Major) Reserve concomitant use of codeine and atropine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Concurrent administration of diphenoxylate/difenoxin with barbiturates can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events.
Dipyridamole: (Major) Methylxanthines, through antagonism of adenosine and thus pharmacologic-induced coronary vasodilation, have been associated with false-negative results during dipyridamole-thallium 201 stress testing. It is recommended that methylxanthines (caffeine, caffeinated beverages and foods, theophylline, etc.) be discontinued for at least 24 hours prior to stress testing. An interaction is not expected when methylxanthines are used concomitantly with chronic dipyridamole therapy. (Moderate) Although aspirin may be used in combination with dipyridamole, both drugs are associated with bleeding. Monitor for bleeding during concomitant therapy.
Disopyramide: (Moderate) Hepatic microsomal enzyme-inducing agents, such as barbiturates, have the potential to accelerate the hepatic metabolism of disopyramide, a CYP3A4 substrate. Serum disopyramide concentrations should be monitored closely if hepatic enzyme inducers are either added or discontinued during disopyramide therapy.
Disulfiram: (Moderate) Disulfiram has been shown to inhibit caffeine elimination. Caffeine elimination decreased by 30 percent in those patients that were not recovering alcoholics and by 24 percent in those patients that were recovering alcoholics. During disulfiram therapy, patients may need to limit their caffeine intake if nausea, nervousness, tremor, restlessness, palpitations, or insomnia complaints occur. Adverse events were not noted during this pharmacokinetic study, however, the decrease in caffeine clearance could be significant in some patients, including some patients with cardiovascular disease.
Dobutamine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Dolasetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dolutegravir; Rilpivirine: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Donepezil: (Moderate) The elimination of donepezil may be increased by concurrent administration of moderate to strong inducers of CYP2D6 and CYP3A4, such as barbiturates (including primidone). The clinical effect of this interaction on the efficacy of donepezil has not been determined. Observe patients for evidence of reduced donepezil efficacy if these agents are prescribed concurrently.
Donepezil; Memantine: (Moderate) The elimination of donepezil may be increased by concurrent administration of moderate to strong inducers of CYP2D6 and CYP3A4, such as barbiturates (including primidone). The clinical effect of this interaction on the efficacy of donepezil has not been determined. Observe patients for evidence of reduced donepezil efficacy if these agents are prescribed concurrently.
Dopamine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Doravirine: (Moderate) Concurrent administration of doravirine and butalbital may result in decreased doravirine exposure, resulting in potential loss of virologic control. Doravirine is a CYP3A4 substrate; butalbital is a moderate CYP3A4 inducer.
Doravirine; Lamivudine; Tenofovir disoproxil fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus. (Moderate) Concurrent administration of doravirine and butalbital may result in decreased doravirine exposure, resulting in potential loss of virologic control. Doravirine is a CYP3A4 substrate; butalbital is a moderate CYP3A4 inducer.
Doxapram: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants, like doxapram. CNS stimulants and sympathomimetics are associated with adverse effects such as nervousness, irritability, insomnia, and/or cardiac arrhythmias, and the concomitant use of these drugs increases the risk of developing such adverse reactions. Coadminsitration should be avoided or used cautiously.
Doxepin: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Doxercalciferol: (Moderate) Although these interactions have not been specifically studied, hepatic enzyme inducers, such as barbiturates, may affect the 25-hydroxylation of doxercalciferol and may necessitate dosage adjustments of doxercalciferol.
Doxorubicin Liposomal: (Major) Barbiturates induce CYP3A4 and doxorubicin is a major substrate of CYP3A4. Inducers of CYP3A4 may decrease the concentration of doxorubicin and compromise the efficacy of chemotherapy. Avoid coadministration of barbiturates and doxorubicin if possible. If not possible, monitor doxorubicin closely for efficacy.
Doxorubicin: (Major) Barbiturates induce CYP3A4 and doxorubicin is a major substrate of CYP3A4. Inducers of CYP3A4 may decrease the concentration of doxorubicin and compromise the efficacy of chemotherapy. Avoid coadministration of barbiturates and doxorubicin if possible. If not possible, monitor doxorubicin closely for efficacy.
Doxycycline: (Major) Phenobarbital has been shown to affect the pharmacokinetics of doxycycline. Doxycycline half-life was decreased from 15.3 hours to 11.1 hours. It is likely that other barbiturates may exert the same effect. Clinicians should keep in mind that larger doses of doxycycline may be necessary in patients receiving barbiturates. This interaction may not apply to other tetracyclines since they are less dependent on hepatic metabolism for elimination.
Doxylamine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Because doxylamine can cause pronounced sedation, an enhanced CNS depressant effect may occur when it is combined with other CNS depressants including anxiolytics, sedatives, and hypnotics, such as barbiturates.
Doxylamine; Pyridoxine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Because doxylamine can cause pronounced sedation, an enhanced CNS depressant effect may occur when it is combined with other CNS depressants including anxiolytics, sedatives, and hypnotics, such as barbiturates.
Dronabinol: (Moderate) Concomitant use of opioid agonists with dronabinol may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dronabinol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Use caution if coadministration of dronabinol with barbiturates is necessary, and monitor for an increase in barbiturate-related adverse reactions and a decrease in the efficacy of dronabinol. Additive dizziness, confusion, somnolence, and other CNS effects may also occur. Dronabinol is a CYP2C9 and 3A4 substrate; barbiturates are moderate or strong (phenobarbital) inducers of CYP3A4; additionally phenobarbital is a moderate CYP2C 9 inducer. Concomitant use may result in decreased plasma concentrations of dronabinol. Decreased clearance of barbiturates has also been reported with dronabinol use, possibly by competitive inhibition of metabolism. Published data show an increase in the elimination half-life of pentobarbital by 4 hours when concomitantly dosed with dronabinol.
Dronedarone: (Major) The concomitant use of dronedarone and CYP3A4 inducers should be avoided. Dronedarone is metabolized by CYP3A. Barbiturates induce CYP3A4. Coadministration of CYP3A4 inducers, such as barbiturates, with dronedarone may result in reduced plasma concentration and subsequent reduced effectiveness of dronedarone therapy. (Moderate) Concomitant use of codeine with dronedarone may alter codeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of codeine until stable drug effects are achieved. Discontinuation of dronedarone could alter codeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If dronedarone is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Dronedarone is a moderate inhibitor of CYP3A and CYP2D6. CYP3A inhibitors may increase codeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Droperidol: (Major) Central nervous system depressants, such as barbiturates, have additive or potentiating effects with droperidol. Following administration of droperidol, lower doses of the other CNS depressant should be used. (Major) Concomitant use of opioid agonists with droperidol may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking droperidol. Limit the use of opioid pain medications with droperidol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Drospirenone; Ethinyl Estradiol: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Duloxetine: (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of codeine and duloxetine because of the potential risk of serotonin syndrome, reduced codeine efficacy, and potential for opioid withdrawal symptoms. Discontinue codeine if serotonin syndrome is suspected. It is recommended to avoid this combination when codeine is being used for cough. Concomitant use may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of duloxetine could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If duloxetine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Duloxetine is a moderate inhibitor of CYP2D6. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Duvelisib: (Major) Avoid concomitant use of duvelisib with butalbital. Coadministration may decrease the exposure of duvelisib, which may reduce the efficacy of duvelisib. If concomitant use is necessary, increase the dose of duvelisib on day 12 of coadministration from 25 mg PO twice daily to 40 mg PO twice daily; or from 15 mg PO twice daily to 25 mg PO twice daily. When butalbital has been discontinued for at least 14 days, resume duvelisib at the dose taken prior to initiating treatment with butalbital. Duvelisib is a CYP3A substrate; butalbital is a moderate CYP3A inducer. Coadministration of duvelisib with another moderate CYP3A inducer for 12 days decreased duvelisib exposure by 35%.
Echinacea: (Moderate) Echinacea may inhibit the metabolism of caffeine. Echinacea reduces the oral clearance of caffeine by 27 percent and increases the mean AUC by 129 percent. Monitor patients for signs of increased caffeine serum concentrations if these drugs are coadministered until more data are available.
Edoxaban: (Major) Monitor for bleeding in patients who require chronic treatment with aspirin. Concomitant use of edoxaban with drugs that affect hemostasis, such as aspirin, may increase the risk of bleeding. The coadministration of aspirin (100 mg or 325 mg) and edoxaban increased bleeding time relative to that seen with either drug alone.
Efavirenz: (Major) Complex interactions may occur when barbiturates (e.g., phenobarbital) are administered to patients receiving treatment for HIV infection; if treating seizure disorder, a different anticonvulsant should be used whenever possible. If a barbiturate must be used in a patient being treated for HIV, the patient must be closely monitored for antiviral efficacy and seizure control; appropriate dose adjustments to the barbiturate or the antiretroviral medications are unknown. The combination regimens used to treat HIV often include substrates, inducers, and inhibitors of several CYP isoenzymes. Efavirenz is a substrate and inducer of CYP3A4 and an inhibitor of CYP2C9 and CYP2C19. Phenobarbital is an inducer of CYP3A4, and a substrate and inducer of CYP2C9 and CYP2C19. Use caution if these drugs are to be coadministered, with increased monitoring of both efavirenz and barbiturate concentrations. (Moderate) Concomitant use of codeine with efavirenz can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If efavirenz is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Efavirenz is a moderate CYP3A4 inducer.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Complex interactions may occur when barbiturates (e.g., phenobarbital) are administered to patients receiving treatment for HIV infection; if treating seizure disorder, a different anticonvulsant should be used whenever possible. If a barbiturate must be used in a patient being treated for HIV, the patient must be closely monitored for antiviral efficacy and seizure control; appropriate dose adjustments to the barbiturate or the antiretroviral medications are unknown. The combination regimens used to treat HIV often include substrates, inducers, and inhibitors of several CYP isoenzymes. Efavirenz is a substrate and inducer of CYP3A4 and an inhibitor of CYP2C9 and CYP2C19. Phenobarbital is an inducer of CYP3A4, and a substrate and inducer of CYP2C9 and CYP2C19. Use caution if these drugs are to be coadministered, with increased monitoring of both efavirenz and barbiturate concentrations. (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus. (Moderate) Concomitant use of codeine with efavirenz can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If efavirenz is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Efavirenz is a moderate CYP3A4 inducer.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Complex interactions may occur when barbiturates (e.g., phenobarbital) are administered to patients receiving treatment for HIV infection; if treating seizure disorder, a different anticonvulsant should be used whenever possible. If a barbiturate must be used in a patient being treated for HIV, the patient must be closely monitored for antiviral efficacy and seizure control; appropriate dose adjustments to the barbiturate or the antiretroviral medications are unknown. The combination regimens used to treat HIV often include substrates, inducers, and inhibitors of several CYP isoenzymes. Efavirenz is a substrate and inducer of CYP3A4 and an inhibitor of CYP2C9 and CYP2C19. Phenobarbital is an inducer of CYP3A4, and a substrate and inducer of CYP2C9 and CYP2C19. Use caution if these drugs are to be coadministered, with increased monitoring of both efavirenz and barbiturate concentrations. (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus. (Moderate) Concomitant use of codeine with efavirenz can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If efavirenz is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Efavirenz is a moderate CYP3A4 inducer.
Efgartigimod Alfa; Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Elacestrant: (Major) Avoid concurrent use of elacestrant and barbiturates due to the risk of decreased elacestrant exposure which may reduce its efficacy. Elacestrant is a CYP3A substrate and barbiturates is a strong CYP3A inducer. Concomitant use with another strong CYP3A inducer reduced elacestrant overall exposure by 86%.
Elagolix: (Moderate) Concomitant use of codeine with elagolix can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If elagolix is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Elagolix is a weak to moderate CYP3A4 inducer.
Elagolix; Estradiol; Norethindrone acetate: (Moderate) Concomitant use of codeine with elagolix can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If elagolix is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Elagolix is a weak to moderate CYP3A4 inducer.
Elbasvir; Grazoprevir: (Contraindicated) Concurrent administration of barbiturates with elbasvir; grazoprevir is contraindicated. Barbiturates are strong CYP3A inducers, while both elbasvir and grazoprevir are substrates of CYP3A. Use of these drugs together is expected to significantly decrease the plasma concentrations of both elbasvir and grazoprevir, and may result in decreased virologic response. (Moderate) Administering codeine with elbasvir; grazoprevir may result in elevated codeine plasma concentrations. Codeine is a substrate of CYP3A; grazoprevir is a weak CYP3A inhibitor. If these drugs are used together, closely monitor for signs of adverse events.
Eletriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Eliglustat: (Moderate) Concomitant use of codeine with eliglustat may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of eliglustat could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If eliglustat is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Eliglustat is a moderate inhibitor of CYP2D6.
Eltrombopag: (Moderate) Eltrombopag is metabolized by CYP1A2. The significance of administering inducers of CYP1A2, such as barbiturates, on the systemic exposure of eltrombopag has not been established. Monitor patients for a decrease in the efficacy of eltrombopag if these drugs are coadministered.
Eluxadoline: (Major) Avoid use of eluxadoline with medications that may cause constipation, such as codeine. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle within the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Closely monitor for increased side effects if these drugs are administered together.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Concomitant use of codeine with cobicistat may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Cobicistat is a strong inhibitor of CYP3A4.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus. (Moderate) Concomitant use of codeine with cobicistat may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Cobicistat is a strong inhibitor of CYP3A4.
Empagliflozin: (Moderate) Monitor blood glucose during concomitant empagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Empagliflozin; Linagliptin: (Moderate) Monitor blood glucose during concomitant empagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant linagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor for a decrease in linagliptin efficacy during concomitant use of linagliptin and barbiturates if coadministration is required. Concomitant use may decrease linagliptin exposure. Linagliptin is a CYP3A and P-gp substrate and barbiturates are strong CYP3A inducers. Concomitant use with a strong CYP3A and P-gp inducer reduced linagliptin overall exposure by 0.6-fold.
Empagliflozin; Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant empagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant linagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor for a decrease in linagliptin efficacy during concomitant use of linagliptin and barbiturates if coadministration is required. Concomitant use may decrease linagliptin exposure. Linagliptin is a CYP3A and P-gp substrate and barbiturates are strong CYP3A inducers. Concomitant use with a strong CYP3A and P-gp inducer reduced linagliptin overall exposure by 0.6-fold.
Empagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant empagliflozin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Emtricitabine; Rilpivirine; Tenofovir alafenamide: (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Emtricitabine; Rilpivirine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus. (Moderate) Close clinical monitoring is advised when administering barbiturates with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Barbiturates are inducers of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Enalapril, Enalaprilat: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Encorafenib: (Major) Avoid coadministration of encorafenib and butalbital due to decreased encorafenib exposure and potential loss of efficacy. Encorafenib is a CYP3A4 substrate; butalbital is a moderate CYP3A4 inducer. Coadministration with CYP3A4 inducers has not been studied with encorafenib; however, in clinical trials, steady-state encorafenib exposures were lower than encorafenib exposures after the first dose, suggesting CYP3A4 auto-induction.
Enoxaparin: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
Entacapone: (Major) COMT inhibitors should be given cautiously with other agents that cause CNS depression, such as barbiturates, due to the possibility of additive sedation. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. Patients should avoid driving or other hazardous tasks until the effects of the drug combination are known.
