Aldactazide

Browse PDR's full list of drug information

Aldactazide

Classes

Potassium-Sparing and Thiazide Diuretic Combinations

Administration

 
Hazardous Drugs Classification
Spironolactone is classified as a hazardous drug.
NIOSH 2016 List: Group 2
NIOSH (Draft) 2020 List: Table 2
Observe and exercise appropriate precautions for handling, preparation, administration, and disposal of hazardous drugs.
Use gloves to handle. Cutting, crushing, or otherwise manipulating tablets/capsules will increase exposure and require additional protective equipment. Oral liquid drugs require double chemotherapy gloves and protective gown; may require eye/face protection. 

Oral Administration

Food significantly increases the bioavailability of spironolactone.[29016] Based on these results, it may be prudent for a patient to take the drug consistently with or without food. In one study, the presence of food did not alter the effect of spironolactone on blood pressure control or heart rate; however, the authors suggested spironolactone be taken with food to minimize the possibility of gastric irritation, which was observed to be common.[45479]
Usually administered upon arising to prevent/minimize nocturia.

Extemporaneous Compounding-Oral

Extemporaneous formula for oral suspension: The oral suspension of spironolactone; hydrochlorothiazide is not FDA-approved. An oral suspension can be compounded using spironolactone; hydrochlorothiazide tablets and one of the following vehicles: a 1:1 mixture of Ora-Sweet and Ora-Plus, a 1:1 mixture of Ora-Sweet SF and Ora-Plus, or cherry syrup. Pulverize twenty-four 25 mg tablets; add 25 mL of vehicle and mix to a uniform paste. Add in geometric portions of the vehicle almost to a volume of 120 mL; mix thoroughly after each addition. Transfer to a calibrated, polyethylene terephthalate bottle, and add more vehicle to get a total volume of 120 mL. Shake well and protect from light. The resulting suspension (5 mg/mL each of spironolactone and hydrochlorothiazide) is stable for 2 months at room temperature (25 degrees C) or refrigerated (5 degrees C).

Adverse Reactions
Severe

hyperkalemia / Delayed / Incidence not known
hepatic failure / Delayed / Incidence not known
hemolytic anemia / Delayed / Incidence not known
agranulocytosis / Delayed / Incidence not known
aplastic anemia / Delayed / Incidence not known
pancreatitis / Delayed / Incidence not known
azotemia / Delayed / Incidence not known
renal failure (unspecified) / Delayed / Incidence not known
interstitial nephritis / Delayed / Incidence not known
vasculitis / Delayed / Incidence not known
Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) / Delayed / Incidence not known
toxic epidermal necrolysis / Delayed / Incidence not known
erythema multiforme / Delayed / Incidence not known
lupus-like symptoms / Delayed / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
Stevens-Johnson syndrome / Delayed / Incidence not known
ocular hypertension / Delayed / Incidence not known
new primary malignancy / Delayed / Incidence not known
skin cancer / Delayed / Incidence not known

Moderate

hyponatremia / Delayed / Incidence not known
hypomagnesemia / Delayed / Incidence not known
hyperglycemia / Delayed / Incidence not known
glycosuria / Early / Incidence not known
hypercalcemia / Delayed / Incidence not known
hyperuricemia / Delayed / Incidence not known
gout / Delayed / Incidence not known
jaundice / Delayed / Incidence not known
cholestasis / Delayed / Incidence not known
leukopenia / Delayed / Incidence not known
thrombocytopenia / Delayed / Incidence not known
hemolysis / Early / Incidence not known
sialadenitis / Delayed / Incidence not known
gastritis / Delayed / Incidence not known
constipation / Delayed / Incidence not known
confusion / Early / Incidence not known
ataxia / Delayed / Incidence not known
hypovolemia / Early / Incidence not known
hypertriglyceridemia / Delayed / Incidence not known
hypercholesterolemia / Delayed / Incidence not known
erythema / Early / Incidence not known
infertility / Delayed / Incidence not known
postmenopausal bleeding / Delayed / Incidence not known
impotence (erectile dysfunction) / Delayed / Incidence not known
myopia / Delayed / Incidence not known
blurred vision / Early / Incidence not known
xanthopsia / Delayed / Incidence not known
tumorigenicity / Delayed / Incidence not known

