Dilaudid

Browse PDR's full list of drug information

Dilaudid

Classes

Opioid Agonists

Administration
Oral Administration

Administer with food or milk to minimize gastrointestinal irritation.
Storage: Keep hydromorphone secured in a location not accessible by others.
Disposal: Flush unused hydromorphone down the toilet when it is no longer needed if a drug take-back option is not readily available.

Oral Solid Formulations

Extended-release tablets (Exalgo)
Discontinue all other extended-release opioids when beginning extended-release hydromorphone tablets.
Administer with or without food.
Do not crush, break, dissolve, or chew the tablets. If the tablets are not swallowed intact, a fatal dose of hydromorphone may be delivered.

Oral Liquid Formulations

Use a calibrated spoon or container to precisely measure each dose.
Carefully verify measured dose equals prescribed dose prior to administration.
May be diluted in fruit juice immediately prior to administration.

Injectable Administration

Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit. Slight yellowish discoloration may develop in the ampules and multiple-dose vials; no loss of potency has been demonstrated. The 10 mg/mL ampules are amber in color.
Choose product for use carefully. The 50 mg/5 mL ampules, the 500 mg/50 mL single-dose vials, and the lyophilized 250 mg single-dose vial are for use in the preparation of large volume parenteral solutions. Dilaudid-HP 10 mg/mL allows for a smaller injection volume as compared with less concentrated solutions. Discomfort associated with subcutaneous or IM administration may be minimized by giving the more concentrated solution.[49619]
Updates for coronavirus disease 2019 (COVID-19): The FDA is allowing hydromorphone 0.2 mg/mL, 1 mg/mL, 2 mg/mL, 4 mg/mL, and 10 mg/mL to be used beyond the labeled in-use time to help ensure access during COVID-related drug shortages. This period should be as short as possible, and for a maximum of 2 hours at room temperature or 4 hours when refrigerated. In-use time is defined as the maximum amount of time allowed to elapse between penetration of a closed-container system or after reconstitution of a lyophilized drug before patient administration.[65833]

Intravenous Administration

Do not penetrate the 500 mg/50 mL single-dose vial with a syringe. Instead, remove both the aluminum flip seal and the rubber stopper in a suitable work area such as under a laminar flow hood.
Reconstitute the lyophilized 250 mg single-dose vial immediately before use with 25 mL of Sterile Water for Injection to create a 10 mg/mL sterile solution.
Storage: No preservatives are in the vial; discard any unused product.
Reserve use of the highly concentrated injection (10 mg/mL) for patients who are tolerant to opioid agonists and currently require high dosages of an opioid agonist.
 
IV Push
Inject IV slowly over at least 2 to 3 minutes.
 
Continuous IV Infusion
NOTE: Hydromorphone is not FDA-approved for continuous IV infusion.
ASHP Recommended Standard Concentrations for Adult Continuous Infusions: 0.2 mg/mL, 1 mg/mL, or 5 mg/mL (for those with high dosage requirements).

Intramuscular Administration

Inject into a large muscle mass.

Subcutaneous Administration

Subcutaneous Injection
To minimize local adverse reactions, use a short 30-gauge needle.
Inject subcutaneously taking care not to inject intradermally.
 
Subcutaneous Infusion
NOTE: Hydromorphone is not FDA-approved for administration by subcutaneous infusion.
May be safely administered as highly concentrated solutions (30 to 45 mg/mL) as a subcutaneous infusion.
Any subcutaneous site may be used on a rotating basis. The subclavicular area and anterior chest wall are commonly used.
Use a 27-gauge pediatric butterfly needle; tape it into place.
Use an infusion pump device to provide the infusion. Maximal infusion rate is 2 mL/hour; irritation at the injection site is more common with rates of more than 1 mL/hour.
Inspect the infusion site twice daily for irritation.

Other Injectable Administration

Epidural Administration
NOTE: Hydromorphone is not FDA-approved for epidural administration.
This route of administration should only be used by specially trained health care professionals.
Before administration, an opioid antagonist and facilities for administration of oxygen and control of respiration should be available. The patient should be in a setting where adequate monitoring is possible.
Placement of epidural catheter and administration should be at a site near the dermatomes covering the field of pain to decrease dose requirements and increase specificity. Hydromorphone only produces segmental analgesic effects and should only be used when the catheter tip is close to the incisional dermatome.
 
Epidural Injection
NOTE: Use the preservative-free injection and a preservative-free 0.9% Sodium Chloride Injection to prepare epidural injections.
After ensuring proper placement of the needle or catheter, inject the appropriate dose into the epidural space. Monitor the patient for at least 24 hours after each dose.
 
Continuous Epidural Infusion
A controlled-infusion device must be used. For highly concentrated injections, an implantable controlled-microinfusion device is used. Monitor patients for several days after implantation of the device.
To avoid exacerbation of severe pain and/or reflux of CSF into the reservoir, avoid depletion of the reservoir.

Rectal Administration

Instruct patient on proper use of suppository.
Moisten the suppository with water prior to insertion. If suppository is to soft, run cold water over it before removing the wrapper.

Adverse Reactions
Severe

suicidal ideation / Delayed / 0-2.0
bronchospasm / Rapid / 0-2.0
GI obstruction / Delayed / 0-2.0
GI perforation / Delayed / 0-2.0
bezoar / Delayed / 0-2.0
bradycardia / Rapid / 0-2.0
visual impairment / Early / 0-2.0
anaphylactoid reactions / Rapid / 0-1.0
pancreatitis / Delayed / 0-1.0
seizures / Delayed / 0-1.0
laryngospasm / Rapid / Incidence not known
apnea / Delayed / Incidence not known
respiratory arrest / Rapid / Incidence not known
ileus / Delayed / Incidence not known
neonatal opioid withdrawal syndrome / Delayed / Incidence not known
biliary obstruction / Delayed / Incidence not known
cardiac arrest / Early / Incidence not known
SIADH / Delayed / Incidence not known
increased intracranial pressure / Early / Incidence not known
serotonin syndrome / Delayed / Incidence not known

Moderate

constipation / Delayed / 7.0-31.0
peripheral edema / Delayed / 2.0-5.0
esophagitis / Delayed / 4.0-4.0
depression / Delayed / 3.0-3.0
memory impairment / Delayed / 0-2.0
dyskinesia / Delayed / 0-2.0
hallucinations / Early / 0-2.0
hyperesthesia / Delayed / 0-2.0
dysarthria / Delayed / 0-2.0
dysphoria / Early / 0-2.0
encephalopathy / Delayed / 0-2.0
impaired cognition / Early / 0-2.0
hyperreflexia / Delayed / 0-2.0
euphoria / Early / 0-2.0
confusion / Early / 0-2.0
nystagmus / Delayed / 0-2.0
dysphagia / Delayed / 0-2.0
hemorrhoids / Delayed / 0-2.0
erythema / Early / 0-2.0
withdrawal / Early / 2.0-2.0
elevated hepatic enzymes / Delayed / 0-2.0
hyperamylasemia / Delayed / 0-2.0
sinus tachycardia / Rapid / 0-2.0
palpitations / Early / 0-2.0
blurred vision / Early / 0-2.0
urinary retention / Early / 0-2.0
dysuria / Early / 0-2.0
impotence (erectile dysfunction) / Delayed / 0-2.0
chest pain (unspecified) / Early / 2.0-2.0
hypokalemia / Delayed / 0-2.0
dehydration / Delayed / 0-2.0
hyperuricemia / Delayed / 0-2.0
myoclonia / Delayed / 0-1.0
tolerance / Delayed / Incidence not known
dyspnea / Early / Incidence not known
respiratory depression / Rapid / Incidence not known
physiological dependence / Delayed / Incidence not known
psychological dependence / Delayed / Incidence not known
hypertension / Early / Incidence not known
orthostatic hypotension / Delayed / Incidence not known
hypotension / Rapid / Incidence not known
infertility / Delayed / Incidence not known
hyponatremia / Delayed / Incidence not known
adrenocortical insufficiency / Delayed / Incidence not known
hyperalgesia / Delayed / Incidence not known

Mild

nausea / Early / 9.0-28.0
drowsiness / Early / 1.0-15.0
vomiting / Early / 6.0-14.0
headache / Early / 5.0-12.0
dizziness / Early / 2.0-11.0
asthenia / Delayed / 1.0-11.0
fatigue / Early / 1.0-11.0
diarrhea / Early / 3.0-8.0
pruritus / Rapid / 1.0-8.0
insomnia / Early / 3.0-7.0
anorexia / Delayed / 1.0-6.0
hyperhidrosis / Delayed / 1.0-6.0
arthralgia / Delayed / 2.0-6.0
abdominal pain / Early / 2.0-5.0
xerostomia / Early / 1.0-5.0
anxiety / Delayed / 2.0-4.0
dyspepsia / Early / 4.0-4.0
gastroesophageal reflux / Delayed / 4.0-4.0
back pain / Delayed / 3.0-4.0
rash / Early / 3.0-3.0
weight loss / Delayed / 1.0-3.0
agitation / Early / 0-2.0
paranoia / Early / 0-2.0
hypoesthesia / Delayed / 0-2.0
restlessness / Early / 0-2.0
tremor / Early / 0-2.0
paresthesias / Delayed / 0-2.0
appetite stimulation / Delayed / 0-2.0
eructation / Early / 0-2.0
increased urinary frequency / Early / 0-2.0
diplopia / Early / 0-2.0
miosis / Early / 0-2.0
xerophthalmia / Early / 0-2.0
libido decrease / Delayed / 0-2.0
malaise / Early / 0-2.0
fever / Early / 2.0-2.0
chills / Rapid / 0-2.0
hypothermia / Delayed / 0-2.0
myalgia / Early / 0-2.0
vertigo / Early / 0-2.0
tinnitus / Delayed / 0-2.0
lethargy / Early / Incidence not known
dysgeusia / Early / Incidence not known
urticaria / Rapid / Incidence not known
diaphoresis / Early / Incidence not known
flushing / Rapid / Incidence not known
syncope / Early / Incidence not known
amenorrhea / Delayed / Incidence not known
gonadal suppression / Delayed / Incidence not known
injection site reaction / Rapid / Incidence not known
weakness / Early / Incidence not known