Entrectinib: (Major) Avoid coadministration of entrectinib with butalbital due to decreased entrectinib exposure and risk of decreased efficacy. Entrectinib is a CYP3A4 substrate; butalbital is a moderate CYP3A4 inducer. Coadministration of a moderate CYP3A4 inducer is predicted to reduce the entrectinib AUC by 56%.
Enzalutamide: (Moderate) Concomitant use of codeine with enzalutamide can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If enzalutamide is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Enzalutamide is a strong CYP3A4 inducer.
Ephedrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants like ephedrine. Adverse effects such as nervousness, irritability, insomnia, and/or cardiac arrhythmias are also possible when excessive dosages of caffeine are taken concurrently with ephedrine. Patients may also need to limit their intake of caffeine-containing beverages or foods (e.g., coffee, green tea, other teas, guarana, colas, or chocolate) to avoid caffeine-like side effects.
Ephedrine; Guaifenesin: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants like ephedrine. Adverse effects such as nervousness, irritability, insomnia, and/or cardiac arrhythmias are also possible when excessive dosages of caffeine are taken concurrently with ephedrine. Patients may also need to limit their intake of caffeine-containing beverages or foods (e.g., coffee, green tea, other teas, guarana, colas, or chocolate) to avoid caffeine-like side effects.
Epinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Epoprostenol: (Moderate) When used concurrently with platelet inhibitors, epoprostenol may increase the risk of bleeding.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Eptifibatide: (Moderate) Unless contraindicated, aspirin is used in combination with eptifibatide. However, both drugs are associated with bleeding. Monitor for bleeding during concomitant therapy.
Erdafitinib: (Major) If coadministration of erdafitinib and butalbital is necessary at the initiation of erdafitinib therapy, administer the dose of erdafitinib as recommended (8 mg once daily with potential to increase the dose to 9 mg on days 14 to 21 based on phosphate levels and tolerability). If butalbital must be added to erdafitinib therapy after the initial dose increase period (days 14 to 21), increase the dose of erdafitinib up to 9 mg. If butalbital is discontinued, continue erdafitinib at the same dose in the absence of drug-related toxicity. Erdafitinib is a CYP3A4 substrate and butalbital is a moderate CYP3A4 inducer.
Ergotamine; Caffeine: (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Erlotinib: (Moderate) There may be a risk of reduced erlotinib efficacy when coadministered with butalbital; however, the risk has not been clearly defined. If coadministration is necessary, consider increasing the erlotinib dose by 50 mg increments at 2-week intervals as tolerated, to a maximum of 450 mg. Erlotinib is primarily metabolized by CYP3A4, and to a lesser extent by CYP1A2. Butalbital is a CYP3A4 and 1A2 inducer. Coadministration may decrease plasma concentrations of erlotinib.
Ertugliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Ertugliflozin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant sitagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Erythromycin: (Moderate) Concomitant use of codeine with erythromycin may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of erythromycin could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If erythromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Erythromycin is a moderate inhibitor of CYP3A4. (Moderate) Inhibitors of the hepatic CYP4501A2, such as erythromycin, may inhibit the hepatic oxidative metabolism of caffeine. No specific management is recommended except in patients who complain of caffeine related side effects. In such patients, the dosage of caffeine containing medications or the ingestion of caffeine containing products may need to be reduced.
Escitalopram: (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of codeine and escitalopram because of the potential risk of serotonin syndrome. Discontinue codeine if serotonin syndrome is suspected. Additionally, concomitant use of codeine with escitalopram may decrease codeine plasma concentrations resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of escitalopram could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If escitalopram is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Escitalopram is a weak inhibitor of CYP2D6. (Moderate) Escitalopram is metabolized by CYP2C19 and CYP3A4. Barbiturates can induce the metabolism of various CYP 450 isoenzymes, including those involved in escitalopram metabolism. Although no clinical data are available to support a clinically significant interaction, escitalopram may need to be administered in higher doses in patients chronically taking barbiturates. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Esketamine: (Major) Closely monitor blood pressure during concomitant use of esketamine and caffeine. Coadministration of psychostimulants, such as caffeine, with esketamine may increase blood pressure. (Major) Closely monitor patients receiving esketamine and barbiturates for sedation and other CNS depressant effects. Instruct patients who receive a dose of esketamine not to drive or engage in other activities requiring alertness until the next day after a restful sleep. (Major) Concomitant use of opioid agonists with esketamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with esketamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Patients who have received a dose of esketamine should be instructed not to drive or engage in other activities requiring complete mental alertness until the next day after a restful sleep. Educate patients about the risks and symptoms of excessive CNS depression.
Eslicarbazepine: (Major) Barbiturates may induce the metabolism of eslicarbazepine resulting in decreased plasma concentrations of and potentially reduced efficacy of eslicarbazepine. An increased dose of eslicarbazepine may be necessary if these drugs are coadministered. (Moderate) Concomitant use of codeine with eslicarbazepine can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If eslicarbazepine is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Eslicarbazepine is a moderate CYP3A4 inducer.
Esomeprazole: (Major) Avoid coadministration of esomeprazole with barbiturates because it can result in decreased efficacy of esomeprazole. Esomeprazole is extensively metabolized in the liver by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19.
Estazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of estazolam. Estazolam is a CYP3A4 substrate. Barbiturates are CYP3A4 inducers.
Estrogens affected by CYP3A inducers: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Eszopiclone: (Major) Barbiturates are potent inducers of CYP3A4 may increase the rate of eszopiclone metabolism. Additive CNS depression may also occur if barbiturates are used concomitantly with eszopiclone. Caution should be exercised during concomitant use of eszopiclone and any barbiturate; dosage reduction of one or both agents may be necessary. (Major) Concomitant use of opioid agonists with eszopiclone may cause excessive sedation, somnolence, and complex sleep-related behaviors (e.g., driving, talking, eating, or performing other activities while not fully awake). Avoid prescribing opioid cough medications in patients taking eszopiclone Limit the use of opioid pain medications with eszopiclone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Instruct patients to contact their provider immediately if sleep-related symptoms or behaviors occur. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Patients taking eszopiclone for sleep should avoid caffeine-containing medications, dietary supplements, foods, and beverages close to bedtime, as well as excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep. Limit use of caffeine-containing products including medications, dietary supplements (e.g., guarana), and beverages (e.g., coffee, green tea, other teas, or colas).
Ethacrynic Acid: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and codeine; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Ethanol: (Major) Advise patients to avoid alcohol consumption while taking CNS depressants. Alcohol consumption may result in additive CNS depression. (Major) Advise patients to avoid alcohol consumption while taking opioids. Alcohol consumption may result in additive CNS depression and may increase the risk for opioid overdose. Consider the patient's use of alcohol when prescribing opioid medications. If the patient is unlikely to be compliant with avoiding alcohol, consider prescribing naloxone especially if additional risk factors for opioid overdose are present. (Major) Concomitant ingestion of alcohol with salicylates, especially aspirin, ASA, increases the risk of developing gastric irritation and GI mucosal bleeding. Alcohol and salicylates are mucosal irritants and aspirin decreases platelet aggregation. Routine ingestion of alcohol and aspirin can cause significant GI bleeding, which may or may not be overt. Even occasional concomitant use of salicylates and alcohol should be avoided. Chronic ingestion of alcohol is often associated with hypoprothrombinemia and this condition increases the risk of salicylate-induced bleeding. Patients should be warned regarding the potential for increased risk of GI bleeding if alcohol-containing beverages are taken concurrently with salicylates.
Ethinyl Estradiol; Norelgestromin: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Norethindrone Acetate: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Norgestrel: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethosuximide: (Moderate) Barbiturates induce hepatic microsomal enzymes and increase the hepatic metabolism of ethosuximide, leading to a decrease in ethosuximide plasma concentrations and half-life. To maintain a therapeutic dosage, serum concentrations of ethosuximide should be measured, especially if barbiturate therapy is added to or withdrawn from ethosuximide therapy.
Ethotoin: (Moderate) Additive CNS depression could be seen with the combined use of the hydantoin and opiate agonists. (Minor) Large doses of salicylates can displace hydantoins from plasma protein-binding sites. Although increased serum concentrations of unbound phenytoin may lead to phenytoin toxicity, the liver may also more rapidly clear unbound drug.
Ethynodiol Diacetate; Ethinyl Estradiol: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Etidronate: (Minor) Monitor for gastrointestinal adverse events during concurrent use of etidronate and aspirin. Both medications have been associated with gastrointestinal irritation although data suggest concomitant use introduces little additional risk for adverse effects for most patients.
Etodolac: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Etomidate: (Major) Concomitant use of codeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Etonogestrel; Ethinyl Estradiol: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Etravirine: (Moderate) Concomitant use of codeine with etravirine can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If etravirine is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Etravirine is a moderate CYP3A4 inducer.
Everolimus: (Moderate) Monitor everolimus whole blood trough concentrations as appropriate if coadministration with butalbital is necessary. The dose of everolimus may need to be increased. Everolimus is a sensitive CYP3A4 substrate and butalbital is a moderate CYP3A4 inducer. Coadministration with CYP3A4 inducers may increase the metabolism of everolimus and decrease everolimus blood concentrations. (Moderate) Monitor for signs and symptoms of respiratory depression or sedation and analgesic response if coadministration of codeine and everolimus is necessary, particularly if everolimus is added after a stable dose of codeine is achieved. If concurrent use is necessary, use the lowest effective dose of codeine and carefully titrate to desired clinical effect. Educate patients about the risks and symptoms of respiratory depression and sedation. Codeine is a substrate of CYP3A4 and CYP2D6; everolimus is a weak CYP3A4 inhibitor and CYP2D6 inhibitor. Concurrent use of a CYP3A4 inhibitor may shift codeine metabolism away from the CYP3A4 pathway such that more codeine is metabolized by CYP2D6, resulting in a higher rate of conversion to morphine and subsequent adverse events including respiratory depression, hypotension, profound sedation, and death. Discontinuation of a CYP3A4 inhibitor in a patient stabilized on codeine may decrease opioid efficacy and lead to withdrawal symptoms. Alternatively, CYP2D6 inhibitors can increase the plasma concentration of codeine, but decrease exposure to morphine resulting in decreased analgesia or opioid withdrawal. Discontinuation of a CYP2D6 inhibitor results in decreased codeine concentrations as the effect of the inhibitor declines but increased morphine plasma concentrations which may result in increased or prolonged opioid-related adverse reactions and potentially fatal respiratory depression.
Ezetimibe; Simvastatin: (Moderate) Barbiturates are significant hepatic CYP3A4 inducers. Monitor for potential reduced cholesterol-lowering efficacy when barbiturates are co-administered with simvastatin, which is metabolized by CYP3A4.
Fedratinib: (Major) Avoid coadministration of fedratinib with barbiturates as concurrent use may decrease fedratinib exposure which may result in decreased therapeutic response. Fedratinib is a CYP3A4 substrate; barbiturates are strong CYP3A4 inducers. Coadministration of fedratinib with another strong CYP3A4 inducer decreased the overall exposure of fedratinib by 81%. (Moderate) Concomitant use of codeine with fedratinib may alter codeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of codeine until stable drug effects are achieved. If fedratinib is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Fedratinib is a moderate inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase codeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Felodipine: (Major) Barbiturates (e.g., phenobarbital, primidone) may significantly reduce systemic exposure of felodipine; consider alternative therapy. If coadministration is necessary, monitor the patient closely for desired cardiovascular effects on heart rate, blood pressure, or chest pain. Felodipine is a CYP3A4 substrate, and these anticonvulsants are potent CYP3A4 inducers. In a pharmacokinetic study, felodipine's Cmax was considerably lower in epileptic patients on long-term anticonvulsant therapy than in healthy volunteers. In these patients, the mean AUC was reduced approximately 6% of that observed in healthy adults.
Fenfluramine: (Major) Avoid concurrent use of fenfluramine and barbiturates due to the risk of decreased fenfluramine plasma concentrations, which may reduce its efficacy. If concomitant use is necessary, monitor for decreased efficacy and consider increasing fenfluramine dose as needed. If barbiturates are discontinued during fenfluramine maintenance treatment, consider gradual reduction in the fenfluramine dosage to the dose administered prior to barbiturate initiation. Fenfluramine is a CYP3A substrate and barbiturates are strong CYP3A inducers. (Moderate) Concomitant use of opioid agonists with fenfluramine may cause excessive sedation and somnolence. Limit the use of opioid agonists with fenfluramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking fenfluramine. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Fenoprofen: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity. (Minor) Phenobarbital and possibly other barbiturates can decrease the plasma concentrations and half-life of fenoprofen. The clinical significance of this interaction has not been established, but dosage adjustments of fenoprofen may be necessary with concurrent administration of phenobarbital or following initiation or withdrawal of the drug.
Fentanyl: (Major) Concomitant use of fentanyl with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of fentanyl with a barbiturate may decrease fentanyl plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; fentanyl is a CYP3A4 substrate.
Fesoterodine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when fesoterodine, an anticholinergic drug for overactive bladder is used with opiate agonists. The concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known. (Minor) Beverages containing caffeine or ethanol may aggravate bladder symptoms and counteract the effectiveness of fesoterodine to some degree. Patients may wish to limit their intake of caffeinated drugs, dietary supplements (e.g., guarana), or beverages (e.g., green tea, other teas, coffee, colas) and alcoholic beverages.
Fexofenadine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Finerenone: (Major) Avoid concurrent use of finerenone and butalbital due to the risk for decreased finerenone exposure which may reduce its efficacy. Finerenone is a CYP3A substrate and butalbital is a moderate CYP3A inducer. Coadministration with another moderate CYP3A inducer decreased overall exposure to finerenone by 80%.
Fish Oil, Omega-3 Fatty Acids (Dietary Supplements): (Moderate) Because fish oil, omega-3 fatty acids inhibit platelet aggregation, caution is advised when fish oils are used concurrently with aspirin. Theoretically, the risk of bleeding may be increased.
Flavocoxid, Flavocoxid; Citrated Zinc Bisglycinate: (Major) Because flavocoxid has been associated with isolated cases of occult GI bleeding, additive pharmacodynamic effects may be seen in patients receiving salicylates. Avoid the concurrent use of flavocoxid with salicylates until further data are available.
Flavoxate: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and flavoxate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Flibanserin: (Major) The concomitant use of flibanserin with CYP3A4 inducers significantly decreases flibanserin exposure compared to the use of flibanserin alone. Therefore, concurrent use of flibanserin and phenobarbital or other barbiturates, which are strong CYP3A4 inducers, is not recommended. (Moderate) Concomitant use of opioid agonists with flibanserin may cause excessive sedation and somnolence. Limit the use of opioid pain medication with flibanserin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Fluconazole: (Moderate) Concomitant use of codeine with fluconazole may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of fluconazole could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If fluconazole is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Fluconazole is a moderate inhibitor of CYP3A4. (Moderate) Fluconazole has been shown to inhibit the clearance of caffeine by 25 percent. The clinical significance of these interactions has not been determined. (Minor) Barbiturates induce hepatic CYP enzymes including 3A4, 2C19 and 2C9 and may reduce effective serum concentrations of fluconazole. Be alert for lack of efficacy of fluconazole in concurrent use.