Mild

diarrhea / Early / Incidence not known
anorexia / Delayed / Incidence not known
vomiting / Early / Incidence not known
nausea / Early / Incidence not known
abdominal pain / Early / Incidence not known
weakness / Early / Incidence not known
headache / Early / Incidence not known
restlessness / Early / Incidence not known
paresthesias / Delayed / Incidence not known
drowsiness / Early / Incidence not known
lethargy / Early / Incidence not known
dizziness / Early / Incidence not known
vertigo / Early / Incidence not known
polyuria / Early / Incidence not known
fever / Early / Incidence not known
urticaria / Rapid / Incidence not known
pruritus / Rapid / Incidence not known
photosensitivity / Delayed / Incidence not known
rash / Early / Incidence not known
alopecia / Delayed / Incidence not known
maculopapular rash / Early / Incidence not known
libido decrease / Delayed / Incidence not known
mastalgia / Delayed / Incidence not known
amenorrhea / Delayed / Incidence not known
gynecomastia / Delayed / Incidence not known
menstrual irregularity / Delayed / Incidence not known
muscle cramps / Delayed / Incidence not known

Common Brand Names

Aldactazide

Dea Class

Rx

Description

Combination oral diuretic product; potassium-sparing diuretic (aldosterone antagonist) and thiazide diuretic
For treatment of hypertension or edema (not initial treatment)
Useful for patients with hyperaldosteronism or hypokalemia

Dosage And Indications
For the treatment of edema associated with cirrhosis of the liver, congestive heart failure, or the nephrotic syndrome.
NOTE: The dosage must be determined by individual titration of the separate components. Spironolactone; hydrochlorothiazide is not indicated for initial therapy. Since the onset of action of spironolactone is gradual, partially explained by the long half-life of canrenone (active metabolite), several days should elapse between dosage adjustments. Dose requirements may change over time due to patient specific factors.
NOTE: Spironolactone should not be used to prevent anticipated hypokalemia from hydrochlorothiazide. Most patients will not develop hypokalemia with hydrochlorothiazide doses of 12.5 to 25 mg daily.
NOTE: Spironolactone addition to hydrochlorothiazide has yielded a greater natriuretic effect for patients with a low urinary sodium amount and a high urine potassium amount. Negligible benefit was obtained for patients with a low urine sodium and potassium amount.
NOTE: Patients with cirrhosis may only need spironolactone due to secondary hyperaldosteronism being an important cause of sodium and water retention. Increasing the dose of hydrochlorothiazide may result in intravascular volume depletion. Intermittent large volume paracentesis may be more appropriate for ascites management.
NOTE: Treatment of the underlying disease along with restriction of sodium and fluid intake is paramount.
Oral dosage Adults

Initially, 1 Aldactazide 25/25 mg tablet or equivalent generic tablet (25 mg spironolactone and 25 mg hydrochlorothiazide) PO once daily. The usual maintenance dose is 100 mg/day PO of each component, administered as a single dose or in divided doses. However, the dosage may range from 25 to 200 mg/day PO for each component, depending on response to the initial titration. Aldactazide is also available as 50/50 mg tablets containing 50 mg spironolactone and 50 mg hydrochlorothiazide. Once an initial diuresis has been achieved, dosage adjustment may be needed. The maintenance therapy dosage schedule may be on an intermittent basis.

Geriatric

See adult dosage. Geriatric patients may be more sensitive to the effects of the usual adult dosage.

For the treatment of essential hypertension.
NOTE: Spironolactone should not be used to prevent anticipated hypokalemia from hydrochlorothiazide. Most patients will not develop hypokalemia with hydrochlorothiazide doses of 12.5 to 25 mg daily.
NOTE: Hydrochlorothiazide has a relatively flat dose-response curve with little difference in the fraction of excreted sodium between the daily dosage range of 12.5 to 50 mg. Higher doses usually do not increase efficacy but do increase the risk of adverse effects. Spironolactone is indicated for the treatment of essential hypertension, usually in combination with other antihypertensives (e.g., HCTZ, ACE inhibitors).
Oral dosage Adults

Initially, 1 Aldactazide 25/25 mg tablet or equivalent generic tablet (25 mg spironolactone and 25 mg hydrochlorothiazide) PO once daily. Many patients have an optimal response at 50 to 100 mg/day PO of each component, given as a single dose or in 2 divided doses. Aldactazide is also available as 50/50 mg tablets containing 50 mg spironolactone and 50 mg hydrochlorothiazide.

Geriatric

See adult dosage. Geriatric patients may be more sensitive to the effects of the usual adult dosage.