Boxed Warning
Accidental exposure, alcoholism, depression, ensure correct formulation selection, opioid overdose, opioid use disorder, potential for overdose or poisoning, requires an experienced clinician, substance abuse

Opioid use requires an experienced clinician who is knowledgeable about the use of opioids, including the use of extended-release/long-acting opioids, and how to mitigate the associated risks. Opioids expose users to the risks of addiction, abuse, and misuse, which can occur at any dosage or duration. Although the risk of addiction in any individual is unknown, it can occur in persons appropriately prescribed opioids. Addiction can occur at recommended dosages and if the drug is misused or abused. Assess each individual's risk for opioid addiction, abuse, or misuse before prescribing an opioid, and monitor for the development of these behaviors or conditions. Risks are increased in persons with a personal or family history of substance abuse (including alcoholism) or mental illness (e.g., major depression). The potential for these risks should not prevent the proper management of pain in any given individual. Persons at increased risk may be prescribed opioids, but use in such persons necessitates intensive counseling about the risks and proper use of the opioid along with intensive monitoring for signs of addiction, abuse, and misuse. Abuse and addiction are separate and distinct from physical dependence and tolerance; persons with addiction may not exhibit tolerance and symptoms of physical dependence. Opioids are sought by drug abusers and persons with addiction disorders and are subject to criminal diversion. Abuse of opioids has the potential for overdose or poisoning and death. Consider these risks when prescribing or dispensing an opioid. Strategies to reduce these risks include prescribing the drug in the smallest appropriate quantity. Abuse or misuse of hydromorphone extended-release tablets by cutting, breaking, chewing, crushing, snorting, or injecting the dissolved product will result in the uncontrolled delivery of hydromorphone and can result in overdose and death. Dosing errors may result from confusion between mg and mL when prescribing, dispensing, and administering hydromorphone oral solution. Ensure that the dose is communicated clearly and dispensed accurately. Instruct patients on how to measure the dose and to use a calibrated oral dosing device. Also ensure electronic health record configurations have proper route of administration and dosage formulation compatibility to minimize the potential for errors that may lead to medication overdose. Do not confuse hydromorphone high potency injection with standard parenteral formulations of hydromorphone or other opioids as overdose and death could result; ensure correct formulation selection. Keep opioids out of the reach of pediatric persons, others for whom the drug was not prescribed, and pets as accidental exposure or improper use may cause respiratory failure and a fatal overdose. Accidental exposure of even a single dose of an opioid, especially by younger persons, can result in a fatal overdose. Because the risk of overdose increases as opioid dose increases, reserve titration to higher doses of an opioid for persons in whom lower doses are insufficiently effective and in whom the expected benefits of using a higher dose opioid clearly outweigh the substantial risks. Do not use immediate-release opioids for an extended period unless the pain remains severe enough to require an opioid and for which alternative treatment options continue to be inadequate. Many acute pain conditions (e.g., pain occurring with surgical procedures or acute musculoskeletal injuries) require no more than a few days of an opioid. Clinical guidelines on opioid prescribing for some acute pain conditions are available. Extended-release opioids are not intended for use in the management of acute pain or on an as-needed basis but rather only for the management of severe and persistent pain that requires an extended treatment period with a daily opioid and for which alternative treatment options are inadequate. Discuss the availability of naloxone with all persons and consider prescribing it in persons who are at increased risk of opioid overdose, such as persons who are also using other CNS depressants, who have a history of opioid use disorder (OUD), who have experienced a previous opioid overdose, or who have household members or other close contacts at risk for accidental exposure or opioid overdose.

Asthma, chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, cor pulmonale, hypoxemia, respiratory depression, respiratory insufficiency, sleep apnea

Hydromorphone is contraindicated in persons with significant respiratory depression and those with acute or severe asthma in an unmonitored setting or in the absence of resuscitative equipment. Avoid coadministration with other CNS depressants when possible, as this significantly increases the risk for profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of these drugs for use in persons for whom alternative treatment options are inadequate; if concurrent use is necessary, use the lowest effective dosages and minimum treatment durations needed. Monitor closely for signs or symptoms of respiratory depression and sedation. Persons with chronic obstructive pulmonary disease (COPD), cor pulmonale, respiratory insufficiency, hypoxemia, hypercapnia, or preexisting respiratory depression are at increased risk of decreased respiratory drive even at recommended doses. Persons with advanced age, cachexia, or debilitation are also at an increased risk for opioid-induced respiratory depression. Monitor such persons closely, particularly when initiating and titrating the opioid; consider the use of non-opioid analgesics. Opioids increase the risk of central sleep apnea (CSA) and sleep-related hypoxemia in a dose-dependent fashion. Consider decreasing the opioid dosage in persons with CSA. Respiratory depression, if left untreated, may cause respiratory arrest and death. Carbon dioxide retention from respiratory depression may also worsen opioid sedating effects. Management of respiratory depression may include observation, necessary supportive measures, and opioid antagonist use when indicated.

Labor, neonatal opioid withdrawal syndrome, obstetric delivery, pregnancy

There are no adequate and well-controlled studies of hydromorphone during pregnancy to inform a drug-associated risk for major birth defects or miscarriage. In animal reproduction studies, reduced postnatal survival of pups, developmental delays, and altered behavioral responses were observed after oral treatment of pregnant rats with hydromorphone during gestation and through lactation at doses 2.1 times the human daily dose (HDD) of 32 mg/day. Neural tube defects were noted after subcutaneous injection of hydromorphone to pregnant hamsters at doses 4.8 times the HDD, and soft tissue and skeletal abnormalities were noted after subcutaneous continuous infusion of 2.3 times the HDD to pregnant mice. Hydromorphone is not recommended for use during and immediately before labor when other analgesic techniques are more appropriate. Opioids can prolong labor and obstetric delivery by temporarily reducing the strength, duration, and frequency of uterine contractions. This effect is not consistent and may be offset by an increased rate of cervical dilatation, which may shorten labor. Opioids cross the placenta and may produce respiratory depression and psycho-physiologic effects in the neonate. Monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression. An opioid antagonist (e.g., naloxone) should be available for reversal of opioid-induced respiratory depression in the neonate. Further, prolonged maternal use of opioids during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). Monitor the exposed neonate for withdrawal symptoms, including irritability, hyperactivity and abnormal sleep pattern, high-pitched cry, tremor, vomiting, diarrhea, and failure to gain weight, and manage accordingly. Onset, duration, and severity of opioid withdrawal may vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination by the newborn. Guidelines recommend early universal screening of pregnant patients for opioid use and opioid use disorder at the first prenatal visit. Obtain a thorough history of substance use and review the Prescription Drug Monitoring Program to determine if patients have received prior prescriptions for opioids or other high-risk drugs such as benzodiazepines. Discuss the risks and benefits of opioid use during pregnancy, including the risk of becoming physiologically dependent on opioids, the possibility for NOWS, and how long-term opioid use may affect care during a future pregnancy.[64838] [64909] In women undergoing uncomplicated normal spontaneous vaginal birth, consider opioid therapy only if expected benefits for both pain and function are anticipated to outweigh risks to the patient. If opioids are used, use in combination with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate. Use immediate-release opioids instead of extended-release or long-acting opioids; order the lowest effective dosage and prescribe no greater quantity of opioids than needed for the expected duration of such pain severe enough to require opioids.[64909] For women using opioids for chronic pain, consider strategies to avoid or minimize the use of opioids, including alternative pain therapies (i.e., nonpharmacologic) and nonopioid pharmacologic treatments. Opioid agonist pharmacotherapy (e.g., methadone or buprenorphine) is preferable to medically supervised withdrawal in pregnant women with opioid use disorder.[64838]

Common Brand Names

Dilaudid, Dilaudid-HP, Exalgo, Simplist Dilaudid

Dea Class

Rx, schedule II

Description

Semisynthetic, phenanthrene opioid agonist
Immediate-release for moderate to severe pain; extended-release for continuous therapy for chronic severe pain in opioid-tolerant patients
More rapid onset compared to morphine

Dosage And Indications
For the treatment of severe pain. For the treatment of severe pain where treatment with an opioid is appropriate and for which alternative treatments are inadequate. Oral dosage (immediate-release tablets) Adults

2 to 4 mg PO every 4 to 6 hours as needed, initially. Titrate dose to achieve adequate analgesia. Administer doses around-the-clock for chronic pain. A supplemental dose of 5% to 15% of the total daily usage may be administered every 2 hours as needed.

Children† and Adolescents† weighing 50 kg or more

2 to 4 mg PO every 3 to 4 hours as needed. Titrate to pain relief.

Infants†, Children†, and Adolescents† 6 months to 17 years weighing less than 50 kg

0.04 to 0.08 mg/kg PO every 3 to 4 hours as needed. Titrate to pain relief.

Oral dosage (immediate-release solution) Adults

2.5 to 10 mg PO every 3 to 6 hours as needed, initially. Titrate dose to achieve adequate analgesia. Administer doses around-the-clock for chronic pain. A supplemental dose of 5% to 15% of the total daily usage may be administered every 2 hours as needed.

Children† and Adolescents† weighing 50 kg or more

2 to 4 mg PO every 3 to 4 hours as needed. Titrate to pain relief.

Infants†, Children†, and Adolescents† 6 months to 17 years weighing less than 50 kg

0.04 to 0.08 mg/kg PO every 3 to 4 hours as needed. Titrate to pain relief.

Oral dosage (immediate-release tablets) for conversion from other opioids Adults

1 to 2 mg PO every 4 to 6 hours as needed, initially. Titrate dose to achieve adequate analgesia. Administer doses around-the-clock for chronic pain. A supplemental dose of 5% to 15% of the total daily usage may be administered every 2 hours as needed.

Oral dosage (immediate-release solution) for conversion from other opioids Adults

1.25 to 5 mg PO every 3 to 6 hours as needed, initially. Titrate dose to achieve adequate analgesia. Administer doses around-the-clock for chronic pain. A supplemental dose of 5% to 15% of the total daily usage may be administered every 2 hours as needed.

Intravenous dosage

NOTE: The 10 mg/mL high potency injection (Dilaudid HP) should be given only to patients who are opioid-tolerant.

Adults

0.2 to 1 mg IV every 2 to 3 hours as needed, initially. Titrate dose to achieve adequate analgesia.