Fluoxetine: (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of codeine and fluoxetine because of the potential risk of serotonin syndrome, reduced codeine efficacy, and potential for opioid withdrawal symptoms. Discontinue codeine if serotonin syndrome is suspected. It is recommended to avoid this combination when codeine is being used for cough. Concomitant use may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of fluoxetine could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If fluoxetine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Fluoxetine is a strong inhibitor of CYP2D6. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Fluphenazine: (Moderate) Concomitant use of opioid agonists with fluphenazine may cause excessive sedation and somnolence. Avoi d prescribing opioid cough medications in patients taking fluphenazine. Limit the use of opioid pain medications with fluphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Flurazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Flurbiprofen: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Fluticasone: (Moderate) Coadministration may result in decreased exposure to fluticasone. Butalbital is a CYP3A4 inducer; fluticasone is a CYP3A4 substrate. Monitor for decreased response to fluticasone during concurrent use.
Fluticasone; Salmeterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists. (Moderate) Coadministration may result in decreased exposure to fluticasone. Butalbital is a CYP3A4 inducer; fluticasone is a CYP3A4 substrate. Monitor for decreased response to fluticasone during concurrent use.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists. (Moderate) Coadministration may result in decreased exposure to fluticasone. Butalbital is a CYP3A4 inducer; fluticasone is a CYP3A4 substrate. Monitor for decreased response to fluticasone during concurrent use.
Fluticasone; Vilanterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists. (Moderate) Coadministration may result in decreased exposure to fluticasone. Butalbital is a CYP3A4 inducer; fluticasone is a CYP3A4 substrate. Monitor for decreased response to fluticasone during concurrent use.
Fluvoxamine: (Major) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of codeine and fluvoxamine because of the potential risk of serotonin syndrome and prolonged opioid adverse reactions. Discontinue codeine if serotonin syndrome is suspected. It is recommended to avoid this combination when codeine is being used for cough. Concomitant use of codeine with fluvoxamine may increase codeine plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. Monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of fluvoxamine could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If fluvoxamine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Fluvoxamine is a moderate inhibitor of CYP3A4. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. (Moderate) Strong inhibitors of CYP1A2, such as fluvoxamine, may inhibit the metabolism of caffeine. No specific management is recommended except in patients with caffeine-related side effects after initiating fluvoxamine. In such patients, the dosage of caffeine containing medications or the ingestion of caffeine containing products may need to be reduced. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Fondaparinux: (Moderate) An additive risk of bleeding may be seen in patients receiving platelet inhibitors (e.g., aspirin, ASA) in combination with fondaparinux. Data on the concomitant use of fondaparinux with aspirin are lacking; however, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Food: (Major) Advise patients to avoid cannabis use during barbiturate treatment due to the risk for additive CNS depression and other adverse reactions. Concomitant use may also decrease the concentration of some cannabinoids and alter their effects. The cannabinoids delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are CYP3A substrates and barbiturates are strong CYP3A inducers. Concomitant use of a cannabinoid product containing THC and CBD at an approximate 1:1 ratio with another strong CYP3A inducer decreased THC, 11-OH-THC, and CBD peak exposures by 36%, 87%, and 52% respectively. (Major) Advise patients to avoid cannabis use while taking CNS depressants due to the risk for additive CNS depression and potential for other cognitive adverse reactions.
Formoterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Formoterol; Mometasone: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Fosamprenavir: (Moderate) Concomitant use of codeine with fosamprenavir may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of fosamprenavir could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If fosamprenavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Fosamprenavir is a moderate inhibitor of CYP3A4. (Moderate) Monitor for decreased fosamprenavir efficacy if coadministered with barbiturates. Concurrent use may decrease the plasma concentrations of fosamprenavir leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. Fosamprenavir is a CYP3A substrate and barbiturates are strong CYP3A inducers. Coadministration with another strong CYP3A inducer decreased the fosamprenavir overall exposure by 82%.
Foscarnet: (Minor) Due to the inhibition of renal prostaglandins by salicylates, concurrent use of salicylates and other nephrotoxic agents, such as foscarnet, may lead to additive nephrotoxicity.
Fosinopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Fosphenytoin: (Moderate) Concomitant use of codeine with fosphenytoin can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If fosphenytoin is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Phenytoin, the active metabolite of fosphenytoin, is a strong CYP3A4 inducer. (Minor) Large doses of salicylates can displace phenytoin from plasma protein-binding sites. Although increased serum concentrations of unbound phenytoin may lead to phenytoin toxicity, the liver may also more rapidly clear unbound drug. Fosphenytoin is converted to phenytoin in vivo, so this interaction may also occur with fosphenytoin.
Fostamatinib: (Moderate) Monitor for codeine toxicities that may require codeine dose reduction if given concurrently with fostamatinib. Concomitant use of fostamatinib with a CYP3A4 substrate may increase the concentration of the CYP3A4 substrate. The active metabolite of fostamatinib, R406, is a CYP3A4 inhibitor; codeine is a substrate for CYP3A4. Coadministration of fostamatinib with a sensitive CYP3A4 substrate increased the substrate AUC by 64% and Cmax by 113%.
Frovatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Furosemide: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and codeine; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Gabapentin: (Major) Concomitant use of barbiturates with gabapentin may cause excessive sedation, somnolence, and respiratory depression. If concurrent use is necessary, initiate gabapentin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression. (Major) Concomitant use of opioid agonists with gabapentin may cause excessive sedation, somnolence, and respiratory depression. Avoid prescribing opioid cough medications in patients taking gabapentin. Limit the use of opioid pain medications with gabapentin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, initiate gabapentin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression.
Ganaxolone: (Major) Avoid concurrent use of ganaxolone and barbiturates due to the risk of decreased ganaxolone efficacy. If concomitant use is unavoidable, consider increasing ganaxolone dose without exceeding the maximum daily dose. Ganaxolone is a CYP3A4 substrate and barbiturates are a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased ganaxolone overall exposure by 68%.
Garlic, Allium sativum: (Moderate) Garlic, Allium sativum may produce clinically-significant antiplatelet effects; until more data are available, garlic should be used cautiously in patients receiving drugs with a potential risk for bleeding such as aspirin, ASA.
General anesthetics: (Major) Concomitant use of codeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. (Moderate) Additive CNS depression may occur if general anesthetics are used concomitantly with barbiturates.
Ginger, Zingiber officinale: (Moderate) There may be an increased risk of bleeding in patients on aspirin therapy who take ginger as a supplement (i.e., usual dietary intake is not expected to pose a risk). Several pungent constituents of ginger, Zingiber officinale are reported to inhibit arachidonic acid induced platelet activation in human whole blood. Ginger-associated platelet inhibition may be related to a decrease in COX-1/Thromboxane synthase enzymatic activity. The increased risk of bleeding is theoretical; clinical data of an interaction are not available.
Ginkgo, Ginkgo biloba: (Moderate) Monitor for signs or symptoms of bleeding with coadministration of ginkgo biloba and aspirin as an increased bleeding risk may occur. Although data are mixed, ginkgo biloba is reported to inhibit platelet aggregation and several case reports describe bleeding complications with ginkgo biloba, with or without concomitant drug therapy.
Givosiran: (Major) Avoid concomitant use of givosiran and caffeine due to the risk of increased caffeine-related adverse reactions. If use is necessary, consider decreasing the caffeine dose. Caffeine is a sensitive CYP1A2 substrate. Givosiran may moderately reduce hepatic CYP1A2 enzyme activity because of its pharmacological effects on the hepatic heme biosynthesis pathway. (Major) Avoid concomitant use of givosiran and codeine due to the risk of increased codeine plasma concentrations, but decreased plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of givosiran could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If givosiran is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Givosiran may moderately reduce hepatic CYP2D6 enzyme activity because of its pharmacological effects on the hepatic heme biosynthesis pathway.
Glasdegib: (Major) Avoid coadministration of glasdegib and butalbital due to the potential for decreased glasdegib exposure and risk of decreased efficacy. If concurrent use cannot be avoided, increase the glasdegib dosage (i.e., from 100 mg PO daily to 200 mg PO daily; or from 50 mg PO daily to 100 mg PO daily). Resume the previous dose of glasdegib after butalbital has been discontinued for 7 days. Glasdegib is a CYP3A4 substrate; butalbital is a moderate CYP3A4 inducer. Coadministration with another moderate CYP3A4 inducer was predicted to decrease the glasdegib AUC value by 55%.
Glimepiride: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Minor) Barbiturates may induce the CYP2C9 metabolism of glimepiride. Blood glucose concentrations should be monitored and possible dose adjustments of glimepiride may need to be made.
Glipizide: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Glipizide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Glyburide: (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Glyburide; Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant sulfonylurea and aspirin use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Glycerol Phenylbutyrate: (Moderate) Monitor for reduced efficacy of codeine and signs of opioid withdrawal in patients who have developed physical dependence if coadministration with glycerol phenylbutyrate is necessary; consider increasing the dose of codeine as needed. It is recommended to avoid this combination when codeine is being used for cough. If glycerol phenylbutyrate is discontinued, consider a dose reduction of codeine and frequently monitor for signs of respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Glycerol phenylbutyrate is a weak CYP3A inducer. Concomitant use with glycerol phenylbutyrate can increase norcodeine levels via increased CYP3A metabolism, resulting in decreased metabolism via CYP2D6 resulting in lower morphine levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Glycopyrrolate: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Glycopyrrolate; Formoterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Granisetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering codeine with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Grapefruit juice: (Moderate) Patients should not significantly alter their intake of grapefruit or grapefruit juice during therapy with codeine. Grapefruit juice, a CYP3A4 inhibitor, may increase plasma concentrations of codeine, a CYP3A4 substrate. This may increase or prolong codeine-related toxicities including respiratory depression. Advise patients accordingly; patient monitoring and dosage adjustments may be necessary if grapefruit is consumed regularly. (Minor) Data are limited and conflicting as to whether grapefruit juice significantly alters the serum concentrations and/or AUC of caffeine. Caffeine is primarily a CYP1A2 substrate, and grapefruit juice appears to have but a small effect on this enzyme in vivo. One report suggests that grapefruit juice decreases caffeine elimination by inhibition of flavin-containing monooxygenase, a P450 independent system. This interaction might increase caffeine levels and mildly potentiate the clinical effects and common side effects of caffeine. If side effects appear, patients may need to limit either caffeine or grapefruit juice intake.
Green Tea: (Moderate) Green tea should be used cautiously in patients taking aspirin; there may be an increased risk of bleeding. Monitoring clinical and/or laboratory parameters is warranted. Green tea has demonstrated antiplatelet and fibrinolytic actions in animals. (Moderate) Many green tea products contain caffeine. Due to the risk for adverse effects, avoid the concurrent administration of caffeine and green tea products that contain caffeine when possible. Concurrent administration can produce excessive caffeine-related adverse events such as nausea, irritability, nervousness, and insomnia. (Minor) Some green tea products contain caffeine. The metabolism of xanthines, such as caffeine, can be increased by concurrent use with barbiturates. The hypnotic effects of barbiturates can be reduced by caffeine administration.
Griseofulvin: (Moderate) Concurrent administration of griseofulvin with salicylates may result in decreased salicylate serum concentrations. Caution and close monitoring for changes in the effectiveness of the salicylate are recommended. (Minor) Barbiturates can impair the oral absorption of griseofulvin, resulting in decreased serum concentrations and, potentially, decreased antifungal efficacy. The clinical significance of this interaction is uncertain, but the manufacturer recommends that these drugs not be co-administered.
Guaifenesin; Hydrocodone: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Guaifenesin; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Guaifenesin; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Guanfacine: (Major) Monitor patients for guanfacine efficacy and for excess sedation during butalbital coadministration. Guanfacine plasma concentrations can be reduced by butalbital, by induction of CYP3A4 metabolism. Immediate-release guanfacine may require more frequent dosing to achieve or maintain desired hypotensive response; if it is discontinued, carefully taper the dose to prevent rebound hypertension. The extended-release guanfacine dose for attention deficit hyperactivity disorder (ADHD) may need to be doubled, per FDA-approved labeling; any dose change should occur over 1 to 2 weeks (e.g., dose increase when adding, or decrease when discontinuing, an enzyme inducer). Guanfacine is primarily metabolized by CYP3A4. Barbiturates (e.g., phenobarbital, primidone) are strong CYP3A4 inducers. Guanfacine plasma concentrations and elimination half-life were significantly reduced with coadministration of an enzyme inducer (e.g., phenobarbital, primidone, phenytoin, fosphenytoin) in two patients with renal impairment. Additionally, guanfacine has been associated with sedative effects and can potentiate the actions of CNS depressants, including barbiturates. (Moderate) Concomitant use of opioid agonists with guanfacine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with guanfacine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Guselkumab: (Moderate) Clinically relevant drug interactions may occur when guselkumab is administered with sensitive substrates of CYP2D6, such as codeine. Monitor for altered patient response to codeine; codeine dosage adjustments may be needed. During chronic inflammation, increased levels of certain cytokines can alter the formation of CYP450 enzymes. Thus, the formation of CYP2D6 could be normalized during guselkumab administration.
Haloperidol: (Moderate) Concomitant use of codeine with haloperidol may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of haloperidol could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If haloperidol is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Haloperidol is a moderate inhibitor of CYP2D6. (Moderate) Haloperidol can potentiate the actions of other CNS depressants such as barbiturates. Caution should be exercised with simultaneous use of these agents due to potential excessive CNS effects.
Hemin: (Major) Hemin works by inhibiting the enzyme (delta)-aminolevulinic acid synthetase. Drugs which increase the activity of this enzyme, such as barbiturates should not be used with hemin.
Heparin: (Moderate) An additive risk of bleeding may be seen in patients receiving platelet inhibitors (e.g., aspirin, ASA). Despite the potential drug-drug interaction between aspirin and heparin, heparin is frequently administered in combination with low-dose aspirin therapy to patients who have had an acute myocardial infarction and in other disease states. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Homatropine; Hydrocodone: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and homatropine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Hyaluronidase, Recombinant; Immune Globulin: (Moderate) Immune Globulin (IG) products have been reported to be associated with renal dysfunction, acute renal failure, osmotic nephrosis, and death. Patients predisposed to acute renal failure include patients receiving known nephrotoxic drugs like nonsteroidal anti-inflammatory drugs (NSAIDs) and salicylates. Coadminister IG products at the minimum concentration available and the minimum rate of infusion practicable. Also, closely monitor renal function. (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Hyaluronidase: (Minor) Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Hydantoins: (Moderate) Barbiturates can stimulate the hydroxylating enzyme that metabolizes phenytoin or, conversely, may inhibit phenytoin (or fosphenytoin) metabolism. In general, therapeutic doses of phenobarbital induce the hepatic metabolism of phenytoin, producing lower phenytoin serum concentrations. Large doses of phenobarbital, however, tend to increase phenytoin serum concentrations due to competition for hepatic pathways. Thus, phenytoin serum concentrations can increase, decrease, or not change during concomitant therapy with barbiturates. Conversely, phenytoin can increase serum concentrations of the barbiturate, however this has not been as well studied. Similar interactions may occur with ethotoin, although specific data are lacking. (Moderate) Higher caffeine doses may be needed after hydantoin administration; hydantoins increase caffeine elimination.