For the treatment of chronic lung disease (CLD)†.
NOTE: Spironolactone has been shown to be a tumorigen in rats. Unnecessary use of this drug should be avoided.
NOTE: There is currently no comparative information regarding the use of spironolactone with hydrochlorothiazide versus hydrochlorothiazide alone.
NOTE: Due to the need to individualize drug doses in pediatric patients, fixed-dose combination products should generally be avoided. The separate components should be titrated to optimize clinical response.
Oral dosage Infants and Neonates

In one study, 1.5 mg/kg PO of spironolactone and 2 mg/kg PO of hydrochlorothiazide every 12 hours for 8 weeks improved lung compliance, increased survival, and improved oxygenation for patients that received the diuretic combination relative to patients that received placebo. No differences between the groups were found for the length of hospitalization or ventilator dependence. The patients were at least 30 days old, had radiographic evidence of BPD, and were mechanically ventilated with at least 30% inspired oxygen.

†Indicates off-label use

Dosing Considerations
Hepatic Impairment

Specific guidelines for dosage adjustments in hepatic impairment are not available; it appears that no dosage adjustments are needed. Spironolactone; hydrochlorothiazide should be used with caution in patients with hepatic disease since minor alterations of fluid and electrolyte balance may precipitate hepatic coma.

Renal Impairment

CrCl more than 50 mL/min: No dosage adjustment needed.
CrCl 30 to 50 mL/min: No dosage adjustment needed, but 50 to 100 mg/day of hydrochlorothiazide may be needed. Hydrochlorothiazide must reach the nephron lumen to be effective; monitor serum potassium closely.
CrCl 10 to 29 mL/min: Avoid spironolactone use due to the risk of hyperkalemia. In addition, hydrochlorothiazide is generally not effective in this setting.
CrCl less than 10 mL/min: Contraindicated in patients with renal failure or anuria.