Older Adults

0.2 mg IV every 2 to 3 hours as needed, initially. Titrate dose to achieve adequate analgesia.

Children† and Adolescents† weighing 50 kg or more

0.2 to 1 mg IV every 2 to 4 hours or 0.3 mg/hour continuous IV infusion. Opioid-naive patients will require lower dosages. Titrate to pain relief.

Infants†, Children†, and Adolescents† 6 months to 17 years weighing less than 50 kg

0.015 to 0.02 mg/kg IV every 2 to 4 hours as needed or 0.006 mg/kg/hour continuous IV infusion in opioid-naive patients. Titrate to pain relief.

Intramuscular or Subcutaneous dosage Adults

1 to 2 mg IM or subcutaneously every 2 to 3 hours as needed, initially. Titrate dose to achieve adequate analgesia.

Children† and Adolescents† weighing 50 kg or more

1 mg subcutaneously every 2 to 4 hours as needed in opioid-naive patients. Titrate to pain relief.

Infants†, Children†, and Adolescents† 6 months to 17 years weighing less than 50 kg

0.015 to 0.02 mg/kg subcutaneously every 2 to 4 hours as needed in opioid-naive patients. Titrate to pain relief.

Intravenous dosage (patient-controlled analgesia, PCA†) Adults

0.2 to 0.4 mg IV demand dose with a 6 to 10 minute lockout for opioid-naive patients. A continuous basal infusion of up to 0.4 mg/hour IV may be considered but is not recommended for initial programming. Titrate to pain relief. In a comparative study, the amount of morphine or hydromorphone consumed over a 24-hour period by opioid naive patients was similar; a ratio of 5:1 (morphine: hydromorphone) was used to calculate morphine equivalents. The mean amount of hydromorphone receipt over 24 hours was 9.98 +/- 1.56 mg (morphine equivalent of 49.9 +/- 7.8 mg).

Rectal dosage (suppository) Adults

3 mg rectally every 6 to 8 hours as needed. Titrate to pain relief.

Epidural dosage† Adults

Doses ranging from 0.75 to 1.5 mg epidurally have been used as post-operative analgesia and as part of patient-controlled epidural analgesia. Continuous infusion initial rates of 0.1 to 0.2 mg/hour have been used; rates should be based upon the patient's pain requirements and tolerance. Hydromorphone has also been administered as an epidural PCA with lower dosage requirements than continuous epidural infusions.

For the treatment of persistent, severe pain that requires an extended treatment period with a daily opioid and for which alternative treatments are inadequate.
NOTE: Extended-release hydromorphone should be reserved for patients in whom alternative treatment options (e.g., non-opioid analgesics or immediate-release opioids) are ineffective, not tolerated, or would otherwise provide inadequate pain management. Discontinue all other around-the-clock opioid drugs upon initiation of hydromorphone extended-release tablets.
NOTE: Opioid-tolerant patients are defined as those taking, for a minimum of 1 week, 60 mg or more oral morphine daily, 30 mg or more oral oxycodone daily, 8 mg or more oral hydromorphone daily, 25 mg or more oral oxymorphone daily, 25 mcg or more transdermal fentanyl per hour, 60 mg or more oral hydrocodone daily, or an equivalent dose of another opioid.
Oral dosage (extended-release) for conversion from other oral hydromorphone formulations Adults

Convert to equivalent total daily hydromorphone dose and give PO once daily. Titrate dose by 4 to 8 mg as appropriate every 3 to 4 days.

Oral dosage (extended-release) for conversion from transdermal fentanyl patch Adults

Calculate the total daily dose of hydromorphone extended-release oral tablet using a conversion factor of 12 mg hydromorphone extended-release oral tablet for each 25 mcg/hour fentanyl transdermal patch. Start hydromorphone extended-release oral tablet at 50% of converted dose and give PO daily beginning 18 hours after removal of the fentanyl patch. Round down the dose, if necessary, to the appropriate available strength of hydromorphone extended-release tablets. Titrate dose by 4 to 8 mg as appropriate every 3 to 4 days.

Oral dosage (extended-release) for conversion from other oral opioids Adults

Calculate the total daily dose(s) of prior opioid(s), then using conversion factor, determine total daily extended-release hydromorphone dose. If regimen includes more than 1 opioid, sum converted totals. Start hydromorphone extended-release oral tablet at 50% of converted dose and give PO daily. Round down the dose, if necessary, to the appropriate available strength of hydromorphone extended-release tablets. Titrate dose by 4 to 8 mg as appropriate every 3 to 4 days. Use extreme caution when converting patients from methadone as the potency ratio between methadone and other opioid agonists can vary widely.

For analgesia and/or sedation maintenance† in mechanically-ventilated intensive care patients. Intermittent Intravenous dosage Adults

0.2 to 0.6 mg IV every 1 to 2 hours as needed; may increase dose to extend dosing interval, 0.5 mg IV every 3 hours as needed.[57161] [65297]

Continuous Intravenous Infusion dosage Adults

0.5 to 3 mg/hour continuous IV infusion.

†Indicates off-label use

Dosing Considerations
Hepatic Impairment

Immediate-release and parenteral dosage forms: Reduce the initial dose by 50% to 75% in moderate (Child-Pugh class B) hepatic impairment. No specific recommendations are available for persons with severe hepatic impairment (Child-Pugh class C); a more conservative initial dose may be necessary.
Extended-release tablets: Reduce the initial dose by 75% in moderate (Child-Pugh class B) hepatic impairment. Use an alternative analgesic in persons with severe hepatic impairment.

Renal Impairment

Immediate-release and parenteral dosage forms: Reduce the initial dose by 50% to 75% in moderate (CrCl 40 to 60 mL/minute) or severe (CrCl less than 30 mL/minute) renal impairment, depending on the degree of impairment.
Extended-release tablets: Reduce the initial dose by 50% in moderate renal impairment (CrCl 40 to 60 mL/minute) and 75% in severe renal impairment (CrCl less than 30 mL/minute); consider use of an alternative analgesic in persons with severe renal impairment.