Hydrochlorothiazide, HCTZ: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Concomitant use of opioid agonists with methyldopa may cause excessive sedation and somnolence. Limit the use of opioid pain medication with methyldopa to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Hydrocodone: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Hydrocodone; Ibuprofen: (Major) Concomitant use of analgesic doses of aspirin and ibuprofen is generally not recommended due to the increased risk of bleeding and renal impairment. Because there may be an increased risk of cardiovascular events due to the interference of ibuprofen with the antiplatelet effect of aspirin, for patients taking low-dose aspirin for cardioprotection who require analgesics, consider use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or non-NSAID analgesics, as appropriate. Administer single doses of ibuprofen at least 2 to 4 hours or more after aspirin and wait 8 hours after ibuprofen administration before administering aspirin to avoid significant interference. Monitor for signs and symptoms of renal impairment. Pharmacodynamic studies have demonstrated interference with the antiplatelet activity of aspirin when ibuprofen 400 mg 3 times daily is administered with enteric-coated low-dose aspirin. The interaction exists even after ibuprofen 400 mg once daily, particularly when ibuprofen is dosed prior to aspirin. The interaction is alleviated if immediate-release low-dose aspirin is dosed at least 2 hours prior to a once daily regimen of ibuprofen; however, this finding cannot be extended to enteric-coated low-dose aspirin. A decrease in antiplatelet activity (53%) was observed when ibuprofen 400 mg once daily was administered 2 hours before low-dose immediate-release aspirin 81 mg/day for 6 days. An interaction was still observed, but minimized, when ibuprofen 400 mg once daily was administered as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction with the antiplatelet activity of aspirin when ibuprofen 400 mg once daily was administered 2 hours after immediate-release aspirin (99.2%). In another study of low-dose immediate-release aspirin 81 mg/day and ibuprofen 400 mg 3 times daily (1, 7, and 13 hours post-aspirin dose) for 10 consecutive days, there was no interaction with the antiplatelet activity of aspirin (98.3%); however, there were individuals with aspirin antiplatelet activity below 95%, with the lowest being 90.2%. When a similarly designed study was conducted with enteric-coated aspirin 81 mg/day for 6 days and ibuprofen 400 mg 3 times daily (2, 7 and 12 h post-aspirin dose) for 6 days, there was an interaction with the antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Ibuprofen is not a substitute for low dose aspirin for cardiovascular protection. (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Hydrocodone; Pseudoephedrine: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Hydromorphone: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Hydroxyzine: (Major) Because hydroxyzine can cause pronounced sedation, an enhanced CNS depressant effect may occur when it is combined with other CNS depressants including barbiturates. (Major) Concomitant use of opioid agonists with hydroxyzine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking hydroxyzine. Limit the use of opioid pain medications with hydroxyzine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hyoscyamine: (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Ibandronate: (Moderate) Monitor renal function and for gastrointestinal adverse events during concurrent use of intravenous or oral ibandronate use, respectively, and aspirin. Acute renal failure has been observed with intravenous ibandronate and concomitant use of other nephrotoxic agents may increase this risk. Additionally, the oral formulations of both medications have been associated with gastrointestinal irritation although data suggest concomitant use introduces little additional risk for adverse effects for most patients.
Ibrexafungerp: (Major) Avoid concurrent administration of ibrexafungerp with barbiturates. Use of these drugs together is expected to significantly decrease ibrexafungerp exposure, which may reduce its efficacy. Ibrexafungerp is a CYP3A substrate and barbiturates are strong CYP3A inducers.
Ibritumomab Tiuxetan: (Major) During and after therapy, avoid the concomitant use of Yttrium (Y)-90 ibrutumomab tiuxetan with drugs that interfere with platelet function such as aspirin; the risk of bleeding may be increased. If coadministration with asprin is necessary, monitor platelet counts more frequently for evidence of thrombocytopenia. (Moderate) Agents that acidify the urine, like phosphate salts, should be avoided in patients receiving high-dose salicylates. Urine acidifying agents may increase renal tubular reabsorption of salicylic acid and possibly increase salicylic acid levels. (Moderate) Concurrent administration of high doses of alkalinizing agents may increase urine pH and decrease serum salicylate levels by decreasing renal tubular reabsorption of salicylic acid.
Ibrutinib: (Moderate) The concomitant use of ibrutinib and antiplatelet agents such as aspirin may increase the risk of bleeding; monitor patients for signs of bleeding. Severe bleeding events have occurred with ibrutinib therapy including intracranial hemorrhage, GI bleeding, hematuria, and post procedural hemorrhage; some events were fatal. The mechanism for bleeding with ibrutinib therapy is not well understood. Also, aspirin may mask signs of infection such as fever and in patients following treatment with antineoplastic agents or immunosuppressives.
Ibuprofen: (Major) Concomitant use of analgesic doses of aspirin and ibuprofen is generally not recommended due to the increased risk of bleeding and renal impairment. Because there may be an increased risk of cardiovascular events due to the interference of ibuprofen with the antiplatelet effect of aspirin, for patients taking low-dose aspirin for cardioprotection who require analgesics, consider use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or non-NSAID analgesics, as appropriate. Administer single doses of ibuprofen at least 2 to 4 hours or more after aspirin and wait 8 hours after ibuprofen administration before administering aspirin to avoid significant interference. Monitor for signs and symptoms of renal impairment. Pharmacodynamic studies have demonstrated interference with the antiplatelet activity of aspirin when ibuprofen 400 mg 3 times daily is administered with enteric-coated low-dose aspirin. The interaction exists even after ibuprofen 400 mg once daily, particularly when ibuprofen is dosed prior to aspirin. The interaction is alleviated if immediate-release low-dose aspirin is dosed at least 2 hours prior to a once daily regimen of ibuprofen; however, this finding cannot be extended to enteric-coated low-dose aspirin. A decrease in antiplatelet activity (53%) was observed when ibuprofen 400 mg once daily was administered 2 hours before low-dose immediate-release aspirin 81 mg/day for 6 days. An interaction was still observed, but minimized, when ibuprofen 400 mg once daily was administered as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction with the antiplatelet activity of aspirin when ibuprofen 400 mg once daily was administered 2 hours after immediate-release aspirin (99.2%). In another study of low-dose immediate-release aspirin 81 mg/day and ibuprofen 400 mg 3 times daily (1, 7, and 13 hours post-aspirin dose) for 10 consecutive days, there was no interaction with the antiplatelet activity of aspirin (98.3%); however, there were individuals with aspirin antiplatelet activity below 95%, with the lowest being 90.2%. When a similarly designed study was conducted with enteric-coated aspirin 81 mg/day for 6 days and ibuprofen 400 mg 3 times daily (2, 7 and 12 h post-aspirin dose) for 6 days, there was an interaction with the antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Ibuprofen is not a substitute for low dose aspirin for cardiovascular protection.
Ibuprofen; Famotidine: (Major) Concomitant use of analgesic doses of aspirin and ibuprofen is generally not recommended due to the increased risk of bleeding and renal impairment. Because there may be an increased risk of cardiovascular events due to the interference of ibuprofen with the antiplatelet effect of aspirin, for patients taking low-dose aspirin for cardioprotection who require analgesics, consider use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or non-NSAID analgesics, as appropriate. Administer single doses of ibuprofen at least 2 to 4 hours or more after aspirin and wait 8 hours after ibuprofen administration before administering aspirin to avoid significant interference. Monitor for signs and symptoms of renal impairment. Pharmacodynamic studies have demonstrated interference with the antiplatelet activity of aspirin when ibuprofen 400 mg 3 times daily is administered with enteric-coated low-dose aspirin. The interaction exists even after ibuprofen 400 mg once daily, particularly when ibuprofen is dosed prior to aspirin. The interaction is alleviated if immediate-release low-dose aspirin is dosed at least 2 hours prior to a once daily regimen of ibuprofen; however, this finding cannot be extended to enteric-coated low-dose aspirin. A decrease in antiplatelet activity (53%) was observed when ibuprofen 400 mg once daily was administered 2 hours before low-dose immediate-release aspirin 81 mg/day for 6 days. An interaction was still observed, but minimized, when ibuprofen 400 mg once daily was administered as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction with the antiplatelet activity of aspirin when ibuprofen 400 mg once daily was administered 2 hours after immediate-release aspirin (99.2%). In another study of low-dose immediate-release aspirin 81 mg/day and ibuprofen 400 mg 3 times daily (1, 7, and 13 hours post-aspirin dose) for 10 consecutive days, there was no interaction with the antiplatelet activity of aspirin (98.3%); however, there were individuals with aspirin antiplatelet activity below 95%, with the lowest being 90.2%. When a similarly designed study was conducted with enteric-coated aspirin 81 mg/day for 6 days and ibuprofen 400 mg 3 times daily (2, 7 and 12 h post-aspirin dose) for 6 days, there was an interaction with the antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Ibuprofen is not a substitute for low dose aspirin for cardiovascular protection.
Ibuprofen; Oxycodone: (Major) Concomitant use of analgesic doses of aspirin and ibuprofen is generally not recommended due to the increased risk of bleeding and renal impairment. Because there may be an increased risk of cardiovascular events due to the interference of ibuprofen with the antiplatelet effect of aspirin, for patients taking low-dose aspirin for cardioprotection who require analgesics, consider use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or non-NSAID analgesics, as appropriate. Administer single doses of ibuprofen at least 2 to 4 hours or more after aspirin and wait 8 hours after ibuprofen administration before administering aspirin to avoid significant interference. Monitor for signs and symptoms of renal impairment. Pharmacodynamic studies have demonstrated interference with the antiplatelet activity of aspirin when ibuprofen 400 mg 3 times daily is administered with enteric-coated low-dose aspirin. The interaction exists even after ibuprofen 400 mg once daily, particularly when ibuprofen is dosed prior to aspirin. The interaction is alleviated if immediate-release low-dose aspirin is dosed at least 2 hours prior to a once daily regimen of ibuprofen; however, this finding cannot be extended to enteric-coated low-dose aspirin. A decrease in antiplatelet activity (53%) was observed when ibuprofen 400 mg once daily was administered 2 hours before low-dose immediate-release aspirin 81 mg/day for 6 days. An interaction was still observed, but minimized, when ibuprofen 400 mg once daily was administered as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction with the antiplatelet activity of aspirin when ibuprofen 400 mg once daily was administered 2 hours after immediate-release aspirin (99.2%). In another study of low-dose immediate-release aspirin 81 mg/day and ibuprofen 400 mg 3 times daily (1, 7, and 13 hours post-aspirin dose) for 10 consecutive days, there was no interaction with the antiplatelet activity of aspirin (98.3%); however, there were individuals with aspirin antiplatelet activity below 95%, with the lowest being 90.2%. When a similarly designed study was conducted with enteric-coated aspirin 81 mg/day for 6 days and ibuprofen 400 mg 3 times daily (2, 7 and 12 h post-aspirin dose) for 6 days, there was an interaction with the antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Ibuprofen is not a substitute for low dose aspirin for cardiovascular protection. (Major) Concomitant use of oxycodone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of o xycodone with a barbiturate may decrease oxycodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; oxycodone is a CYP3A4 substrate. (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Ibuprofen; Pseudoephedrine: (Major) Concomitant use of analgesic doses of aspirin and ibuprofen is generally not recommended due to the increased risk of bleeding and renal impairment. Because there may be an increased risk of cardiovascular events due to the interference of ibuprofen with the antiplatelet effect of aspirin, for patients taking low-dose aspirin for cardioprotection who require analgesics, consider use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or non-NSAID analgesics, as appropriate. Administer single doses of ibuprofen at least 2 to 4 hours or more after aspirin and wait 8 hours after ibuprofen administration before administering aspirin to avoid significant interference. Monitor for signs and symptoms of renal impairment. Pharmacodynamic studies have demonstrated interference with the antiplatelet activity of aspirin when ibuprofen 400 mg 3 times daily is administered with enteric-coated low-dose aspirin. The interaction exists even after ibuprofen 400 mg once daily, particularly when ibuprofen is dosed prior to aspirin. The interaction is alleviated if immediate-release low-dose aspirin is dosed at least 2 hours prior to a once daily regimen of ibuprofen; however, this finding cannot be extended to enteric-coated low-dose aspirin. A decrease in antiplatelet activity (53%) was observed when ibuprofen 400 mg once daily was administered 2 hours before low-dose immediate-release aspirin 81 mg/day for 6 days. An interaction was still observed, but minimized, when ibuprofen 400 mg once daily was administered as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction with the antiplatelet activity of aspirin when ibuprofen 400 mg once daily was administered 2 hours after immediate-release aspirin (99.2%). In another study of low-dose immediate-release aspirin 81 mg/day and ibuprofen 400 mg 3 times daily (1, 7, and 13 hours post-aspirin dose) for 10 consecutive days, there was no interaction with the antiplatelet activity of aspirin (98.3%); however, there were individuals with aspirin antiplatelet activity below 95%, with the lowest being 90.2%. When a similarly designed study was conducted with enteric-coated aspirin 81 mg/day for 6 days and ibuprofen 400 mg 3 times daily (2, 7 and 12 h post-aspirin dose) for 6 days, there was an interaction with the antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Ibuprofen is not a substitute for low dose aspirin for cardiovascular protection. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Idelalisib: (Moderate) Concomitant use of codeine with idelalisib may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of idelalisib could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If idelalisib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Idelalisib is a strong inhibitor of CYP3A4.
Ifosfamide: (Moderate) Closely monitor for increased ifosfamide-related toxicities (e.g., neurotoxicity, nephrotoxicity) if coadministration with butalbital is necessary; consider adjusting the dose of ifosfamide as clinically appropriate. Ifosfamide is metabolized to its active alkylating metabolites by CYP3A4; butalbital is a CYP3A4 inducer. Concomitant use may increase the formation of the neurotoxic/nephrotoxic ifosfamide metabolite, chloroacetaldehyde.
Iloperidone: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates. (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Iloprost: (Moderate) When used concurrently with platelet inhibitors, inhaled iloprost may increase the risk of bleeding.
Imatinib: (Major) Avoid coadministration of imatinib and barbiturates if possible due to decreased plasma concentrations of imatinib. If concomitant use is unavoidable, increase the dose of imatinib by at least 50%, carefully monitoring clinical response; imatinib doses up to 1,200 mg per day (600 mg twice daily) have been given to patients receiving concomitant strong CYP3A4 inducers. Imatinib is a CYP3A4 substrate and barbiturates are strong CYP3A4 inducers. Coadministration with another strong CYP3A4 inducer increased imatinib clearance by 3.8-fold, which significantly decreased the mean Cmax and AUC of imatinib. (Moderate) Concomitant use of codeine with imatinib may alter codeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of codeine until stable drug effects are achieved. Discontinuation of imatinib could alter codeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If imatinib is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Imatinib is a moderate inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase codeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Imipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Immune Globulin IV, IVIG, IGIV: (Moderate) Immune Globulin (IG) products have been reported to be associated with renal dysfunction, acute renal failure, osmotic nephrosis, and death. Patients predisposed to acute renal failure include patients receiving known nephrotoxic drugs like nonsteroidal anti-inflammatory drugs (NSAIDs) and salicylates. Coadminister IG products at the minimum concentration available and the minimum rate of infusion practicable. Also, closely monitor renal function.
Incretin Mimetics: (Moderate) Monitor blood glucose during concomitant incretin mimetic and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Indacaterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Indacaterol; Glycopyrrolate: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and glycopyrrolate use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Indapamide: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when indapamide is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Salicylates can increase the risk of renal toxicity in patients receiving diuretics because salicylates inhibit renal prostaglandin synthesis, which can lead to fluid retention and increased peripheral vascular resistance.
Indinavir: (Major) Barbiturates may increase the metabolism of indinavir and lead to decreased antiretroviral efficacy. In addition, indinavir may inhibit the CYP metabolism of barbiturates, resulting in increased barbiturate concentrations. Appropriate dose adjustments necessary to ensure optimum levels of both anti-retroviral agent and the barbiturate are unknown. Anticonvulsant serum concentrations should be monitored closely if these agents are added; the patient should be observed for changes in the clinical efficacy of the antiretroviral or anticonvulsant regimen. (Moderate) Concomitant use of codeine with indinavir may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of indinavir could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If indinavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Indinavir is a strong inhibitor of CYP3A4.