Drug Interactions

Abiraterone: (Major) Avoid using spironolactone in persons with prostate cancer receiving abiraterone. Spironolactone has been observed to increase prostate-specific antigen (PSA) concentrations and has been associated with tumor progression in persons with prostate cancer treated with abiraterone. Spironolactone is considered an androgen receptor antagonist but may exhibit androgen agonism in the setting of abiraterone-related androgen depletion.
Acarbose: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Acetaminophen; Aspirin: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with spironolactone may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If spironolactone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Spironolactone is a weak inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with dihydrocodeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Codeine: (Moderate) Concomitant use of codeine with spironolactone may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of spironolactone could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If spironolactone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Spironolactone is a weak inhibitor of CYP3A4. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Dichloralphenazone; Isometheptene: (Major) Isometheptene has sympathomimetic properties. Patients taking antihypertensive agents may need to have their therapy modified. Careful blood pressure monitoring is recommended.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Hydrocodone: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like spironolactone can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If spironolactone is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Acetaminophen; Ibuprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Acetaminophen; Oxycodone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like spironolactone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If spironolactone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Acetaminophen; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetazolamide: (Moderate) Acetazolamide promotes electrolyte excretion including hydrogen ions, sodium, and potassium. It can enhance the sodium depleting effects of other diuretics when used concurrently. Pre-existing hypokalemia and hyperuricemia can also be potentiated by carbonic anhydrase inhibitors. Monitor serum potassium to determine the need for potassium supplementation and alteration in drug therapy. (Moderate) Carbonic anhydrase inhibitors promote electrolyte excretion including hydrogen ions, sodium, and potassium. They can enhance the sodium depleting effects of other diuretics when used concurrently. Pre-existing hypokalemia and hyperuricemia can also be potentiated by carbonic anhydrase inhibitors. Monitor serum potassium to determine the need for potassium supplementation and alteration in drug therapy.
Aclidinium; Formoterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Acrivastine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Albuterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Albuterol; Budesonide: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Aldesleukin, IL-2: (Moderate) Potassium sparing diuretics may potentiate the hypotension seen with aldesleukin, IL 2. (Moderate) Thiazide diuretics may potentiate the hypotension seen with aldesleukin, IL 2.
Alemtuzumab: (Moderate) Alemtuzumab may cause hypotension. Careful monitoring of blood pressure and hypotensive symptoms is recommended especially in patients with ischemic heart disease and in patients on antihypertensive agents. (Moderate) Alemtuzumab may cause hypotension. Careful monitoring of blood pressure and hypotensive symptoms is recommended especially in patients with ischemic heart disease and in patients on antihypertensive agents.
Alendronate; Cholecalciferol: (Moderate) Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with thiazide diuretics. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia. Hypercalcemia may be exacerbated by coadministration of vitamin D or vitamin D analogs and thiazide diuretics. Thiazide diuretics are known to induce hypercalcemia by reducing the excretion of calcium in the urine.
Alfentanil: (Moderate) Consider a reduced dose of alfentanil with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, consider increasing the alfentanil dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Alfentanil is a sensitive CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like spironolactone can increase alfentanil exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of alfentanil. If spironolactone is discontinued, alfentanil plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to alfentanil. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with alfentanil. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with alfentanil. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Aliskiren: (Moderate) Due to the risk of hyperkalemia, drugs that increase serum potassium concentration, such as potassium-sparing diuretics, should be used cautiously in patients taking aliskiren. Electrolytes should be routinely monitored in patients receiving aliskiren. Aliskiren can enhance the effects of diuretics on blood pressure if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly. Also, patients with hyponatremia or hypovolemia may become hypotensive and/or develop reversible renal insufficiency when given aliskiren and diuretics.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Due to the risk of hyperkalemia, drugs that increase serum potassium concentration, such as potassium-sparing diuretics, should be used cautiously in patients taking aliskiren. Electrolytes should be routinely monitored in patients receiving aliskiren. Aliskiren can enhance the effects of diuretics on blood pressure if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly. Also, patients with hyponatremia or hypovolemia may become hypotensive and/or develop reversible renal insufficiency when given aliskiren and diuretics.
Allopurinol: (Moderate) Monitor renal function and for signs and symptoms of hypersensitivity and skin rash during concomitant use of allopurinol and thiazide diuretics; reduce the allopurinol dose in persons with renal impairment and concomitant thiazide diuretic use. Concomitant use may increase the risk of severe skin rash and renal impairment may further increase the risk. Discontinue allopurinol at the first appearance of skin rash or other signs which may indicate a hypersensitivity when using these drugs concomitantly.
Alogliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Alogliptin; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Alogliptin; Pioglitazone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Alpha-glucosidase Inhibitors: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Alprazolam: (Major) Avoid coadministration of alprazolam and spironolactone due to the potential for elevated alprazolam concentrations, which may cause prolonged sedation and respiratory depression. If coadministration is necessary, consider reducing the dose of alprazolam as clinically appropriate and monitor for an increase in alprazolam-related adverse reactions. Lorazepam, oxazepam, or temazepam may be safer alternatives if a benzodiazepine must be administered in combination with spironolactone, as these benzodiazepines are not oxidatively metabolized. Alprazolam is a CYP3A substrate and spironolactone is a weak CYP3A inhibitor. Coadministration with another weak CYP3A inhibitor increased alprazolam maximum concentration by 82%, decreased clearance by 42%, and increased half-life by 16%.