Drug Interactions

Acetaminophen; Aspirin; Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Caffeine; Dihydrocodeine: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Codeine: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Acetaminophen; Dextromethorphan; Doxylamine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Hydrocodone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists like hydrocodone, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Acetaminophen; Oxycodone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Acetaminophen; Pamabrom; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acrivastine; Pseudoephedrine: (Major) Avoid coadministration of opioid agonists with acrivastine due to the risk of additive CNS depression.
Aldesleukin, IL-2: (Moderate) Aldesleukin, IL-2 may affect CNS function significantly. Therefore, psychotropic pharmacodynamic interactions could occur following concomitant administration of drugs with significant CNS or psychotropic activity such as opiate agonists. In addition, aldesleukin, IL-2, is a CYP3A4 inhibitor and may increase oxycodone plasma concentrations and related toxicities including potentially fatal respiratory depression. If therapy with both agents is necessary, monitor patients for an extended period and adjust oxycodone dosage as necessary.
Alfentanil: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Almotriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Alosetron: (Major) Patients taking medications that decrease GI motility may be at greater risk for serious complications from alosetron, like constipation, via a pharmacodynamic interaction. Constipation is the most frequently reported adverse effect with alosetron. Alosetron, if used with drugs such as opiate agonists, may seriously worsen constipation, leading to events such as GI obstruction/impaction or paralytic ileus.
Alprazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Alvimopan: (Moderate) Patients should not take alvimopan if they have received therapeutic doses of opiate agonists for more than seven consecutive days immediately before initiation of alvimopan therapy. Patients recently exposed to opioids are expected to be more sensitive to the effects of mu-opioid receptor antagonists and may experience adverse effects localized to the gastrointestinal tract such as abdominal pain, nausea, vomiting, and diarrhea.
Amide local anesthetics: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Amiloride: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when amiloride is administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when amiloride is administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Amitriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Amobarbital: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Amoxapine: (Major) Concomitant use of opioid agonists with amoxapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with amoxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Amphetamine: (Moderate) If concomitant use of hydromorphone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Amphetamine; Dextroamphetamine: (Moderate) If concomitant use of hydromorphone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Amphetamines: (Moderate) If concomitant use of hydromorphone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Anticholinergics: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydromorphone is used concomitantly with an anticholinergic drug. The concomitant use of hydromorphone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Apomorphine: (Major) Concomitant use of opioid agonists with apomorphine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with apomorphine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like apomorphine have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Apraclonidine: (Minor) Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as opiate agonists. Although no specific drug interactions were identified with systemic agents and apraclonidine during clinical trials, apraclonidine can cause dizziness and somnolence.
Aripiprazole: (Moderate) Concomitant use of opioid agonists with aripiprazole may cause excessive sedation and somnolence. Limit the use of opioid pain medications with aripiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Articaine; Epinephrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Asenapine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Aspirin, ASA; Butalbital; Caffeine: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Aspirin, ASA; Caffeine; Orphenadrine: (Major) Concomitant use of opioid agonists with orphenadrine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with orphenadrine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations.
Aspirin, ASA; Carisoprodol: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations.
Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids. (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations.
Aspirin, ASA; Oxycodone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Atenolol; Chlorthalidone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Atropine; Difenoxin: (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events.
Azelastine: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Azelastine; Fluticasone: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Azilsartan; Chlorthalidone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Baclofen: (Major) Concomitant use of opioid agonists with baclofen may cause excessive sedation and somnolence. Limit the use of opioid pain medications with baclofen to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations.
Barbiturates: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Belladonna; Opium: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Benzhydrocodone; Acetaminophen: (Major) Concomitant use of opioid agonists with benzhydrocodone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of benzhydrocodone with opioid agonists to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If benzhydrocodone is initiated in a patient taking hydromorphone, reduce initial dosage and titrate to clinical response. If hydromorphone is prescribed in a patient taking benzhydrocodone, use a lower initial dose of hydromorphone and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of benzhydrocodone and hydromorphone because of the potential risk of serotonin syndrome. Discontinue benzhydrocodone if serotonin syndrome is suspected. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Avoid concomitant use of hydromorphone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Benzphetamine: (Moderate) If concomitant use of hydromorphone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Bethanechol: (Moderate) Bethanechol facilitates intestinal and bladder function via parasympathomimetic actions. Opiate agonists impair the peristaltic activity of the intestine. Thus, these drugs can antagonize the beneficial actions of bethanechol on GI motility.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bismuth Subsalicylate: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Brexanolone: (Moderate) Concomitant use of brexanolone with CNS depressants like the opiate agonists may increase the likelihood or severity of adverse reactions related to sedation and additive CNS depression. Monitor for excessive sedation, dizziness, and a potential for loss of consciousness during brexanolone use.
Brexpiprazole: (Major) Concomitant use of opioid agonists with brexpiprazole may cause excessive sedation and somnolence. Limit the use of opioid pain medications with brexpiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Brimonidine: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brimonidine; Brinzolamide: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brimonidine; Timolol: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brompheniramine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Phenylephrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Bumetanide: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Bupivacaine Liposomal: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Epinephrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Lidocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Meloxicam: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Buprenorphine: (Major) Buprenorphine is a mixed opiate agonist/antagonist with strong affinity for the mu-receptor that may partially block the effects of full mu-receptor opiate agonists and reduce analgesic effects. In some cases of acute pain, trauma, or during surgical management, opiate-dependent patients receiving buprenorphine maintenance therapy may require concurrent treatment with opiate agonists, such as hydromorphone. In these cases, health care professionals must exercise caution in opiate agonist dose selection, as higher doses of an opiate agonist may be required to compete with buprenorphine at the mu-receptor. Management strategies may include adding a short-acting opiate agonist to achieve analgesia in the presence of buprenorphine, discontinuation of buprenorphine and use of an opiate agonist to avoid withdrawal and achieve analgesia, or conversion of buprenorphine to methadone while using additional opiate agonists if needed. Closely monitor patients for CNS or respiratory depression. When buprenorphine is used for analgesia, avoid co-use with opiate agonists. Buprenorphine may cause withdrawal symptoms in patients receiving chronic opiate agonists as well as possibly potentiate CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Buprenorphine; Naloxone: (Major) Buprenorphine is a mixed opiate agonist/antagonist with strong affinity for the mu-receptor that may partially block the effects of full mu-receptor opiate agonists and reduce analgesic effects. In some cases of acute pain, trauma, or during surgical management, opiate-dependent patients receiving buprenorphine maintenance therapy may require concurrent treatment with opiate agonists, such as hydromorphone. In these cases, health care professionals must exercise caution in opiate agonist dose selection, as higher doses of an opiate agonist may be required to compete with buprenorphine at the mu-receptor. Management strategies may include adding a short-acting opiate agonist to achieve analgesia in the presence of buprenorphine, discontinuation of buprenorphine and use of an opiate agonist to avoid withdrawal and achieve analgesia, or conversion of buprenorphine to methadone while using additional opiate agonists if needed. Closely monitor patients for CNS or respiratory depression. When buprenorphine is used for analgesia, avoid co-use with opiate agonists. Buprenorphine may cause withdrawal symptoms in patients receiving chronic opiate agonists as well as possibly potentiate CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Bupropion: (Moderate) Excessive use of opioid agonists (e.g., opiate addiction) is associated with an increased seizure risk; seizures may be more likely to occur during concurrent use of bupropion in these patients since bupropion is associated with a dose-related risk of seizures.
Bupropion; Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. Opiate antagonists should not be administered in the absence of clinically significant respiratory or circulatory depression secondary to hydromorphone. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur. (Moderate) Excessive use of opioid agonists (e.g., opiate addiction) is associated with an increased seizure risk; seizures may be more likely to occur during concurrent use of bupropion in these patients since bupropion is associated with a dose-related risk of seizures.
Buspirone: (Moderate) Concomitant use of CNS depressants, such as buspirone, can potentiate the effects of hydromorphone, which may potentially lead to respiratory depression, CNS depression, sedation, or hypotensive responses. If concurrent use of codeine and buspirone is imperative, reduce the dose of one or both drugs.
Butabarbital: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Butalbital; Acetaminophen: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Butalbital; Acetaminophen; Caffeine: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Butalbital; Aspirin; Caffeine; Codeine: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Butorphanol: (Major) Avoid the concomitant use of butorphanol and opiate agonists, such as hydromorphone. Butorphanol is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects. Butorphanol may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of butorphanol with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Calcium, Magnesium, Potassium, Sodium Oxybates: (Major) Concomitant use of opioid agonists with sodium oxybate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with sodium oxybate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Cannabidiol: (Moderate) Concomitant use of opioid agonists with cannabidiol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cannabidiol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Capsaicin; Metaxalone: (Major) Concomitant use of opioid agonists with metaxalone may cause respiratory depression, profound sedation, and death. Limit the use of opioid pain medication with metaxalone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Consider prescribing naloxone for the emergency treatment of opioid overdose. Concomitant use of metaxalone and opioid agonists increases the risk for serotonin syndrome. Avoid concomitant use if possible and monitor for serotonin syndrome if use is necessary.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Carbinoxamine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Cariprazine: (Moderate) Concomitant use of opioid agonists like hydromorphone with cariprazine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cariprazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Carisoprodol: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations.
Celecoxib; Tramadol: (Major) Concomitant use of tramadol with hydromorphone may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome, seizures, and anticholinergic effects. Limit the use of opioid pain medications to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Cenobamate: (Moderate) Concomitant use of hydromorphone with cenobamate may cause excessive sedation and somnolence. Limit the use of hydromorphone with cenobamate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Cetirizine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Cetirizine; Pseudoephedrine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Chlophedianol; Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorcyclizine: (Moderate) Concomitant use of opioid agonists with chlorcyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorcyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlordiazepoxide: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; f

or hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Chlordiazepoxide; Amitriptyline: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Chlordiazepoxide; Clidinium: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Chloroprocaine: (Minor) Due to the CNS depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists.
Chlorothiazide: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Chlorpheniramine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Codeine: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Hydrocodone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists like hydrocodone, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Phenylephrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpromazine: (Major) Concomitant use of opioid agonists with chlorpromazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorpromazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorthalidone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Chlorthalidone; Clonidine: (Major) Concomitant use of opioid agonists with clonidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clonidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Chlorzoxazone: (Major) Concomitant use of opioid agonists with chlorzoxazone may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorzoxazone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations.
Clemastine: (Moderate) Concomitant use of opioid agonists with clemastine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clemastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Clobazam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Clomipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Clonazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Clonidine: (Major) Concomitant use of opioid agonists with clonidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clonidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Clopidogrel: (Moderate) Coadministration of opioid agonists, such as hydromorphone, delay and reduce the absorption of clopidogrel resulting in reduced exposure to active metabolites and diminished inhibition of platelet aggregation. Consider the use of a parenteral antiplatelet agent in acute coronary syndrome patients requiring an opioid agonist. Coadministration of intravenous morphine decreased the Cmax and AUC of clopidogrel's active metabolites by 34%. Time required for maximal inhibition of platelet aggregation (median 3 hours vs. 1.25 hours) was significantly delayed; times up to 5 hours were reported. Inhibition of platelet plug formation was delayed and residual platelet aggregation was significantly greater 1 to 4 hours after morphine administration.
Clorazepate: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Clozapine: (Moderate) Concomitant use of hydromorphone with other central nervous system (CNS) depressants can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Examples of drugs associated with CNS depression include clozapine. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Codeine: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Codeine; Guaifenesin: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Codeine; Guaifenesin; Pseudoephedrine: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Codeine; Phenylephrine; Promethazine: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids. (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Codeine; Promethazine: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids. (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
COMT inhibitors: (Major) Concomitant use of opioid agonists with COMT inhibitors may cause excessive sedation and somnolence. Limit the use of opioid pain medications with COMT inhibitors to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Crofelemer: (Moderate) Pharmacodynamic interactions between crofelemer and opiate agonists are theoretically possible. Crofelemer does not affect GI motility mechanisms, but does have antidiarrheal effects. Patients taking medications that decrease GI motility, such as opiate agonists, may be at greater risk for serious complications from crofelemer, such as constipation with chronic use. Use caution and monitor GI symptoms during coadministration.
Cyclizine: (Moderate) Concomitant use of opioid agonists with cyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Cyclobenzaprine: (Major) Concomitant use of opioid agonists with cyclobenzaprine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cyclobenzaprine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Cyproheptadine: (Moderate) Concomitant use of opioid agonists with cyproheptadine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cyproheptadine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dantrolene: (Major) Concomitant use of opioid agonists with dantrolene may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid agonists with dantrolene to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations.
Daridorexant: (Major) Concomitant use of opiate agonists with daridorexant may cause excessive sedation and somnolence. Limit the use of opiates with daridorexant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Avoid prescribing cough medicines that contain opiates in patients taking daridorexant.
Darifenacin: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when darifenacin, an anticholinergic drug for overactive bladder, is used with opiate agonists. The concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known.
Delavirdine: (Major) Delavirdine is a potent inhibitor of CYP3A4 and an inhibitor (in vitro) of CYP2D6, CYP2C9, and CYP2C19. Therefore, delavirdine may alter the response to various opiate agonists. Increased concentrations of the CYP substrates alfentanil, fentanyl, hydrocodone, morphine, sufentanil, and oxycodone may be noted. Due the potential for increased formation of neurotoxic metabolites, concurrent use of delavirdine and meperidine or propoxyphene is not recommended. Delavirdine may decrease the efficacy of codeine-containing analgesics by inhibiting the conversion of codeine to morphine via CYP2D6. Delavirdine may also inhibit the metabolism of methadone, requiring a decrease in methadone doses.
Desflurane: (Moderate) Concurrent use with opiate agonists can decrease the minimum alveolar concentration (MAC) of desflurane needed to produce anesthesia.
Desipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Desmopressin: (Major) Additive hyponatremic effects may be seen in patients treated with desmopressin and drugs associated with water intoxication, hyponatremia, or SIADH including opiate agonists. Use combination with caution, and monitor patients for signs and symptoms of hyponatremia.
Deutetrabenazine: (Major) Concomitant use of opiate agonists with deutetrabenazine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with deutetrabenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking deutetrabenazine, use an initial dose of hydromorphone at 1/3 to 1/2 the usual dosage and titrate to clinical response. If deutetrabenazine is prescribed for a patient taking an opiate agonist, use a lower initial dose of deutetrabenazine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexbrompheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexchlorpheniramine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexmedetomidine: (Moderate) Concomitant use of opioid agonists with dexmedetomidine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with dexmedetomidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dextroamphetamine: (Moderate) If concomitant use of hydromorphone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Dextromethorphan; Bupropion: (Moderate) Excessive use of opioid agonists (e.g., opiate addiction) is associated with an increased seizure risk; seizures may be more likely to occur during concurrent use of bupropion in these patients since bupropion is associated with a dose-related risk of seizures.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. If parental diazepam is used with an opiate agonist, reduce the opiate agonist dosage by at least 1/3. Educate patients about the risks and symptoms of respiratory depression and sedation.
Difelikefalin: (Major) Avoid concomitant use of opioids and other CNS depressants, such as difelikefalin. Concomitant use can increase the risk of respiratory depression, hypotension, profound sedation, and death. If alternate treatment options are inadequate and coadministration is necessary, limit dosages and durations to the minimum required, monitor patients closely for respiratory depression and sedation, and consider prescribing naloxone for the emergency treatment of opioid overdose.
Dimenhydrinate: (Moderate) Concomitant use of opioid agonists with dimenhydrinate may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dimenhydrinate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenhydramine; Ibuprofen: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenhydramine; Naproxen: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenhydramine; Phenylephrine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenoxylate; Atropine: (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events.
Dolasetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Doxepin: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Doxylamine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Doxylamine; Pyridoxine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Dronabinol: (Moderate) Concomitant use of opioid agonists with dronabinol may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dronabinol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Droperidol: (Major) Concomitant use of opioid agonists with droperidol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with droperidol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Eletriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Eluxadoline: (Major) Avoid use of eluxadoline with medications that may cause constipation, such as hydromorphone. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle within the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Closely monitor for increased side effects if these drugs are administered together.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Escitalopram: (Moderate) Escitalopram modestly inhibits metabolism via the CYP2D6 pathway. Theoretically, this can result in increased concentrations of drugs metabolized via the same pathway, including hydromorphone.
Esketamine: (Major) Concomitant use of opioid agonists with esketamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with esketamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Patients who have received a dose of esketamine should be instructed not to drive or engage in other activities requiring complete mental alertness until the next day after a restful sleep. Educate patients about the risks and symptoms of excessive CNS depression.
Estazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Eszopiclone: (Moderate) Concomitant use of hydromorphone with eszopiclone can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. In addition, the risk of next-day psychomotor impairment is increased during co-administration of eszopiclone and other CNS depressants, which may decrease the ability to perform tasks requiring full mental alertness such as driving. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with eszopiclone, a reduced dosage of hydromorphone and/or eszopiclone is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Ethacrynic Acid: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Ethanol: (Major) Advise patients to avoid alcohol consumption while taking opioids. Alcohol consumption may result in additive CNS depression and may increase the risk for opioid overdose. Consider the patient's use of alcohol when prescribing opioid medications. If the patient is unlikely to be compliant with avoiding alcohol, consider prescribing naloxone especially if additional risk factors for opioid overdose are present.
Ethotoin: (Moderate) Additive CNS depression could be seen with the combined use of the hydantoin and opiate agonists. Methadone is a primary substrate for the CYP3A4 isoenzyme. Serum concentrations of methadone may decrease due to CYP3A4 induction by phenytoin; withdrawal symptoms may occur.
Fenfluramine: (Moderate) Concomitant use of opioid agonists with fenfluramine may cause excessive sedation and somnolence. Limit the use of opioid agonists with fenfluramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Fentanyl: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Fesoterodine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when fesoterodine, an anticholinergic drug for overactive bladder is used with opiate agonists. The concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known.
Flibanserin: (Moderate) Concomitant use of opioid agonists with flibanserin may cause excessive sedation and somnolence. Limit the use of opioid pain medication with flibanserin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Fluoxetine: (Major) Fluoxetine may inhibit the metabolism of hydromorphone. Clinicians should be alert for an exaggerated opiate response if hydromorphone is given with fluoxetine.
Fluphenazine: (Moderate) Concomitant use of opioid agonists with fluphenazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with fluphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Flurazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Food: (Major) Advise patients to avoid cannabis use while taking CNS depressants due to the risk for additive CNS depression and potential for other cognitive adverse reactions.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Fosphenytoin: (Moderate) Additive CNS depression could be seen with the combined use of the hydantoin and opiate agonists. Methadone is a primary substrate for the CYP3A4 isoenzyme. Serum concentrations of methadone may decrease due to CYP3A4 induction by phenytoin; withdrawal symptoms may occur.
Frovatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Furosemide: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Gabapentin: (Major) Concomitant use of opioid agonists with gabapentin may cause excessive sedation, somnolence, and respiratory depression. Limit the use of opioid pain medications with gabapentin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, initiate gabapentin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression.
General anesthetics: (Major) Concomitant use of hydromorphone with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Granisetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Guaifenesin; Hydrocodone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists like hydrocodone, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Guanfacine: (Moderate) Concomitant use of opioid agonists with guanfacine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with guanfacine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Haloperidol: (Moderate) Concomitant use of hydromorphone with other central nervous system (CNS) depressants can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Examples of drugs associated with CNS depression include haloperidol. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Homatropine; Hydrocodone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists like hydrocodone, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Hydantoins: (Moderate) Additive CNS depression could be seen with the combined use of the hydantoin and opiate agonists. Methadone is a primary substrate for the CYP3A4 isoenzyme. Serum concentrations of methadone may decrease due to CYP3A4 induction by phenytoin; withdrawal symptoms may occur.
Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Concomitant use of opioid agonists with methyldopa may cause excessive sedation and somnolence. Limit the use of opioid pain medication with methyldopa to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Hydrocodone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists like hydrocodone, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Hydrocodone; Ibuprofen: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists like hydrocodone, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Hydrocodone; Pseudoephedrine: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists like hydrocodone, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Hydroxyzine: (Major) Concomitant use of opioid agonists with hydroxyzine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with hydroxyzine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Major) Avoid concomitant use of hydromorphone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Ibuprofen; Oxycodone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Iloperidone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Imipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Indapamide: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when indapamide is administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Isocarboxazid: (Major) The use of hydromorphone is not recommended in patients who have received a monoamine oxidase inhibitor (MAOI) within the previous 14 days or are currently taking an MAOI due to a risk for serotonin syndrome or opioid toxicity, including respiratory depression. If urgent use of an opioid is necessary, use test doses and frequent titration of small opioid doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Lasmiditan: (Moderate) Concomitant use of hydromorphone with lasmiditan may cause excessive sedation, somnolence, and serotonin syndrome. Limit the use of hydromorphone with lasmiditan to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome.
Lemborexant: (Moderate) Concomitant use of hydromorphone with lemborexant may cause excessive sedation and somnolence. Limit the use of hydromorphone with lemborexant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Levocetirizine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Levomilnacipran: (Moderate) If concomitant use of hydromorphone and levomilnacipran is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Levorphanol: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Lidocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lidocaine; Epinephrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lidocaine; Prilocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Linezolid: (Major) Avoid concomitant use of hydromorphone in patients receiving linezolid or within 14 days of stopping treatment with linezolid due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Lisdexamfetamine: (Moderate) If concomitant use of hydromorphone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Lithium: (Moderate) If concomitant use of hydromorphone and lithium is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Lofexidine: (Moderate) Monitor for excessive hypotension and sedation during coadministration of lofexidine and hydromorphone. Lofexidine can potentiate the effects of CNS depressants.
Loop diuretics: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Lorazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lorcaserin: (Moderate) If concomitant use of hydromorphone and lorcaserin is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Loxapine: (Moderate) Concomitant use of opioid agonists, such as hydromorphone, with loxapine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with loxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Lumateperone: (Moderate) Concomitant use of opioid agonists like hydromorphone with lumateperone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with lumateperone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Lurasidone: (Moderate) Concomitant use of opioid agonists like hydromorphone with lurasidone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with lurasidone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Maprotiline: (Major) Concomitant use of opioid agonists with maprotiline may cause excessive sedation and somnolence. Limit the use of opioid pain medications with maprotiline to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Melatonin: (Moderate) Concomitant use of opioid agonists with melatonin may cause excessive sedation and somnolence. Limit the use of opioid pain medications with melatonin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Meperidine: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Mepivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Meprobamate: (Moderate) Concomitant use of hydromorphone with meprobamate can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with meprobamate, a reduced dosage of hydromorphone and/or meprobamate is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Metaxalone: (Major) Concomitant use of opioid agonists with metaxalone may cause respiratory depression, profound sedation, and death. Limit the use of opioid pain medication with metaxalone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Consider prescribing naloxone for the emergency treatment of opioid overdose. Concomitant use of metaxalone and opioid agonists increases the risk for serotonin syndrome. Avoid concomitant use if possible and monitor for serotonin syndrome if use is necessary.
Methadone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Methamphetamine: (Moderate) If concomitant use of hydromorphone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Major) Avoid concomitant use of hydromorphone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Methocarbamol: (Major) Concomitant use of opioid agonists with methocarbamol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with methocarbamol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations.
Methohexital: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Methyclothiazide: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Methyldopa: (Moderate) Concomitant use of opioid agonists with methyldopa may cause excessive sedation and somnolence. Limit the use of opioid pain medication with methyldopa to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Methylene Blue: (Major) Avoid concomitant use of hydromorphone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Methylphenidate Derivatives: (Moderate) If concomitant use of hydromorphone and methylphenidate derivatives is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Metoclopramide: (Moderate) The effects of metoclopramide on gastrointestinal motility are antagonized by narcotic analgesics. Concomitant use of opioid agonists with metoclopramide may also cause excessive sedation and somnolence. Limit the use of opioid pain medications with metoclopramide to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Metolazone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Metyrosine: (Moderate) The concomitant administration of metyrosine with opiate agonists can result in additive sedative effects.
Midazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Milnacipran: (Moderate) If concomitant use of hydromorphone and milnacipran is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Minocycline: (Minor) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as opiate agonists. Caution should be exercised when using these agents concurrently.
Mirtazapine: (Major) Concomitant use of opioid agonists with mirtazapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with mirtazapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Molindone: (Moderate) Concomitant use of opioid agonists like hydromorphone with molindone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with molindone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Monoamine oxidase inhibitors: (Major) The use of hydromorphone is not recommended in patients who have received a monoamine oxidase inhibitor (MAOI) within the previous 14 days or are currently taking an MAOI due to a risk for serotonin syndrome or opioid toxicity, including respiratory depression. If urgent use of an opioid is necessary, use test doses and frequent titration of small opioid doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Morphine: (Major) Concomitant use of hydromorphone with morphine can potentiate the effects of both drugs and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of hydromorphone and/or morphine is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. For morphine extended-release products, start with the lowest possible dose of morphine (i.e., 15 mg PO every 12 hours, extended-release tablets; 30 mg or less PO every 24 hours; extended-release capsules). Carefully monitor the patient for hypotension, CNS depression, and respiratory depression.