Indomethacin: (Major) The concurrent use of salicylates and indomethacin is not recommended. Combined use does not produce any greater therapeutic effect than indomethacin monotherapy. Also, a significantly greater incidence of gastrointestinal adverse effects with concurrent use has been observed. Because NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time, additive effects may be seen in patients receiving platelet inhibitors (e.g., aspirin), anticoagulants, or thrombolytic agents.
Infigratinib: (Major) Avoid concurrent use of infigratinib and barbiturates. Coadministration may decrease infigratinib exposure resulting in decreased efficacy. Infigratinib is a CYP3A4 substrate and barbiturates are strong CYP3A4 inducers. Coadministration with another strong CYP3A4 inducer decreased the AUC of infigratinib by 56%.
Inotersen: (Moderate) Use caution with concomitant use of inotersen and salicylates due to the risk of glomerulonephritis and nephrotoxicity as well as the potential risk of bleeding from thrombocytopenia. Consider discontinuation of salicylates in a patient taking inotersen with a platelet count of less than 50,000 per microliter.
Insulins: (Moderate) Monitor blood glucose during concomitant insulin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Intravenous Lipid Emulsions: (Moderate) Because fish oil, omega-3 fatty acids inhibit platelet aggregation, caution is advised when fish oils are used concurrently with aspirin. Theoretically, the risk of bleeding may be increased.
Ipratropium; Albuterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Iron Sucrose, Sucroferric Oxyhydroxide: (Moderate) Administer aspirin at least 1 hour before oral iron sucrose, sucroferric oxyhydroxide. Oral iron salts may reduce the bioavailability of aspirin, leading to decreased absorption.
Isavuconazonium: (Moderate) Concomitant use of codeine with isavuconazonium may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of isavuconazonium could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If isavuconazonium is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Isavuconazonium is a moderate inhibitor of CYP3A4.
Isocarboxazid: (Contraindicated) Codeine use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days due to a risk for serotonin syndrome or opioid toxicity, including respiratory depression. Concomitant use of codeine with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as codeine. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of alternate opioids to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Major) Excessive use of caffeine in any form should be avoided in patients receiving Monoamine oxidase inhibitors (MAOIs). Limit caffeine intake during MAOI use and for 1 to 2 weeks after discontinuation of any MAOI. The use of non-prescription medicines or dietary supplements containing caffeine should be avoided. Patients should try to avoid or limit the intake of all items containing caffeine such as tea, coffee, chocolate, and cola. Cardiac arrhythmias or severe hypertension may occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs if caffeine intake is excessive. (Major) The CNS effects of butalbital may be enhanced by monoamine oxidase (MAO) inhibitors. This may enhance drowsiness or dizziness. Barbiturates should generally be given at a reduced dose with an MAOI.
Isoflurane: (Major) Concomitant use of codeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Isoniazid, INH: (Moderate) Although isoniazid does not inhibit mitochondrial MAO, it does appear to inhibit plasma MAO. Dangerous cardiac arrhythmias or severe hypertension can occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs. Caffeine use should be minimized or avoided during and for 1 to 2 weeks after discontinuation of any MAOI. (Moderate) Concomitant use of codeine with isoniazid may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of isoniazid could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If isoniazid is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Isoniazid is a weak inhibitor of CYP3A.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Moderate) Although isoniazid does not inhibit mitochondrial MAO, it does appear to inhibit plasma MAO. Dangerous cardiac arrhythmias or severe hypertension can occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs. Caffeine use should be minimized or avoided during and for 1 to 2 weeks after discontinuation of any MAOI. (Moderate) Concomitant use of codeine with isoniazid may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of isoniazid could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If isoniazid is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Isoniazid is a weak inhibitor of CYP3A. (Moderate) Concomitant use of codeine with rifampin can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If rifampin is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Rifampin is a strong CYP3A4 inducer. (Moderate) It may be necessary to adjust the dosage of butalbital if given concurrently with rifampin. Rifampin may induce the metabolism of butalbital; coadministration may result in decreased butalbital plasma concentrations. (Minor) Rifampin is a potent inducer of the cytochrome P450 hepatic enzyme system and can reduce the plasma concentrations and possibly the efficacy of caffeine, including caffeine found in green tea products.
Isoniazid, INH; Rifampin: (Moderate) Although isoniazid does not inhibit mitochondrial MAO, it does appear to inhibit plasma MAO. Dangerous cardiac arrhythmias or severe hypertension can occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs. Caffeine use should be minimized or avoided during and for 1 to 2 weeks after discontinuation of any MAOI. (Moderate) Concomitant use of codeine with isoniazid may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of isoniazid could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If isoniazid is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Isoniazid is a weak inhibitor of CYP3A. (Moderate) Concomitant use of codeine with rifampin can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If rifampin is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Rifampin is a strong CYP3A4 inducer. (Moderate) It may be necessary to adjust the dosage of butalbital if given concurrently with rifampin. Rifampin may induce the metabolism of butalbital; coadministration may result in decreased butalbital plasma concentrations. (Minor) Rifampin is a potent inducer of the cytochrome P450 hepatic enzyme system and can reduce the plasma concentrations and possibly the efficacy of caffeine, including caffeine found in green tea products.
Isoproterenol: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Isradipine: (Major) Because isradipine is a substrate of CYP3A4, the concomitant use of drugs that strongly induce CYP3A4, such as barbiturates, may cause a reduction in the bioavailability and thus decreased therapeutic effect of isradipine. Consider alternative therapy; if co-use is necessary, patients should be monitored for potential loss of therapeutic effect when hepatic enzyme inducers are added to isradipine therapy.
Istradefylline: (Moderate) Concomitant use of codeine with istradefylline 40 mg daily may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of istradefylline could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If istradefylline is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Istradefylline administered as 40 mg daily is a weak CYP3A4 inhibitor; there was no effect on drug exposure when istradefylline 20 mg daily was coadministered with a sensitive CYP3A4 substrate.
Itraconazole: (Major) Use of barbiturates is not recommended for 2 weeks before or during itraconazole therapy. Barbiturates induce hepatic CYP enzymes including 3A4, 2C19 and 2C9 and may reduce effective serum concentrations of itraconazole. Monitor for breakthrough fungal infections. (Moderate) Concomitant use of codeine with itraconazole may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of itraconazole could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If itraconazole is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Itraconazole is a strong inhibitor of CYP3A4.
Ivabradine: (Major) Avoid coadministration of ivabradine and barbiturates including primidone. Ivabradine is primarily metabolized by CYP3A4; barbiturates induce CYP3A4. Coadministration may decrease the plasma concentrations of ivabradine resulting in the potential for treatment failure.
Ixabepilone: (Major) Avoid concurrent use of ixabepilone and barbiturates due to decreased plasma concentrations of ixabepilone, which may reduce its efficacy. If concomitant use is unavoidable, gradually increase the dose of ixabepilone as tolerated from 40 mg/m2 to 60 mg/m2 and infuse over 4 hours; monitor carefully for ixabepilone-related toxicities. Ixabepilone is a CYP3A substrate and barbiturates are strong CYP3A inducers. Coadministration with another strong CYP3A inducer decreased ixabepilone exposure by 43%.
Ketamine: (Major) Concomitant use of codeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Ketoconazole: (Major) Avoid barbiturates for 2 weeks prior to and during treatment with ketoconazole. Concomitant use may decrease exposure of ketoconazole and reduce its efficacy. If coadministration cannot be avoided, monitor for decreased efficacy of ketoconazole; a ketoconazole dose increase may be necessary. Ketoconazole is a CYP3A substrate and barbiturates are strong CYP3A inducers. (Moderate) Concomitant use of codeine with ketoconazole may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of ketoconazole could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If ketoconazole is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Ketoconazole is a strong inhibitor of CYP3A4. (Moderate) Ketoconazole has been shown to inhibit the clearance of caffeine by 11 percent. The clinical significance of these interactions has not been determined.
Ketoprofen: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity. (Minor) Caffeine administered concurrently with ketoprofen reduced the urine volume in 4 healthy volunteers. The clinical significance of the interaction in preterm neonates is not known.
Ketorolac: (Contraindicated) Ketorolac is contraindicated in patients currently receiving salicylates due to increased risk of serious NSAID-related adverse events, including gastrointestinal bleeding, ulceration, and perforation.
Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Renal impairment, which may include hypophosphatemia, has been reported with the use of tenofovir disoproxil fumarate with a majority of the cases occurring in patients who have underlying systemic or renal disease or who are concurrently taking nephrotoxic agents. Tenofovir should be avoided with concurrent or recent use of a nephrotoxic agent; patients receiving concomitant nephrotoxic agents, like salicylates should be carefully monitored for changes in serum creatinine and phosphorus.
Lansoprazole: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) Concomitant use of codeine with clarithromycin may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of clarithromycin could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If clarithromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Clarithromycin is a strong inhibitor of CYP3A4. (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations. (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Lapatinib: (Moderate) Concomitant use of codeine with lapatinib may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of lapatinib could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If lapatinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Lapatinib is a weak inhibitor of CYP3A4.
Larotrectinib: (Moderate) Concomitant use of codeine with larotrectinib may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of larotrectinib could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If larotrectinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Larotrectinib is a weak inhibitor of CYP3A4.
Lasmiditan: (Moderate) Concomitant use of codeine with lasmiditan may cause excessive sedation, somnolence, and serotonin syndrome. Limit the use of codeine with lasmiditan to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome. Avoid prescribing codeine cough medications in patients taking lasmiditan. (Moderate) Monitor for excessive sedation and somnolence during coadministration of lasmiditan and barbiturates. Concurrent use may result in additive CNS depression.
Lefamulin: (Major) Avoid coadministration of lefamulin with butalbital unless the benefits outweigh the risks as concurrent use may decrease lefamulin exposure and efficacy. Lefamulin is a CYP3A4 substrate; butalbital is a moderate CYP3A4 inducer. (Moderate) Concomitant use of codeine with oral lefamulin may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of oral lefamulin could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If oral lefamulin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Oral lefamulin is a moderate CYP3A4 inhibitor; an interaction is not expected with intravenous lefamulin.
Lemborexant: (Major) Avoid coadministration of lemborexant and butalbital as concurrent use may decrease lemborexant exposure which may reduce efficacy. Additive CNS effects, such as sedation and psychomotor impairment, are also possible. Lemborexant is a CYP3A4 substrate; butalbital is a moderate CYP3A4 inducer. (Moderate) Concomitant use of codeine with lemborexant may cause excessive sedation and somnolence. Limit the use of codeine with lemborexant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Avoid prescribing codeine cough medicine in patients taking lemborexant.
Lenacapavir: (Contraindicated) Concurrent use of lenacapavir and barbiturates is contraindicated due to the risk of decreased lenacapavir exposure which may result in loss of therapeutic effect and development of resistance. Lenacapavir is a CYP3A substrate and barbiturates are strong CYP3A inducers. Concomitant use with another strong CYP3A inducer reduced lenacapavir overall exposure by 84%. (Moderate) Concomitant use of codeine with lenacapavir may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of lenacapavir could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If lenacapavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Lenacapavir is a moderate inhibitor of CYP3A.
Leniolisib: (Major) Avoid concomitant use of leniolisib and barbiturates. Concomitant use may decrease leniolisib exposure which may reduce its efficacy. Leniolisib is a CYP3A substrate and barbiturates are strong CYP3A inducers. Concomitant use with another strong CYP3A inducer reduced leniolisib overall exposure by 78%. (Moderate) Monitor for an increase in caffeine-related adverse reactions, including nervousness, irritability, insomnia, tachycardia, or tremor, if concomitant use of leniolisib is necessary; lower caffeine doses may be necessary. Concomitant use may increase caffeine exposure; caffeine is a CYP1A2 substrate and leniolisib is a CYP1A2 inhibitor.
Lesinurad: (Moderate) Aspirin, ASA at doses higher than 325 mg per day may decrease the efficacy of lesinurad in combination with allopurinol. Aspirin at doses of 325 mg or less per day (i.e., for cardiovascular protection) does not decrease the efficacy of lesinurad and can be coadministered with lesinurad. (Moderate) Barbiturates may decrease the systemic exposure and therapeutic effect of lesinurad; monitor for potential reduction in efficacy. Barbiturates induce the CYP2C9 isoenzyme, and lesinurad is a CYP2C9 substrate.
Lesinurad; Allopurinol: (Moderate) Aspirin, ASA at doses higher than 325 mg per day may decrease the efficacy of lesinurad in combination with allopurinol. Aspirin at doses of 325 mg or less per day (i.e., for cardiovascular protection) does not decrease the efficacy of lesinurad and can be coadministered with lesinurad. (Moderate) Barbiturates may decrease the systemic exposure and therapeutic effect of lesinurad; monitor for potential reduction in efficacy. Barbiturates induce the CYP2C9 isoenzyme, and lesinurad is a CYP2C9 substrate.
Letermovir: (Moderate) Concomitant use of codeine with letermovir may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of letermovir could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If letermovir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Letermovir is a moderate inhibitor of CYP3A4.
Leucovorin: (Minor) Limited data suggest that leucovorin and levoleucovorin may interfere with the activity of anticonvulsants such as barbiturates. Folic acid can decrease serum concentrations of anticonvulsants in children. Leucovorin shares metabolic pathways with folic acid. Clinicians should consider careful monitoring of patients.
Levalbuterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Levamlodipine: (Major) Barbiturates may induce the CYP3A4 metabolism of calcium-channel blockers such as amlodipine, and thereby reduce their oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers; monitor blood pressure closely. (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations.
Levocetirizine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) Concurrent use of cetirizine/levocetirizine with barbiturates should generally be avoided. Coadministration may increase the risk of CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive sedation and somnolence.
Levoketoconazole: (Major) Avoid barbiturates for 2 weeks prior to and during treatment with ketoconazole. Concomitant use may decrease exposure of ketoconazole and reduce its efficacy. If coadministration cannot be avoided, monitor for decreased efficacy of ketoconazole; a ketoconazole dose increase may be necessary. Ketoconazole is a CYP3A substrate and barbiturates are strong CYP3A inducers. (Moderate) Concomitant use of codeine with ketoconazole may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of ketoconazole could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If ketoconazole is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Ketoconazole is a strong inhibitor of CYP3A4. (Moderate) Ketoconazole has been shown to inhibit the clearance of caffeine by 11 percent. The clinical significance of these interactions has not been determined.
Levoleucovorin: (Minor) Limited data suggest that leucovorin and levoleucovorin may interfere with the activity of anticonvulsants such as barbiturates. Folic acid can decrease serum concentrations of anticonvulsants in children. Leucovorin shares metabolic pathways with folic acid. Clinicians should consider careful monitoring of patients.
Levomilnacipran: (Moderate) If concomitant use of codeine and levomilnacipran is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Levonorgestrel; Ethinyl Estradiol: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Levorphanol: (Major) Concomitant use of levorphanol with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial dose of levorphanol by approximately 50% or more. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lidocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lidocaine; Epinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lidocaine; Prilocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Linagliptin: (Moderate) Monitor blood glucose during concomitant linagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor for a decrease in linagliptin efficacy during concomitant use of linagliptin and barbiturates if coadministration is required. Concomitant use may decrease linagliptin exposure. Linagliptin is a CYP3A and P-gp substrate and barbiturates are strong CYP3A inducers. Concomitant use with a strong CYP3A and P-gp inducer reduced linagliptin overall exposure by 0.6-fold.
Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant linagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor for a decrease in linagliptin efficacy during concomitant use of linagliptin and barbiturates if coadministration is required. Concomitant use may decrease linagliptin exposure. Linagliptin is a CYP3A and P-gp substrate and barbiturates are strong CYP3A inducers. Concomitant use with a strong CYP3A and P-gp inducer reduced linagliptin overall exposure by 0.6-fold.
Linezolid: (Contraindicated) Codeine use in patients taking linezolid or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Caffeine use should be minimized or avoided during and for 1 to 2 weeks after discontinuation of linezolid. Linezolid is an antibiotic that is also a weak, reversible nonselective inhibitor of monoamine oxidase (MAO). Dangerous cardiac arrhythmias or severe hypertension can occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs.
Lisdexamfetamine: (Moderate) Avoid excessive caffeine intake during use of lisdexamfetamine. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine. (Moderate) If concomitant use of codeine and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Lisinopril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation. (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Lithium: (Major) Caffeine appears to reduce serum lithium concentrations. Adverse reactions to lithium have also been noted to increase simultaneously with a reduction in caffeine intake. Patients taking lithium should be counseled regarding their intake of caffeine. (Moderate) Because lithium has the potential to impair cognitive and motor skills, caution is advisable during concurrent use of other medications with centrally-acting effects including anxiolytics, sedatives, and hypnotics. (Moderate) If concomitant use of codeine and lithium is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Lofexidine: (Moderate) Monitor for additive sedation during coadministration of lofexidine and barbiturates. Lofexidine can potentiate the effects of CNS depressants such as barbiturates. Patients should be advised to avoid driving or performing any other tasks requiring mental alertness until the effects of the combination are known. The use of barbiturates parenterally may cause vasodilation and an additive risk for hypotension and may lead to bradycardia and syncope; in these patients, careful monitoring of blood pressure should occur. (Moderate) Monitor for excessive hypotension and sedation during coadministration of lofexidine and codeine. Lofexidine can potentiate the effects of CNS depressants.
Lonafarnib: (Contraindicated) Coadministration of lonafarnib and butalbital is contraindicated; concurrent use may decrease lonafarnib exposure, which may reduce its efficacy. Lonafarnib is a sensitive CYP3A4 substrate and butalbital is a moderate CYP3A4 inducer. (Moderate) Concomitant use of codeine with lonafarnib may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of lonafarnib could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If lonafarnib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties; lonafarnib is a strong inhibitor of CYP3A4.
Loop diuretics: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a loop diuretic and codeine; increase the dosage of the loop diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Lopinavir; Ritonavir: (Major) Avoid concomitant use of lopinavir; ritonavir and barbiturates. If concomitant use is necessary, do not use once daily dosing of lopinavir; ritonavir. Concomitant use may decrease lopinavir plasma concentrations, resulting in reduced efficacy. Lopinavir is a CYP3A substrate and barbiturates are CYP3A inducers. (Major) Avoid concomitant use of ritonavir and barbiturates. Concomitant use may decrease the exposure of both drugs, resulting in reduced efficacy. If concomitant use is necessary, monitor for decreased virologic response and decreased efficacy of the barbiturate. A dose increase of the barbiturate may be necessary. Ritonavir is a CYP3A substrate and inducer and barbiturates are CYP3A inducers. (Moderate) Concomitant use of codeine with ritonavir may alter codeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of codeine until stable drug effects are achieved. Discontinuation of ritonavir could alter codeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If ritonavir is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Ritonavir is a strong inhibitor of CYP3A4 and a weak inhibitor of CYP2D6. CYP3A4 inhibitors may increase codeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Loratadine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Lorazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Additive CNS and/or respiratory depression may occur with concurrent use.
Lorcaserin: (Moderate) If concomitant use of codeine and lorcaserin is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Lorlatinib: (Major) Avoid concomitant use of lorlatinib and butalbital due to decreased plasma concentrations of lorlatinib, which may reduce its efficacy. If concomitant use is necessary, increase the dose of lorlatinib to 125 mg PO once daily. Lorlatinib is a CYP3A substrate and butalbital is a moderate CYP3A inducer. Administration with another moderate CYP3A inducer decreased lorlatinib exposure by 23%. (Moderate) Monitor for reduced efficacy of codeine and signs of opioid withdrawal in patients who have developed physical dependence if coadministration with lorlatinib is necessary; consider increasing the dose of codeine as needed. It is recommended to avoid this combination when codeine is being used for cough. If lorlatinib is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Lorlatinib is a moderate CYP3A4 inducer. Concomitant use with lorlatinib can increase norcodeine levels via increased CYP3A4 metabolism, resulting in decreased metabolism via CYP2D6 resulting in lower morphine levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Lovastatin: (Moderate) Barbiturates are significant hepatic CYP3A4 inducers. Monitor for potential reduced cholesterol-lowering efficacy when barbiturates are co-administered with HMG-CoA reductase inhibitors metabolized by CYP3A4 including lovastatin.
Low Molecular Weight Heparins: (Moderate) An additive risk of bleeding may be seen in patients receiving a low molecular weight heparin in combination with other agents known to increase the risk of bleeding such as salicylates. Monitor clinical and laboratory response closely during concurrent use.
Loxapine: (Moderate) Concomitant use of opioid agonists like codeine with loxapine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with loxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking loxapine. (Moderate) Loxapine can potentiate the actions of other CNS depressants, such as barbiturates. Caution should be exercised with simultaneous use of these agents due to potential excessive CNS effects.
Lumacaftor; Ivacaftor: (Moderate) Concomitant use of codeine with lumacaftor; ivacaftor can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If lumacaftor; ivacaftor is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Lumacaftor; ivacaftor is a strong CYP3A4 inducer.
Lumateperone: (Major) Avoid coadministration of lumateperone and butalbital as concurrent use may decrease lumateperone exposure which may reduce efficacy. Lumateperone is a CYP3A4 substrate; butalbital is a strong CYP3A4 inducer. Coadministration of lumateperone with a strong CYP3A inducer decreased lumateperone overall exposure by greater than 30-fold. (Moderate) Concomitant use of opioid agonists like codeine with lumateperone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with lumateperone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking lumateperone.
Lurasidone: (Contraindicated) Concurrent use of lurasidone with strong CYP3A4 inducers, such as barbiturates, is contraindicated. Lurasidone is primarily metabolized by CYP3A4. Decreased blood concentrations of lurasidone are expected when the drug is co-administered with strong inducers of CYP3A4. (Moderate) Concomitant use of opioid agonists like codeine with lurasidone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with lurasidone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking lurasidone.
Lurbinectedin: (Major) Avoid coadministration of lurbinectedin and butalbital due to the risk of decreased lurbinectedin exposure which may reduce its efficacy. Lurbinectedin is a CYP3A substrate and butalbital is a moderate CYP3A inducer.
Macimorelin: (Major) Avoid use of macimorelin with drugs that directly affect pituitary growth hormone secretion, such as salicylates. Healthcare providers are advised to discontinue salicylate therapy and observe a sufficient washout period before administering macimorelin. Use of these medications together may impact the accuracy of the macimorelin growth hormone test.
Magnesium Salicylate: (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Mannitol: (Major) In general, avoid use of mannitol and salicylates. Concomitant administration of nephrotoxic drugs, such as the salicylates, increases the risk of renal failure after administration of mannitol. However, mannitol promotes the urinary excretion of salicylates, and may be used as an adjunct in salicylate intoxication. (Minor) Mannitol promotes the urinary excretion of barbiturates, and it may be used as an adjunct in patients with barbiturate toxicity.
Maprotiline: (Major) Concomitant use of opioid agonists with maprotiline may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking maprotiline. Limit the use of opioid pain medications with maprotiline to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Major) Monitor for excessive sedation and somnolence during coadministration maprotiline and barbiturates. Concurrent use may result in additive CNS depression.
Maribavir: (Moderate) Concomitant use of codeine with maribavir may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of maribavir could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If maribavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Maribavir is a weak CYP3A inhibitor.
Mavacamten: (Contraindicated) Mavacamten is contraindicated for use with barbiturates due to risk for reduced mavacamten efficacy. Concomitant use decreases mavacamten exposure. Mavacamten is a CYP2C19 and CYP3A substrate and barbiturates are a moderate CYP2C19 inducer and strong CYP3A inducer. The impact that a CYP3A inducer may have on mavacamten overall exposure varies based on the patient's CYP2C19 metabolizer status. Concomitant use of a strong CYP3A inducer is predicted to decrease mavacamten overall exposure by 69% and 87% in poor and normal CYP2C19 metabolizers, respectively. (Moderate) Monitor for reduced efficacy of codeine and signs of opioid withdrawal in patients who have developed physical dependence if coadministration with mavacamten is necessary; consider increasing the dose of codeine as needed. It is recommended to avoid this combination when codeine is being used for cough. If mavacamten is discontinued, consider a dose reduction of codeine and frequently monitor for signs of respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Mavacamten is a moderate CYP3A inducer. Concomitant use with mavacamten can increase norcodeine levels via increased CYP3A metabolism, resulting in decreased metabolism via CYP2D6 resulting in lower morphine levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Measles Virus; Mumps Virus; Rubella Virus; Varicella Virus Vaccine, Live: (Major) No adverse events associated with the use of salicylates after varicella vaccination have been reported. However, the manufacturer of varicella virus vaccine live recommends the avoidance of salicylates or aspirin, ASA use for 6 weeks after vaccination. Reye's syndrome, which exclusively affects children under 15 years old, has been associated with aspirin use following active varicella infection. Vaccination with close clinical monitoring is recommended for children who require therapeutic aspirin, ASA therapy; according to the CDC the use of attenuated, live varicella virus vaccine is thought to present less risk than natural varicella disease to such children.
Mebendazole: (Moderate) Barbiturates induce hepatic microsomal enzymes and may increase the metabolism of mebendazole if given concomitantly. This effect can cause decreased levels of plasma mebendazole but is probably important only in the treatment of extraintestinal infections, such as hydatid cyst disease, and not in the treatment of intestinal helminths.
Meclizine: (Moderate) Additive CNS depression may occur if barbiturates are used concomitantly with meclizine.
Meclofenamate Sodium: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Mefenamic Acid: (Major) Increased adverse gastrointestinal (GI) effects are possible if mefenamic acid is used with salicylates. In addition, concomitant administration of salicylates and mefenamic acid may result in an increase in unbound plasma concentrations of either drug, which could result in greater adverse effects. In general, concomitant use of aspirin and mefenamic acid is not recommended.
Mefloquine: (Moderate) The barbiturates induce CYP3A4 and may increase the metabolism of mefloquine if coadministered. Concomitant administration can reduce the clinical efficacy of mefloquine, increasing the risk of Plasmodium falciparum resistance during treatment of malaria. Coadministration of mefloquine and barbiturates that are used as anticonvulsants may also result in lower than expected anticonvulsant concentrations and loss of seizure control. Monitoring of the anticonvulsant serum concentration, if the drug is monitored via therapeutic drug monitoring, is recommended. Mefloquine may cause CNS side effects that may cause seizures or alter moods or behaviors.
Meglitinides: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
Melatonin: (Major) Use caution when combining melatonin with other traditional sedatives and hypnotics, including the sedative barbiturates. Use of more than one agent for hypnotic purposes may increase the risk for over-sedation, CNS effects, or sleep-related behaviors. If a barbiturate is taken for seizure control, watch for changes in anticonvulsant activity. Be alert for unusual changes in moods or behaviors. Patients reporting unusual sleep-related behaviors likely should discontinue melatonin use. Additionally, melatonin exposure and efficacy may be reduced when combined with barbiturates such as phenobarbital, as barbiturates induce many CYP450 isoenzymes, including CYP1A2, the primary metabolic pathway for melatonin. (Moderate) Concomitant use of opioid agonists with melatonin may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking melatonin. Limit the use of opioid pain medications with melatonin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Caffeine is a central nervous system (CNS) stimulant. Patients taking melatonin for sleep should avoid caffeine-containing medications, dietary supplements, foods, and beverages close to bedtime, as well as excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep.
Meloxicam: (Major) Concomitant use of low dose aspirin or analgesic doses of aspirin and meloxicam is generally not recommended due to the increased risk of bleeding and renal impairment. Controlled clinical studies showed that the concomitant use of NSAIDs and analgesic doses of aspirin does not produce any greater therapeutic effect than the use of NSAIDs alone. In a clinical study, the concomitant use of an NSAID and aspirin was associated with a significantly increased incidence of GI adverse reactions as compared to use of the NSAID alone. Meloxicam is not a substitute for low dose aspirin for cardiovascular protection.
Meperidine: (Major) Concomitant use of meperidine with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of meperidine with a barbiturate may decrease meperidine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; meperidine is a CYP3A4 substrate.
Mepivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Meprobamate: (Major) Additive CNS depression may occur if barbiturates are used concomitantly with other anxiolytics, sedatives, and hypnotics like meprobamate. Caution should be exercised during concomitant use of anxiolytics, sedatives, and hypnotics and any barbiturate; dosage reduction of one or both agents may be necessary. (Moderate) Concomitant use of meprobamate with codeine can potentiate the effects of codeine, which may potentially lead to respiratory depression, CNS depression, sedation, or hypotensive responses. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of codeine and/or meprobamate may be recommended. Monitor patients for sedation and respiratory depression.
Metaproterenol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Metaxalone: (Major) Concomitant use of opioid agonists with metaxalone may cause respiratory depression, profound sedation, and death. Limit the use of opioid pain medication with metaxalone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking metaxalone. Educate patients about the risks and symptoms of respiratory depression and sedation. Consider prescribing naloxone for the emergency treatment of opioid overdose. Concomitant use of metaxalone and opioid agonists increases the risk for serotonin syndrome. Avoid concomitant use if possible and monitor for serotonin syndrome if use is necessary.
Metformin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Repaglinide: (Major) Coadministration of barbiturates and repaglinide may decrease the serum concentration of repaglinide; if coadministration is necessary, a dose increase of repaglinide may be necessary and increased frequency of blood glucose monitoring. Barbiturates are CYP3A4 inducers and repaglinide is a CYP3A4 substrate. Monitor for the possibility of reduced effectiveness of repaglinide and possible symptoms indicating hyperglycemia. (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar and may potentiate the effects of antidiabetic agents. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose or use of greater than maximum recommended daily dosages, salicylates can cause either hypoglycemia or hyperglycemia. Large doses of aspirin should be used cautiously in patients who receive antidiabetic agents.
Metformin; Rosiglitazone: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant thiazolidinedione and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Saxagliptin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant saxagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Metformin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant metformin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia. (Moderate) Monitor blood glucose during concomitant sitagliptin and salicylate use. Concomitant use may cause an increased blood glucose-lowering effect with risk of hypoglycemia.