Morphine; Naltrexone: (Major) Concomitant use of hydromorphone with morphine can potentiate the effects of both drugs and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of hydromorphone and/or morphine is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. For morphine extended-release products, start with the lowest possible dose of morphine (i.e., 15 mg PO every 12 hours, extended-release tablets; 30 mg or less PO every 24 hours; extended-release capsules). Carefully monitor the patient for hypotension, CNS depression, and respiratory depression.
Nabilone: (Major) Avoid coadministration of opioid agonists with nabilone due to the risk of additive CNS depression.
Nalbuphine: (Major) Avoid the concomitant use of nalbuphine and opiate agonists, such as hydromorphone. Nalbuphine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects. Nalbuphine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of nalbuphine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. Opiate antagonists should not be administered in the absence of clinically significant respiratory or circulatory depression secondary to hydromorphone. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur.
Naratriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Nefazodone: (Major) Concomitant use of opioid agonists with nefazodone may cause excessive sedation and somnolence. Limit the use of opioid pain medications with nefazodone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Nesiritide, BNP: (Major) The potential for hypotension may be increased when coadministering nesiritide with opiate agonists.
Nitroglycerin: (Minor) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as opiate agonists. Patients should be monitored more closely for hypotension if nitroglycerin is used concurrently with opiate agonists.
Nortriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Olanzapine: (Major) Concomitant use of opioid agonists with olanzapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with olanzapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Olanzapine; Fluoxetine: (Major) Concomitant use of opioid agonists with olanzapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with olanzapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Major) Fluoxetine may inhibit the metabolism of hydromorphone. Clinicians should be alert for an exaggerated opiate response if hydromorphone is given with fluoxetine.
Olanzapine; Samidorphan: (Contraindicated) Salmidorphan is contraindicated in patients who are using opiate agonists or undergoing acute opioid withdrawal. Salmidorphan increases the risk of precipitating acute opioid withdrawal in patients dependent on opioids. Before initiating salmidorphan, there should be at least a 7-day opioid-free interval from the last use of short-acting opioids, and at least a 14-day opioid-free interval from the last use of long-acting opioids. In emergency situations, if a salmidorphan-treated patient requires opiates for anesthesia or analgesia, discontinue salmidorphan. The opiate agonist should be administered by properly trained individual(s), and the patient properly monitored in a setting equipped and staffed for cardiopulmonary resuscitation. In non-emergency situations, if a salmidorphan-treated patient requires opiate agonist treatment (e.g., for analgesia) discontinue salmidorphan at least 5 days before opioid treatment. Salmidorphan, as an opioid antagonist, may cause opioid treatment to be less effective or ineffective shortly after salmidorphan discontinuation. (Major) Concomitant use of opioid agonists with olanzapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with olanzapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Oliceridine: (Major) Concomitant use of oliceridine with hydromorphone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of oliceridine with hydromorphone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Ondansetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Orphenadrine: (Major) Concomitant use of opioid agonists with orphenadrine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with orphenadrine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations.
Oxazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Oxycodone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Oxymorphone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. A reduced dosage of oxymorphone (1/3 to 1/2 of the usual dose) is recommended. If the extended-release oxymorphone tablets are used concurrently with a CNS depressant, it is recommended to use an initial dosage of 5 mg PO every 12 hours. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Ozanimod: (Major) When possible, hydromorphone should not be used in patients taking MAOIs or within 14 days of stopping such treatment. An active metabolite of ozanimod inhibits MAO-B. MAO inhibitor interactions with hydromorphone may manifest as serotonin syndrome, hypertensive crisis, or opioid toxicity (e.g., respiratory depression, coma). If concurrent use is absolutely necessary, use the lowest possible doses of hydromorphone, and monitor blood pressure and for serotonergic symptoms closely. Although a small number of patients treated with ozanimod were concomitantly exposed to opioids, this exposure was not adequate to rule out the possibility of an adverse reaction from coadministration.
Paliperidone: (Moderate) Drugs that can cause CNS depression such as opiate agonists, if used concomitantly with paliperidone, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Monitor for signs and symptoms of CNS depression during concurrent use of paliperidone and hydromorphone and advise patients to avoid driving or engaging in other activities requiring mental alertness until they know how this combination affects them.
Palonosetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Paroxetine: (Moderate) If concomitant use of hydromorphone and paroxetine is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Pegvisomant: (Moderate) In clinical trials, patients taking opiate agonists often required higher serum pegvisomant concentrations to achieve appropriate IGF-I suppression compared with patients not receiving opiate agonists. The mechanism of this interaction is unknown.
Pentazocine: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as hydromorphone. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Pentazocine; Naloxone: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as hydromorphone. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Pentobarbital: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Perampanel: (Moderate) Concomitant use of opioid agonists with perampanel may cause excessive sedation and somnolence. Limit the use of opioid pain medications with perampanel to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Perphenazine: (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Perphenazine; Amitriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Phenelzine: (Major) The use of hydromorphone is not recommended in patients who have received a monoamine oxidase inhibitor (MAOI) within the previous 14 days or are currently taking an MAOI due to a risk for serotonin syndrome or opioid toxicity, including respiratory depression. If urgent use of an opioid is necessary, use test doses and frequent titration of small opioid doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Phenobarbital: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Phenytoin: (Moderate) Additive CNS depression could be seen with the combined use of the hydantoin and opiate agonists. Methadone is a primary substrate for the CYP3A4 isoenzyme. Serum concentrations of methadone may decrease due to CYP3A4 induction by phenytoin; withdrawal symptoms may occur.
Pimozide: (Moderate) Concomitant use of hydromorphone with other central nervous system (CNS) depressants can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Examples of drugs associated with CNS depression include pimozide. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Pramipexole: (Major) Concomitant use of opioid agonists with pramipexole may cause excessive sedation and somnolence. Limit the use of opioid pain medications with pramipexole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like pramipexole have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Pramlintide: (Major) Pramlintide slows gastric emptying and the rate of nutrient delivery to the small intestine. Medications with the potential to slow GI motility, such as opiate agonists, should be used with caution, if at all, with pramlintide until more data are available from the manufacturer. Monitor blood glucose.
Prasugrel: (Moderate) Consider the use of a parenteral anti-platelet agent for patients with acute coronary syndrome who require concomitant opioid agonists. Coadministration of opioid agonists with prasugrel delays and reduces the absorption of prasugrel's active metabolite due to slowed gastric emptying.
Pregabalin: (Major) Concomitant use of opioid agonists with pregabalin may cause excessive sedation, somnolence, and respiratory depression. Limit the use of opioid pain medications with pregabalin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, initiate pregabalin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression.
Prilocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Prilocaine; Epinephrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Primidone: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Procarbazine: (Moderate) Opiate agonists may cause additive sedation or other CNS effects when given in combination with procarbazine.
Prochlorperazine: (Major) Concomitant use of opioid agonists with prochlorperazine may cause excessive sedation and somnolence. Concurrent administration of prochlorperazine is contraindicated in patients receiving large doses of opiate agonists. Limit the use of opioid pain medications with prochlorperazine to only patients for whom altern ative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Promethazine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Promethazine; Dextromethorphan: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Promethazine; Phenylephrine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Protriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Pseudoephedrine; Triprolidine: (Moderate) Concomitant use of opioid agonists with triprolidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with triprolidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Quazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Quetiapine: (Major) Concomitant use of opioid agonists with quetiapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with quetiapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Ramelteon: (Moderate) Concomitant use of opioid agonists with ramelteon may cause excessive sedation and somnolence. Limit the use of opioid pain medications with ramelteon to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Rasagiline: (Major) Avoid concomitant use of hydromorphone in patients receiving rasagiline or within 14 days of stopping treatment with rasagiline due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Remifentanil: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Remimazolam: (Major) Concomitant use of opioid agonists with remimazolam may cause respiratory depression, hypotension, profound sedation, and death. Titrate the dose of remimazolam to the desired clinical response and continuously monitor sedated patients for hypotension, airway obstruction, hypoventilation, apnea, and oxygen desaturation.
Risperidone: (Moderate) Concomitant use of hydromorphone with other central nervous system (CNS) depressants can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Examples of drugs associated with CNS depression include risperidone. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Rizatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Ropinirole: (Major) Concomitant use of opioid agonists with ropinirole may cause excessive sedation and somnolence. Limit the use of opioid pain medication with ropinirole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Dopaminergic agents have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Reassess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Ropivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Rotigotine: (Major) Concomitant use of opioid agonists with rotigotine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with rotigotine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like rotigotine have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Safinamide: (Contraindicated) Concomitant use of safinamide with opioids is contraindicated due to the risk of serotonin syndrome. Allow at least 14 days between discontinuation of safinamide and initiation of treatment with opioids.
Secobarbital: (Major) Concomitant use of hydromorphone with a barbiturate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with a barbiturate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Selegiline: (Major) Avoid concomitant use of hydromorphone in patients receiving selegiline or within 14 days of stopping treatment with selegiline due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Serotonin-Receptor Agonists: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Serotonin-Receptor Antagonists: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Sertraline: (Moderate) If concomitant use of hydromorphone and sertraline is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Sodium Oxybate: (Major) Concomitant use of opioid agonists with sodium oxybate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with sodium oxybate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Solifenacin: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydromorphone is used concomitantly with an anticholinergic drug, such as solifenacin. The concomitant use of hydromorphone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Spironolactone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
St. John's Wort, Hypericum perforatum: (Moderate) If concomitant use of hydromorphone and St. John's Wort is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Stiripentol: (Moderate) Concomitant use of opioid agonists with stiripentol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with stiripentol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Sufentanil: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Sumatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Sumatriptan; Naproxen: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Suvorexant: (Moderate) Concomitant use of opioid agonists with suvorexant may cause excessive sedation and somnolence. Limit the use of opioid pain medications with suvorexant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Tapentadol: (Major) Concomitant use of tapentadol with hydromorphone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of tapentadol with hydromorphone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Tasimelteon: (Moderate) Concomitant use of opioid agonists with tasimelteon may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tasimelteon to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Tedizolid: (Major) Avoid concomitant use of hydromorphone in patients receiving tedizolid or within 14 days of stopping treatment with tedizolid due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Temazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Tetrabenazine: (Moderate) Additive effects are possible when tetrabenazine is combined with other drugs that cause CNS depression. Concurrent use of tetrabenazine and drugs that can cause CNS depression, such as opiate agonists, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, dizziness, and orthostatic hypotension.
Tetracaine: (Major) Due to the central nervous system depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists. Excitation or depression of the CNS may be the first manifestation of CNS toxicity. Restlessness, anxiety, tinnitus, dizziness, blurred vision, tremors, depression, or drowsiness may be early warning signs of CNS toxicity. After each local anesthetic injection, careful and constant monitoring of ventilation adequacy, cardiovascular vital signs, and the patient's state of consciousness is advised.
Thalidomide: (Major) Avoid coadministration of opioid agonists with thalidomide due to the risk of additive CNS depression.
Thiazide diuretics: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Thioridazine: (Major) Concomitant use of opioid agonists with thioridazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with thioridazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Thiothixene: (Moderate) Concomitant use of opioid agonists like hydromorphone with thiothixene may cause excessive sedation and somnolence. Limit the use of opioid pain medication with thiothixene to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Ticagrelor: (Moderate) Coadministration of opioid agonists, such as hydromorphone, may delay and reduce the absorption of ticagrelor resulting in reduced exposure and diminished inhibition of platelet aggregation. Consider the use of a parenteral antiplatelet agent in acute coronary syndrome patients requiring an opioid agonist. Mean ticagrelor exposure decreased up to 36% in ACS patients undergoing PCI when intravenous morphine was administered with a loading dose of ticagrelor; mean platelet aggregation was higher up to 3 hours post loading dose. Similar effects on ticagrelor exposure and platelet inhibition were observed when fentanyl was administered with a ticagrelor loading dose in ACS patients undergoing PCI. Although exposure to ticagrelor was decreased up to 25% in healthy adults administered intravenous morphine with a loading dose of ticagrelor, platelet inhibition was not delayed or decreased in this population.
Tizanidine: (Major) Concomitant use of opioid agonists with tizanidine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tizanidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations.
Tolterodine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydromorphone is used concomitantly with an anticholinergic drug, such as tolterodine. The concomitant use of hydromorphone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Torsemide: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Tramadol: (Major) Concomitant use of tramadol with hydromorphone may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome, seizures, and anticholinergic effects. Limit the use of opioid pain medications to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Tramadol; Acetaminophen: (Major) Concomitant use of tramadol with hydromorphone may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome, seizures, and anticholinergic effects. Limit the use of opioid pain medications to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
Tranylcypromine: (Major) The use of hydromorphone is not recommended in patients who have received a monoamine oxidase inhibitor (MAOI) within the previous 14 days or are currently taking an MAOI due to a risk for serotonin syndrome or opioid toxicity, including respiratory depression. If urgent use of an opioid is necessary, use test doses and frequent titration of small opioid doses to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Trazodone: (Moderate) Because of the potential risk and severity of excessive sedation, somnolence, and serotonin syndrome, caution should be observed when administering hydromorphone with trazodone. Limit the use of opioid pain medications with trazodone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Inform patients taking this combination of the possible increased risks and monitor for the emergence of excessive CNS depression and serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Triamterene: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when triamterene is administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when triamterene is administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Triazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydromorphone is initiated in a patient taking a benzodiazepine, reduce the initial dosage of hydromorphone and titrate to clinical response; for hydromorphone extended-release tablets, use 1/3 to 1/2 of the estimated hydromorphone starting dose. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Tricyclic antidepressants: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Trifluoperazine: (Moderate) Concomitant use of opioid agonists with trifluoperazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with trifluoperazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Trimethobenzamide: (Moderate) The concurrent use of trimethobenzamide with other medications that cause CNS depression, like opiate agonists, may potentiate the effects of either trimethobenzamide or the opiate agonist.
Trimipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Triprolidine: (Moderate) Concomitant use of opioid agonists with triprolidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with triprolidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Trospium: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when trospium, an anticholinergic drug for overactive bladder, is used with opiate agonists. The concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known.
Valerian, Valeriana officinalis: (Moderate) Concomitant use of opioid agonists with valerian may cause excessive sedation and somnolence. Limit the use of opioid pain medication with valerian to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Valproic Acid, Divalproex Sodium: (Moderate) Concomitant use of opioid agonists with valproic acid may cause excessive sedation and somnolence. Limit the use of opioid pain medications with valproic acid to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Venlafaxine: (Moderate) If concomitant use of hydromorphone and venlafaxine is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Vigabatrin: (Moderate) Vigabatrin may cause somnolence and fatigue. Drugs that can cause CNS depression, if used concomitantly with vigabatrin, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when vigabatrin is given with opiate agonists.
Vilazodone: (Moderate) Because of the potential risk and severity of excessive sedation, somnolence, and serotonin syndrome, caution should be observed when administering hydromorphone with vilazodone. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Inform patients taking this combination of the possible increased risks and monitor for the emergence of excessive CNS depression and serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Vortioxetine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with vortioxetine. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Zaleplon: (Moderate) Concomitant use of hydromorphone with zaleplon can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with zaleplon, a reduced dosage of hydromorphone and/or zaleplon is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Ziconotide: (Moderate) Concurrent use of ziconotide and opiate agonists may result in an increased incidence of dizziness and confusion. Ziconotide neither interacts with opiate receptors nor potentiates opiate-induced respiratory depression. However, in animal models, ziconotide did potentiate gastrointestinal motility reduction by opioid agonists.
Ziprasidone: (Moderate) Because of the potential for additive sedation and CNS depression, caution should be observed when administering hydromorphone with ziprasidone. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. There are case reports of serotonin syndrome with use of ziprasidone postmarketing but causality is not established. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Zolmitriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydromorphone with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Zolpidem: (Major) Concomitant use of opioid agonists with zolpidem may cause excessive sedation, somnolence, and complex sleep-related behaviors (e.g., driving, talking, eating, or performing other activities while not fully awake). Limit the use of opioid pain medications with zolpidem to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Instruct patients to contact their provider immediately if sleep-related symptoms or behaviors occur. Educate patients about the risks and symptoms of excessive CNS depression. For Intermezzo brand of sublingual zolpidem tablets, reduce the dose to 1.75 mg/night.