Methadone: (Major) Concomitant use of methadone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concurrent use of methadone with a barbiturate may decrease methadone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. Monitor for signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates are inducers of CYP3A4, CYP2C9, and CYP2C19, isoenzymes partially responsible for the metabolism of methadone. (Major) Concomitant use of methadone with another CNS depressant can lead to additive respiratory depression, hypotension, profound sedation, or coma. Prior to concurrent use of methadone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Methadone should be used with caution and in reduced dosages if used concurrently with a CNS depressant; also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Methamphetamine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Avoid excessive caffeine intake during use of methamphetamine. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine. (Moderate) If concomitant use of codeine and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Methazolamide: (Major) Avoid the coadministration of high-dose salicylates and carbonic anhydrase inhibitors, like methazolamide, whenever possible. The combination yielded reports of anorexia, tachypnea, lethargy, metabolic acidosis, coma, and death. The mechanism appears to be accumulation of the carbonic anhydrase inhibitor, resulting in increased CNS depression and metabolic acidosis. The acidosis may allow greater CNS penetration of the salicylate. (Minor) Methazolamide can induce osteomalacia in patients treated chronically with barbiturates. Potential mechanisms for this interaction include a carbonic anhydrase inhibitor induced increase in the urinary excretion of calcium and an increase in barbiturate effects resulting from metabolic acidosis. Methazolamide can also increase the rate of excretion of weakly acidic drugs, such as barbiturates.
Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and hyoscyamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Methenamine; Sodium Salicylate: (Moderate) Due to high protein binding, salicylates could be displaced from binding sites, or could displace other highly protein-bound drugs such as barbiturates. An enhanced effect of the displaced drug may occur.
Methocarbamol: (Major) Concomitant use of opioid agonists with methocarbamol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with methocarbamol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking methocarbamol. (Moderate) Methocarbamol may cause additive CNS depression if used concomitantly with other CNS depressants such as barbiturates. Dosage reduction of one or both agents may be necessary.
Methohexital: (Major) Concomitant use of codeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when codeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of codeine with a barbiturate can decrease codeine concentrations, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of codeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration.
Methotrexate: (Major) Do not administer salicylates before or concomitantly with high doses of methotrexate, such as used in the treatment of osteosarcoma. Concomitant administration of some NSAIDs with high dose methotrexate therapy has been reported to elevate and prolong serum methotrexate concentrations, resulting in deaths from severe hematologic and gastrointestinal toxicity. Use caution when salicylates are administered concomitantly with lower doses of methotrexate. Salicylates have been reported to reduce the tubular secretion of methotrexate in an animal model and may enhance its toxicity. Methotrexate is partially bound to serum albumin, and toxicity may be increased because of displacement by salicylates.
Methscopolamine: (Moderate) CNS depression can be increased when methscopolamine is combined with other CNS depressants such as any anxiolytics, sedatives, and hypnotics. (Moderate) Monitor for signs of urinary retention or reduced gastric motility during concomitant codeine and methscopolamine use. Concomitant use may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Methsuximide: (Moderate) Barbiturates induce hepatic microsomal enzymes and may increase the hepatic metabolism of succinimides. This may lead to a decrease in succinimide plasma concentration and a reduction in half-life.
Methyclothiazide: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Methyldopa: (Moderate) Concomitant use of opioid agonists with methyldopa may cause excessive sedation and somnolence. Limit the use of opioid pain medication with methyldopa to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Methylene Blue: (Contraindicated) Codeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Methylphenidate Derivatives: (Moderate) Caffeine is a CNS stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Avoid excessive caffeine intake during use of methylphenidate or its derivatives. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine. (Moderate) If concomitant use of codeine and methylphenidate or its derivatives is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Methylprednisolone: (Moderate) Coadministration may result in decreased exposure to methylprednisolone. Butalbital is a CYP3A4 inducer; methylprednisolone is a CYP3A4 substrate. Monitor for decreased response to methylprednisolone during concurrent use.
Methylsulfonylmethane, MSM: (Moderate) It would be prudent for patients who take aspirin to avoid methylsulfonylmethane, MSM. Monitor patients who choose to take MSM while on aspirin therapy for bleeding. Patients taking MSM and anticoagulant drugs have reported increased anticoagulant effects such as increased bruising or blood in the stool.
Metoclopramide: (Moderate) The effects of metoclopramide on gastrointestinal motility are antagonized by narcotic analgesics. Concomitant use of opioid agonists with metoclopramide may also cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking metoclopramide. Limit the use of opioid pain medications with metoclopramide to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Combined use of metoclopramide and other CNS depressants, such as anxiolytics, sedatives, and hypnotics, can increase possible sedation. (Minor) Metoclopramide can increase the rate or extent of absorption of aspirin because of accelerated gastric emptying, which increases the contact time with the small bowel where this drug is absorbed.
Metolazone: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Metronidazole: (Minor) Barbiturates may decrease the half-life and plasma concentrations of metronidazole. The clinical significance of this effect is uncertain.
Metyrapone: (Moderate) Metyrapone may cause dizziness and/or drowsiness. Other drugs that may also cause drowsiness, such as barbiturates, should be used with caution. Additive drowsiness and/or dizziness is possible.
Metyrosine: (Moderate) The concomitant administration of metyrosine with barbiturates can result in additive sedative effects. (Moderate) The concomitant administration of metyrosine with opiate agonists can result in additive sedative effects.
Mexiletine: (Moderate) Mexiletine is an inhibitor of CYP1A2 isoenzymes, and may reduce CYP1A2-mediated caffeine metabolism. Mexiletine has been shown to increase caffeine concentrations by as much as 23 percent after a single 200 mg dose of mexiletine (nonsignificant increase, p<0.1). Another study has reported that the elimination of caffeine is decreased by 50 percent. While the clinical significance of this interaction is not known, elevated plasma caffeine levels may be of concern in patients with arrhythmias. Patients with cardiac arrhythmias on mexiletine should be cautioned to limit their intake of caffeine. (Moderate) While other hepatic enzyme inducers have been shown to accelerate the metabolism of mexiletine, no data are available regarding the effects of barbiturates on mexiletine. An interaction between barbiturates and mexiletine, however, may be possible.
Midazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Additive CNS and/or respiratory depression may occur. Additionally, barbiturates may increase the metabolism of midazolam. Midazolam is a CYP3A4 substrate. Barbiturates are CYP3A4 inducers.
Midodrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Mifepristone: (Moderate) Concomitant use of codeine with chronic mifepristone therapy may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of mifepristone could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If mifepristone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Mifepristone is a strong inhibitor of CYP3A4. The clinical significance of this interaction with the short-term use of mifepristone for termination of pregnancy is unknown.
Migalastat: (Moderate) Separate the administration of oral caffeine and migalastat by at least 2 hours if concomitant use is necessary. Simultaneous coadministration may decrease migalastat exposure and efficacy. Coadministration of 190 mg caffeine reduced the mean migalastat AUC by 55%.
Milnacipran: (Moderate) If concomitant use of codeine and milnacipran is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Minocycline: (Minor) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as barbiturates. Caution should be exercised when using these agents concurrently. (Minor) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as opiate agonists. Caution should be exercised when using these agents concurrently.
Mirabegron: (Moderate) Concomitant use of codeine with mirabegron may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of mirabegron could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If mirabegron is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Mirabegron is a moderate inhibitor of CYP2D6.
Mirtazapine: (Major) Concomitant use of opioid agonists with mirtazapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with mirtazapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking mirtazapine. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Major) Monitor for excessive sedation and somnolence during coadministration of mirtazapine and barbiturates. Concurrent use may result in additive CNS depression.
Mitapivat: (Major) Avoid coadministration of mitapivat with barbiturates due to decreased mitapivat efficacy. Coadministration decreases mitapivat concentrations. Mitapivat is a CYP3A substrate and barbiturates are strong CYP3A inducers. Coadministration with another strong CYP3A inducer decreased mitapivat overall exposure by 91% to 95%. (Moderate) Monitor for reduced efficacy of codeine and signs of opioid withdrawal in patients who have developed physical dependence if coadministration with mitapivat is necessary; consider increasing the dose of codeine as needed. It is recommended to avoid this combination when codeine is being used for cough. If mitapivat is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Mitapivat is a weak CYP3A inducer. Concomitant use with mitapivat can increase norcodeine levels via increased CYP3A metabolism, resulting in decreased metabolism via CYP2D6 resulting in lower morphine levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Mitotane: (Moderate) Concomitant use of codeine with mitotane can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If mitotane is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Mitotane is a strong CYP3A4 inducer. (Moderate) Mitotane can cause sedation, lethargy, vertigo, and other CNS side effects. Concomitant administration of mitotane and CNS depressants may cause additive CNS effects. Mitotane should be used cautiously with other drugs that may cause CNS depression including barbiturates.
Mobocertinib: (Major) Avoid concomitant use of mobocertinib and barbiturates. Coadministration may decrease mobocertinib exposure resulting in decreased efficacy. Mobocertinib is a CYP3A substrate and barbiturates are strong CYP3A inducers. Use of a strong CYP3A inducer is predicted to decrease the overall exposure of mobocertinib and its active metabolites by 92%. (Moderate) Monitor for reduced efficacy of codeine and signs of opioid withdrawal in patients who have developed physical dependence if coadministration with mobocertinib is necessary; consider increasing the dose of codeine as needed. It is recommended to avoid this combination when codeine is being used for cough. If mobocertinib is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A to norcodeine; norcodeine does not have analgesic properties. Mobocertinib is a weak CYP3A inducer. Concomitant use with mobocertinib can increase norcodeine levels via increased CYP3A metabolism, resulting in decreased metabolism via CYP2D6 resulting in lower morphine levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Modafinil: (Major) It is not clear how modafinil interacts with barbiturates like phenobarbital. Modafinil is partially metabolized by CYP3A4 and combined use with CYP3A4 inducers such as phenobarbital and other barbiturates may result in decreased modafinil efficacy. Barbiturates used for sleep could counteract the effect of modafinil on wakefulness, and would not ordinarily be prescribed. The potential effects of combining modafinil with anticonvulsant barbiturate medications are unclear. Many psychostimulants can reduce the seizure threshold, but it is not clear if modafinil can affect seizure control. (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Caffeine should be used cautiously with modafinil. Excessive intake should be limited. Excessive intake may cause nervousness, irritability, insomnia or other side effects. (Moderate) Concomitant use of codeine with modafinil can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If modafinil is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Modafinil is a moderate CYP3A4 inducer.
Moexipril: (Moderate) Aspirin, ASA may reduce the vasodilatory efficacy of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. This interaction has been documented primarily in heart failure patients. However, the established benefits of using aspirin in combination with an ACE inhibitor in patients with ischemic heart disease and left ventricular dysfunction generally outweigh this concern. Patients receiving concurrent salicylates and ACE inhibitor therapy should be monitored for antihypertensive or vasodilatory efficacy; the dose of the ACE inhibitor can be adjusted if indicated based on clinical evaluation.
Molindone: (Moderate) Concomitant use of opioid agonists like codeine with molindone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with molindone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking molindone.
Monoamine oxidase inhibitors: (Contraindicated) Codeine use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days due to a risk for serotonin syndrome or opioid toxicity, including respiratory depression. Concomitant use of codeine with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as codeine. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of alternate opioids to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Major) Excessive use of caffeine in any form should be avoided in patients receiving Monoamine oxidase inhibitors (MAOIs). Limit caffeine intake during MAOI use and for 1 to 2 weeks after discontinuation of any MAOI. The use of non-prescription medicines or dietary supplements containing caffeine should be avoided. Patients should try to avoid or limit the intake of all items containing caffeine such as tea, coffee, chocolate, and cola. Cardiac arrhythmias or severe hypertension may occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs if caffeine intake is excessive. (Major) The CNS effects of butalbital may be enhanced by monoamine oxidase (MAO) inhibitors. This may enhance drowsiness or dizziness. Barbiturates should generally be given at a reduced dose with an MAOI.
Morphine: (Major) Concomitant use of morphine with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. For extended-release morphine tablets (MS Contin and Morphabond), start with 15 mg every 12 hours. Morphine; naltrexone should be initiated at 1/3 to 1/2 the recommended starting dosage. Educate patients about the risks and symptoms of respiratory depression and sedation. (Major) Concomitant use of morphine with codeine can potentiate the effects of morphine on respiration, blood pressure, and alertness. Profound sedation and coma may also occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of morphine and/or codeine is recommended; for extended-release morphine products, start with the lowest possible dose of morphine (i.e., 15 mg PO every 12 hours, extended-release tablets; 30 mg or less PO every 24 hours; extended-release capsules). Monitor patients for sedation and respiratory depression.
Morphine; Naltrexone: (Major) Concomitant use of morphine with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. For extended-release morphine tablets (MS Contin and Morphabond), start with 15 mg every 12 hours. Morphine; naltrexone should be initiated at 1/3 to 1/2 the recommended starting dosage. Educate patients about the risks and symptoms of respiratory depression and sedation. (Major) Concomitant use of morphine with codeine can potentiate the effects of morphine on respiration, blood pressure, and alertness. Profound sedation and coma may also occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of morphine and/or codeine is recommended; for extended-release morphine products, start with the lowest possible dose of morphine (i.e., 15 mg PO every 12 hours, extended-release tablets; 30 mg or less PO every 24 hours; extended-release capsules). Monitor patients for sedation and respiratory depression.
Mycophenolate: (Moderate) Mycophenolic acid is more than 98% bound to albumin. Concurrent use of mycophenolate with salicylates can decrease the protein binding of mycophenolic acid resulting in an increase in the free fraction of MPA. Patients should be observed for increased clinical effects from mycophenolate as well as additive adverse effects.
Nabilone: (Major) Avoid coadministration of opioid agonists with nabilone due to the risk of additive CNS depression. (Major) Nabilone should not be taken with barbiturates or other sedative/hypnotic agents because these substances can potentiate the central nervous system effects of nabilone. Additive drowsiness and CNS depression can occur.
Nabumetone: (Major) The concurrent use of aspirin with other NSAIDs should be avoided because this may increase bleeding or lead to decreased renal function. The use of salicylates together with NSAIDs can also lead to additive GI toxicity.
Nafcillin: (Moderate) Concomitant use of codeine with nafcillin can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If nafcillin is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Nafcillin is a moderate CYP3A4 inducer. (Minor) Due to the high protein binding of aspirin, it could displace or be displaced from binding sites by other highly protein-bound drugs, such as penicillins. Also, aspirin may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. Overall, this combination should be used with caution and patients monitored for increased side effects.
Nalbuphine: (Major) Avoid the concomitant use of nalbuphine and opiate agonists, such as codeine. Nalbuphine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of acetaminophen; codeine. Nalbuphine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of nalbuphine opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist. (Moderate) Additive CNS depression may occur if barbiturates are used concomitantly with nalbuphine. Caution should be exercised during concomitant use of nalbuphine and any barbiturate. Dosage reduction of one or both agents may be necessary.
Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. An opiate antagonist should only be administered to a patient taking codeine with clinically significant respiratory or cardiovascular depression. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur.
Nanoparticle Albumin-Bound Paclitaxel: (Moderate) Monitor for decreased
How Supplied

Ascomp/Butalbital, Aspirin, Caffeine, Codeine Phosphate/Fiorinal with Codeine Oral Cap

Maximum Dosage
Adults

 300 mg/day butalbital; 1,950 mg aspirin/day; 240 mg caffeine/day; 180 mg codeine/day PO.

Geriatric

 300 mg/day butalbital; 1,950 mg aspirin/day; 240 mg caffeine/day; 180 mg codeine/day PO.

Adolescents

Safety and efficacy have not been established.

Children

12 years: Safety and efficacy have not been established.
1 to 11 years: Use is contraindicated.

Infants

Use is contraindicated.

Neonates

Use is contraindicated.

Mechanism Of Action

Butalbital, a barbiturate, is a gamma-aminobutyric acid type A (GABAA) receptor agonist and may inhibit excitatory AMPA receptors. Aspirin is a nonsteroidal anti-inflammatory drug (NSAID) and a non-selective irreversible inhibitor of cyclooxygenases. Caffeine is a methylxanthine and CNS stimulant; the effects of caffeine may be due to antagonism of adenosine receptors. Codeine sulfate is an opioid agonist relatively selective for the mu-opioid receptor, but with a much weaker affinity than morphine. The analgesic properties of codeine have been speculated to come from its conversion to morphine. Morphine is a full opioid agonist and is relatively selective for the mu-opioid receptor, although it can bind to other opioid receptors at higher doses. The principal therapeutic action of morphine is analgesia.

Pharmacokinetics

Butalbital; aspirin; caffeine; codeine is administered orally. The bioavailability of the components of the fixed combination of butalbital; aspirin; caffeine; codeine is identical to their bioavailability when administered separately in equivalent molar doses.
Butalbital: The bioavailability of the butalbital component of butalbital; aspirin; caffeine; codeine is equivalent to that of a solution except for a decrease in the rate of absorption. Butalbital is expected to distribute to most of the tissues in the body. The in vitro plasma protein binding of butalbital is 45% over the concentration range of 0.5 to 20 mcg/mL. The plasma-to-blood concentration ratio was almost unity indicating that there is no preferential distribution of butalbital into either plasma or blood cells. Elimination of butalbital is primarily via the kidney (59% to 88% of the dose) as unchanged drug or metabolites. Urinary excretion products included parent drug (about 3.6% of the dose), 5-isobutyl-5-(2,3-dihydroxypropyl) barbituric acid (about 24% of the dose), 5-allyl-5(3-hydroxy-2-methyl-1-propyl) barbituric acid (about 4.8% of the dose), products with the barbituric acid ring hydrolyzed with excretion of urea (about 14% of the dose), as well as unidentified materials. Of the material excreted in the urine, 32% was conjugated. The plasma half-life of butalbital is about 35 hours.
Aspirin: The bioavailability of the aspirin component of butalbital; aspirin; caffeine; codeine is equivalent to that of a solution except for a slower rate of absorption. During the absorption process and after absorption, aspirin is mainly hydrolyzed to salicylic acid and distributed to all body tissues and fluids, including the central nervous system (CNS); the highest concentrations are found in plasma, liver, renal cortex, heart, and lung. In plasma, about 50% to 80% of the salicylic acid and its metabolites are loosely bound to plasma proteins. The biotransformation of aspirin occurs primarily in the hepatocytes. The major metabolites are salicyluric acid (75%), the phenolic and acyl glucuronides of salicylate (15%), and gentisic and gentisuric acid (1%). The clearance of total salicylates is subject to saturable kinetics; however, first-order elimination kinetics are still a good approximation for doses up to 650 mg. The elimination of therapeutic doses is through the kidneys either as salicylic acid or other biotransformation products. The renal clearance is greatly augmented by an alkaline urine as is produced by concurrent administration of sodium bicarbonate or potassium citrate. The plasma half-life for aspirin is about 12 minutes and for salicylic acid and/or total salicylates is about 3 hours.
Caffeine: The bioavailability of the caffeine component for butalbital; aspirin; caffeine; codeine is equivalent to that of a solution except for a slightly longer time to peak. Like most xanthines, caffeine is rapidly absorbed and distributed in all body tissues and fluids, including the CNS. Caffeine is distributed in all body tissues and fluids, including the CNS. Caffeine is mainly metabolized by CYP1A2. Other enzymes, including CYP2E1, CYP3A4, CYP2C8 and CYP2C9 may play a minor role in its metabolism. Hepatic biotransformation prior to excretion results in about equal amounts of 1-methylxanthine and 1-methyluric acid. Caffeine is cleared rapidly through metabolism and excretion in the urine. Of the 70% of the dose that has been recovered in the urine, only 3% was unchanged drug. The plasma half-life of caffeine is about 3 hours.
Codeine: The bioavailability of the codeine component of butalbital; aspirin; caffeine; codeine is equivalent to that of a solution. It is rapidly distributed from the intravascular spaces to the various body tissues, with preferential uptake by parenchymatous organs such as the liver, spleen, and kidney. Codeine crosses the blood-brain barrier. The plasma concentration does not correlate with brain concentration or relief of pain, however, codeine is not bound to plasma proteins and does not accumulate in body tissues. About 70% to 80% of administered dose of codeine is metabolized by conjugation with glucuronic acid to codeine-6-glucuronide (C6G) and via O-demethylation to morphine (about 5% to 10%) and N-demethylation to norcodeine (about 10%) respectively. UDP-glucuronosyltransferase (UGT) 2B7 and 2B4 are the major enzymes mediating glucurodination of codeine to C6G. CYP2D6 is the major enzyme responsible for conversion of codeine to morphine and CYP3A4 is the major enzyme mediating conversion of codeine to norcodeine. Morphine and norcodeine are further metabolized by conjugation with glucuronic acid. The glucuronide metabolites of morphine are morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). Morphine and M6G are known to have analgesic activity in humans. The analgesic activity of C6G in humans is unknown. Norcodeine and M3G are generally not considered to possess analgesic properties. The elimination of codeine is primarily via the kidneys, and about 90% of an oral dose is excreted by the kidneys within 24 hours of dosing. The urinary secretion products consist of free and glucuronide-conjugated codeine (about 70%), free and conjugated norcodeine (about 10%), free and conjugated morphine (about 10%), normorphine (4%), and hydrocodone (1%). The remainder of the dose is excreted in the feces. The plasma half-life of codeine is about 2.9 hours.
 
Affected cytochrome P450 isoenzymes and drug transporters: CYP1A2, CYP2D6, CYP3A4
Caffeine is mainly metabolized by CYP1A2. Codeine is a CYP2D6 and CYP3A4 substrate. CYP2D6 is the major enzyme responsible for conversion of codeine to morphine, and CYP3A4 is the major enzyme mediating conversion of codeine to norcodeine.

Oral Route

Butalbital: Butalbital is well absorbed from the gastrointestinal tract. A peak concentration of 2,020 ng/mL is obtained at about 1.5 hours after a 100 mg dose.
Aspirin: The systemic availability of aspirin after an oral dose is highly dependent on the dosage form, the presence of food, the gastric emptying time, gastric pH, antacids, buffering agents, and particle size. These factors affect not necessarily the extent of absorption of total salicylates but more the stability of aspirin prior to absorption. A peak concentration of 8.8 mcg/mL was obtained at 40 minutes after a 650 mg dose.
Caffeine: Caffeine is readily absorbed. A peak concentration of 1,660 ng/mL was obtained in less than an hour for an 80 mg dose.
Codeine: Codeine is readily absorbed from the gastrointestinal tract. A peak concentration of 198 ng/mL was obtained at 1 hour after a 60 mg dose. At therapeutic doses, the analgesic effect reaches a peak within 2 hours and persists between 4 and 6 hours.

Pregnancy And Lactation
Pregnancy

Available data with butalbital; aspirin; caffeine; codeine use during pregnancy are insufficient to inform a drug associated risk for major birth defects and miscarriage. Withdrawal seizures were reported in a 2-day-old male infant whose mother had taken a butalbital-containing drug during the last 2 months of pregnancy. Butalbital was found in the infant's serum. The infant was given phenobarbital 5 mg/kg, which was tapered without further seizure or other withdrawal symptoms. Avoid aspirin use during the third trimester of pregnancy (starting at 30 weeks of gestation) due to the risk of premature closure of the fetal ductus arteriosus and persistent pulmonary hypertension in the neonate. If NSAID treatment is deemed necessary between 20 to 30 weeks of pregnancy, limit use to the lowest effective dose and shortest duration possible. Consider ultrasound monitoring of amniotic fluid if NSAID treatment extends beyond 48 hours. Discontinue the NSAID if oligohydramnios occurs and follow up according to clinical practice. These recommendations do not apply to low-dose 81 mg aspirin prescribed for certain conditions in pregnancy. Use of NSAIDs around 20 weeks gestation or later in pregnancy may cause fetal renal dysfunction leading to oligohydramnios, and in some cases, neonatal renal impairment. These adverse outcomes are seen, on average, after days to weeks of treatment, although oligohydramnios has been infrequently reported as soon as 48 hours after NSAID initiation. Oligohydramnios is often, but not always, reversible with treatment discontinuation. Complications of prolonged oligohydramnios may include limb contractures and delayed lung maturation. In some postmarketing cases of impaired neonatal renal function, invasive procedures such as exchange transfusion or dialysis were required. Salicylates have also been associated with alterations in maternal and neonatal hemostasis mechanisms, decreased birth weight, and perinatal mortality. Avoid aspirin 1 week prior to and during labor and obstetric delivery because it can result in excessive blood loss at delivery. Prolonged gestation and labor due to prostaglandin inhibition have been reported. Limit the use of caffeine-containing medications during pregnancy only when absolutely necessary. Neonatal arrhythmias (e.g., tachycardia, premature atrial contractions) and tachypnea have been reported when caffeine was consumed during pregnancy in amounts more than 500 mg/day. Caffeine withdrawal in the neonate after birth may account for these symptoms.[47012] [47014] Codeine is not recommended for use during and immediately before labor when other analgesic techniques are more appropriate. Opioids can prolong labor and obstetric delivery by temporarily reducing the strength, duration, and frequency of uterine contractions. This effect is not consistent and may be offset by an increased rate of cervical dilatation, which may shorten labor. Opioids cross the placenta and may produce respiratory depression and psycho-physiologic effects in the neonate. An opioid antagonist (e.g., naloxone) should be available for reversal of opioid-induced respiratory depression in the neonate. Further, prolonged maternal use of opioids during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). Monitor the exposed neonate for withdrawal symptoms, including irritability, hyperactivity and abnormal sleep pattern, high-pitched cry, tremor, vomiting, diarrhea, and failure to gain weight, and manage accordingly. Onset, duration, and severity of opioid withdrawal may vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination by the newborn. [55881] Guidelines recommend early universal screening of pregnant patients for opioid use and opioid use disorder at the first prenatal visit. Obtain a thorough history of substance use and review the Prescription Drug Monitoring Program to determine if patients have received prior prescriptions for opioids or other high-risk drugs such as benzodiazepines. Discuss the risks and benefits of opioid use during pregnancy, including the risk of becoming physiologically dependent on opioids, the possibility for NOWS, and how long-term opioid use may affect care during a future pregnancy.[64838] [64909] In women undergoing uncomplicated normal spontaneous vaginal birth, consider opioid therapy only if expected benefits for both pain and function are anticipated to outweigh risks to the patient. If opioids are used, use in combination with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate. Use immediate-release opioids instead of extended-release or long-acting opioids; order the lowest effective dosage and prescribe no greater quantity of opioids than needed for the expected duration of such pain severe enough to require opioids.[64909] For women using opioids for chronic pain, consider strategies to avoid or minimize the use of opioids, including alternative pain therapies (i.e., nonpharmacologic) and nonopioid pharmacologic treatments. Opioid agonist pharmacotherapy (e.g., methadone or buprenorphine) is preferable to medically supervised withdrawal in pregnant women with opioid use disorder.[64838]