How Supplied

Dilaudid/Dilaudid-HP/Hydromorphone Hydrochloride/Simplist Dilaudid Intramuscular Inj Sol: 1mg, 1mL, 2mg, 4mg, 10mg
Dilaudid/Dilaudid-HP/Hydromorphone Hydrochloride/Simplist Dilaudid Intravenous Inj Sol: 1mg, 1mL, 2mg, 4mg, 10mg
Dilaudid/Dilaudid-HP/Hydromorphone Hydrochloride/Simplist Dilaudid Subcutaneous Inj Sol: 1mg, 1mL, 2mg, 4mg, 10mg
Dilaudid/Hydromorphone Hydrochloride Oral Sol: 1mg, 1mL
Dilaudid/Hydromorphone Hydrochloride Oral Tab: 2mg, 4mg, 8mg
Dilaudid/Hydromorphone Hydrochloride Rectal Supp: 3mg
Dilaudid/Hydromorphone Hydrochloride/Simplist Dilaudid Intramuscular Sol: 1mL, 2mg
Dilaudid/Hydromorphone Hydrochloride/Simplist Dilaudid Intravenous Sol: 1mL, 2mg
Dilaudid/Hydromorphone Hydrochloride/Simplist Dilaudid Subcutaneous Sol: 1mL, 2mg
Exalgo/Hydromorphone Hydrochloride Oral Tab ER: 8mg, 12mg, 16mg, 32mg

Maximum Dosage
Adults

With appropriate dosage titration, there is no maximum dose of hydromorphone.

Geriatric

With appropriate dosage titration, there is no maximum dose of hydromorphone.

Adolescents

With appropriate dosage titration, there is no maximum dose of hydromorphone. The safety and efficacy of extended-release tablets have not been established.

Children

With appropriate dosage titration, there is no maximum dose of hydromorphone. The safety and efficacy of extended-release tablets have not been established.

Infants

With appropriate dosage titration, there is no maximum dose of hydromorphone. The safety and efficacy of extended-release tablets have not been established.

Neonates

Safety and efficacy have not been established.

Mechanism Of Action

Hydromorphone is a potent µ-opiate receptor agonist. Opiate receptors include µ (mu), kappa (kappa), and delta (delta), which have been reclassified by an International Union of Pharmacology subcommittee as OP1 (delta), OP2 (kappa), and OP3 (µ). These receptors are coupled with G-protein (guanine-nucleotide-binding protein) receptors and function as modulators, both positive and negative, of synaptic transmission via G-proteins that activate effector proteins. Opioid-G-protein systems include adenylyl cyclase-cyclic adenosine monophosphate (cAMP) and phospholipase3 C (PLC)-inositol 1,4,5 triphosphate (Ins(1,4,5)P3)-Ca2).
 
Opiates do not alter the pain threshold of afferent nerve endings to noxious stimuli nor do they affect the conductance of impulses along peripheral nerves. Analgesia is mediated through changes in the perception of pain at the spinal cord (µ2-, delta-, kappa-receptors) and higher levels in the CNS (µ1- and kappa3 receptors). There is no ceiling effect of analgesia for opiates. The emotional response to pain is also altered. Opioids close N-type voltage-operated calcium channels (kappa-receptor agonist) and open calcium-dependent inwardly rectifying potassium channels (µ and delta receptor agonist) resulting in hyperpolarization and reduced neuronal excitability. Binding of the opiate stimulates the exchange of guanosine triphosphate (GTP) for guanosine diphosphate (GDP) on the G-protein complex. Binding of GTP leads to a release of the G-protein subunit, which acts on the effector system. In this case of opioid-induced analgesia, the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane. Thus, opioids decrease intracellular cAMP by inhibiting adenylate cyclase that modulates the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine and norepinephrine. Opioids also modulate the endocrine and immune systems. Opioids inhibit the release of vasopressin, somatostatin, insulin and glucagon.
 
The stimulatory effects of opioids are the result of 'disinhibition', as the release of inhibitory neurotransmitters such as GABA and acetylcholine is blocked. The exact mechanism how opioid agonists cause both inhibitory and stimulatory processes is not well understood. Possible mechanisms including differential susceptibility of the opioid receptor to desensitization or activation of more than one G-protein system or subunit (one excitatory and one inhibitory) by an opioid receptor.
 
Clinically, stimulation of µ-receptors produces analgesia, euphoria, respiratory depression, miosis, decreased gastrointestinal motility, and physical dependence. Kappa-receptor stimulation also produces analgesia, miosis, respiratory depression, as well as dysphoria and some psychomimetic effects (i.e., disorientation and/or depersonalization). Miosis is produced by an excitatory action on the autonomic segment of the nucleus of the oculomotor nerve. Respiratory depression is caused by direct action of opiate agonists on respiratory centers in the brain stem. A reduction in the responsiveness of the brain stem to carbon dioxide increases and to electrical stimulation are involved. Opiate agonists increase smooth muscle tone in the antral portion of the stomach, the small intestine (especially the duodenum), the large intestine, and the sphincters. Opiate agonists also decrease secretions from the stomach, pancreas, and biliary tract. The combination of effects of opiate agonists on the GI tract results in constipation and delayed digestion. Urinary smooth muscle tone is also increased by opiate agonists. The tone of the bladder detrusor muscle, ureters, and vesical sphincter is increased, which sometimes causes urinary retention.
 
Several other clinical effects occur with opiate agonists including cough suppression, hypotension, and nausea/vomiting. The antitussive effects of opiate agonists are mediated through direct action on receptors in the cough center of the medulla. Cough suppression can be achieved at lower doses than those required to produce analgesia. Hypotension is possibly due to an increase in histamine release and/or depression of the vasomotor center in the medulla. Induction of nausea and vomiting possibly occurs from direct stimulation of the vestibular system and/or the chemoreceptor trigger zone.

Pharmacokinetics

Hydromorphone is administered via the oral, rectal, subcutaneously, intramuscularly (IM), and intravenously (IV) routes. At therapeutic plasma concentrations, hydromorphone is approximately 8—19% bound to plasma proteins. Mean steady state volume of distribution following IV bolus dose is 302.9 L. Hydromorphone crosses the placenta and is also found in low concentrations in breast milk.
 
Hydromorphone undergoes biotransformation at the 3- and 6-positions in the liver. Involvement of the cytochrome P450 system in the metabolism of hydromorphone has not been established. At the 3-position, hydromorphone forms a glucuronide ether via UDP-glucuronyl transferase; greater than 95% of the dose is metabolized to hydromorphone-3-glucuronide. At the 6-position, hydromorphone is reduced to form dihydromorphone and dihydroisomorphone via NADPH dihydromorphinone ketone reductase. Dihydromorphone and dihydroisomorphone have been shown to be active in animal models but not in humans. The pharmacologic activity of the 3-glucuronide metabolite has not been established; although, in rat studies, this compound caused excitatory behavior including myoclonus, ataxia, and tonic-clonic seizures similar to the 3-glucuronide metabolites of morphine. In high doses, hydromorphone has been reported to cause excitation. Hydromorphone metabolites are primarily excreted in the urine; only a small amount of the hydromorphone dose is excreted unchanged in the urine. The glucuronide conjugate is also excreted in bile, but enterohepatic circulation is a minor excretion pathway. The half-life of immediate-release hydromorphone is 2—3 hours with a duration of analgesia of 3—4 hours. The mean half-life of extended-release hydromorphone tablets (Exalgo) is 11 hours.
 
There is no predictable relationship between hydromorphone serum concentrations and analgesic response; however, there is a minimum effective analgesia plasma concentration in a given patient. The minimum effective analgesia plasma concentration of hydromorphone varies from patient to patient. Several factors may affect a patient's response to a given opiate agonist including age, prior opiate therapy, medical condition, and emotions. Also, there is no relationship between hydromorphone plasma concentrations and incidence of adverse events, although higher concentrations are associated with more adverse events than lower concentrations.
 
Hydromorphone is slightly more lipophilic than morphine. Therefore, hydromorphone requires higher doses to produce equal epidural analgesia as morphine. The high lipid solubility of hydromorphone leads to less rotral or 'hook-like' spread within the CSF and increased diffusion out of the CSF than hydrophilic agents such as morphine. Hydromorphone does not provide analgesia at distant sites from where it was administered; thus, epidural catheter placement is of great importance.

Oral Route

Hydromorphone is readily absorbed from the GI tract with a bioavailability of about 60% due to extensive first-pass metabolism. Onset of analgesia is within 30 minutes of oral administration of immediate-release tablets or liquid. Peak plasma hydromorphone concentrations are generally obtained within 30—60 minutes of oral administration of the oral solution or immediate-release tablets; bioequivalence has been demonstrated between the hydromorphone 8 mg immediate-release tablet and an equivalent dose of hydromorphone oral solution. Systemic hydromorphone exposure is dose-proportional at a dose range of 2 mg and 8 mg with the immediate-release formulations.
Extended-release tablets: After a single dose of the extended-release tablets, systemic concentrations gradually increase over 6 to 8 hours and are sustained for approximately 18 to 24 hours post-dose. The extended-release tablets display linear pharmacokinetics over the dose range of 8—64 mg, with a dose proportional in Cmax and overall exposure. Steady-state plasma concentrations are approximately twice those observed after the first dose and are reached after 3 to 4 days of once daily dosing. At steady-state, once daily dosing of the extended-release tablets achieved hydromorphone plasma concentrations within the same range as the immediate-release tablet administered four times a day, but decreased fluctuations between peak and trough concentrations. Administration of a single dose of the immediate-release tablets with food reduced the maximum serum concentration by 25%, increased the time to maximum serum concentration by 0.8 hour, and increased the systemic exposure by 35%. Food did not significantly alter the pharmacokinetics of the extended-release tablets. When administered with alcohol, the hydromorphone mean AUC was 5% higher and 4% lower (not statistically significant) in the fasted and fed groups respectively after co-administration of 240 mL of 40%, 20% or 4% alcohol. However, administration with alcohol did alter the geometric mean Cmax, ranging from an increase of 10% to 31% across all conditions studied. The change in mean Cmax was greater in fasted subjects. Following concomitant administration of 240 mL of 40% alcohol while fasting the mean Cmax increased by 37%, and up to 151% in an individual subject. Following the concomitant administration of 240 mL of 20% alcohol while fasting the mean Cmax increased by 35% and up to 139% in an individual subject. Following the concomitant administration of 240 mL of 4% alcohol while fasting the mean Cmax increased by 19% on average and as much as 73% for an individual subject. The range of median Tmax for the fed and fasted treatments with alcohol was 12—16 hours compared to 16 hours for those receiving no alcohol.

Intravenous Route

Analgesia usually occurs within 15 minutes following parenteral injection of hydromorphone.

Other Route(s)

Rectal route
Onset of analgesia is within 30 minutes of rectal administration of hydromorphone suppositories.
 
Epidural route
Hydromorphone does not provide analgesia at distant sites from where it was administered; thus, epidural catheter placement is of great importance. The onset of analgesia following epidural administration is 10—15 minutes with a duration of 6—18 hours.

Pregnancy And Lactation
Pregnancy

There are no adequate and well-controlled studies of hydromorphone during pregnancy to inform a drug-associated risk for major birth defects or miscarriage. In animal reproduction studies, reduced postnatal survival of pups, developmental delays, and altered behavioral responses were observed after oral treatment of pregnant rats with hydromorphone during gestation and through lactation at doses 2.1 times the human daily dose (HDD) of 32 mg/day. Neural tube defects were noted after subcutaneous injection of hydromorphone to pregnant hamsters at doses 4.8 times the HDD, and soft tissue and skeletal abnormalities were noted after subcutaneous continuous infusion of 2.3 times the HDD to pregnant mice. Hydromorphone is not recommended for use during and immediately before labor when other analgesic techniques are more appropriate. Opioids can prolong labor and obstetric delivery by temporarily reducing the strength, duration, and frequency of uterine contractions. This effect is not consistent and may be offset by an increased rate of cervical dilatation, which may shorten labor. Opioids cross the placenta and may produce respiratory depression and psycho-physiologic effects in the neonate. Monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression. An opioid antagonist (e.g., naloxone) should be available for reversal of opioid-induced respiratory depression in the neonate. Further, prolonged maternal use of opioids during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). Monitor the exposed neonate for withdrawal symptoms, including irritability, hyperactivity and abnormal sleep pattern, high-pitched cry, tremor, vomiting, diarrhea, and failure to gain weight, and manage accordingly. Onset, duration, and severity of opioid withdrawal may vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination by the newborn. Guidelines recommend early universal screening of pregnant patients for opioid use and opioid use disorder at the first prenatal visit. Obtain a thorough history of substance use and review the Prescription Drug Monitoring Program to determine if patients have received prior prescriptions for opioids or other high-risk drugs such as benzodiazepines. Discuss the risks and benefits of opioid use during pregnancy, including the risk of becoming physiologically dependent on opioids, the possibility for NOWS, and how long-term opioid use may affect care during a future pregnancy.[64838] [64909] In women undergoing uncomplicated normal spontaneous vaginal birth, consider opioid therapy only if expected benefits for both pain and function are anticipated to outweigh risks to the patient. If opioids are used, use in combination with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate. Use immediate-release opioids instead of extended-release or long-acting opioids; order the lowest effective dosage and prescribe no greater quantity of opioids than needed for the expected duration of such pain severe enough to require opioids.[64909] For women using opioids for chronic pain, consider strategies to avoid or minimize the use of opioids, including alternative pain therapies (i.e., nonpharmacologic) and nonopioid pharmacologic treatments. Opioid agonist pharmacotherapy (e.g., methadone or buprenorphine) is preferable to medically supervised withdrawal in pregnant women with opioid use disorder.[64838]