Alprostadil: (Minor) The concomitant use of systemic alprostadil injection and antihypertensive agents, such as spironolactone or other potassium-sparing diuretics, may cause additive hypotension. Caution is advised with this combination. Systemic drug interactions with the urethral suppository (MUSE) or alprostadil intracavernous injection are unlikely in most patients because low or undetectable amounts of the drug are found in the peripheral venous circulation following administration. In those men with significant corpora cavernosa venous leakage, hypotension might be more likely. Use caution with in-clinic dosing for erectile dysfunction (ED) and monitor for the effects on blood pressure. In addition, the presence of medications in the circulation that attenuate erectile function may influence the response to alprostadil. However, in clinical trials with alprostadil intracavernous injection, anti-hypertensive agents had no apparent effect on the safety and efficacy of alprostadil. (Minor) The concomitant use of systemic alprostadil injection and antihypertensive agents, such as thiazide diuretics, may cause additive hypotension. Caution is advised with this combination. Systemic drug interactions with the urethral suppository (MUSE) or alprostadil intracavernous injection are unlikely in most patients because low or undetectable amounts of the drug are found in the peripheral venous circulation following administration. In those men with significant corpora cavernosa venous leakage, hypotension might be more likely. Use caution with in-clinic dosing for erectile dysfunction (ED) and monitor for the effects on blood pressure. In addition, the presence of medications in the circulation that attenuate erectile function may influence the response to alprostadil. However, in clinical trials with alprostadil intracavernous injection, anti-hypertensive agents had no apparent effect on the safety and efficacy of alprostadil.
Ambrisentan: (Moderate) Although no specific interactions have been documented, ambrisentan has vasodilatory effects and may contribute additive hypotensive effects when given with other antihypertensive agents. Patients receiving ambrisentan in combination with other antihypertensive agents should be monitored for decreases in blood pressure.
Amifostine: (Major) Patients receiving antihypertensive agents should be closely monitored during amifostine infusions due to additive effects. If possible, patients should not take their antihypertensive medication 24 hours before receiving amifostine. Patients who can not stop their antihypertensive agents should not receive amifostine or be closely monitored during the infusion and, possibly, given lower doses.
Aminolevulinic Acid: (Moderate) Thiazide diuretics may cause photosensitivity and may increase the photosensitization effects of photosensitizing agents used in photodynamic therapy. Prevention of photosensitivity includes adequate protection from sources of UV radiation (e.g., avoiding sun exposure and tanning booths) and the use of protective clothing and sunscreens on exposed skin.
Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia.
Amlodipine; Atorvastatin: (Minor) Because HMG-CoA reductase inhibitors may theoretically blunt adrenal and/or gonadal steroid production by interfering with cholesterol synthesis, the manufacturer recommends that caution should be exercised when atorvastatin is administered concomitantly with drugs that may decrease the concentrations or activity of endogenous hormones, such as spironolactone. The clinical relevance of these potential interactions has not been established.
Amlodipine; Benazepril: (Major) Discontinue the thiazide diuretic prior to starting benazepril, if possible, or start benazepril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Amlodipine; Celecoxib: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Amlodipine; Olmesartan: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Amlodipine; Valsartan: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Amobarbital: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Concurrent use of amobarbital with antihypertensive agents may lead to hypotension. Monitor for decreases in blood pressure during times of coadministration.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) Monitor magnesium concentration before and periodically during concomitant omeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Amphetamine: (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like potassium-sparing diuretics. Close monitoring of blood pressure is advised. (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH.
Amphetamine; Dextroamphetamine Salts: (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like potassium-sparing diuretics. Close monitoring of blood pressure is advised. (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH.
Amphetamine; Dextroamphetamine: (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like potassium-sparing diuretics. Close monitoring of blood pressure is advised. (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH.
Amphotericin B lipid complex (ABLC): (Moderate) The risk of developing severe hypokalemia can be increased when amphotericin B is coadministered with thiazide diuretics. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
Amphotericin B liposomal (LAmB): (Moderate) The risk of developing severe hypokalemia can be increased when amphotericin B is coadministered with thiazide diuretics. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
Amphotericin B: (Moderate) The risk of developing severe hypokalemia can be increased when amphotericin B is coadministered with thiazide diuretics. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
Angiotensin II receptor antagonists: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Angiotensin-converting enzyme inhibitors: (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Anticholinergics: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Apomorphine: (Moderate) Use of potassium-sparing diuretics and apomorphine together can increase the hypotensive effects of apomorphine. Monitor blood pressure regularly during use of this combination. (Moderate) Use of thiazide diuretics and apomorphine together can increase the hypotensive effects of apomorphine. Monitor blood pressure regularly during use of this combination.
Apraclonidine: (Minor) Alpha blockers as a class may reduce heart rate and blood pressure. While no specific drug interactions have been identified with systemic agents and apraclonidine during clinical trials, it is theoretically possible that additive blood pressure reductions could occur when apraclonidine is combined with the use of antihypertensive agents. Patients using cardiovascular drugs concomitantly with apraclonidine should have their pulse and blood pressure monitored periodically.
Arformoterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Aripiprazole: (Major) Monitor for aripiprazole-related adverse reactions during concurrent use of spironolactone. Reduce the oral aripiprazole dosage to one-quarter (25%) of the usual dose with subsequent adjustments based upon clinical response in patients also receiving a CYP2D6 inhibitor. Adults receiving a combination of a CYP2D6 inhibitor and spironolactone for more than 14 days should have their Abilify Maintena dose reduced from 400 mg/month to 200 mg/month or from 300 mg/month to 160 mg/month, respectively. There are no dosing recommendations for Aristada or Aristada Initio during use of a mild to moderate CYP3A4 inhibitor alone. Aripiprazole is a substrate for CYP2D6 and CYP3A4; spironolactone is a weak CYP3A4 inhibitor. Additionally, monitor blood pressure and adjust spironolactone dose accordingly as aripiprazole may enhance the hypotensive effects of antihypertensive agents. (Minor) Aripiprazole may enhance the hypotensive effects of antihypertensive agents.
Arsenic Trioxide: (Moderate) Concomitant use of thiazide diuretics and arsenic trioxide should be done cautiously. Electrolyte abnormalities, such as hypokalemia and hypomagnesemia, may increase the risk for QT prolongation and torsade de pointes. (Moderate) Use caution when using arsenic trioxide with potassium-sparing diuretics. Electrolyte abnormalities, such as increased potassium, may increase the risk for QT prolongation and torsade de pointes.
Articaine; Epinephrine: (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and potassium-sparing diuretic use. Potassium-sparing diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine. (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and thiazide diuretic use. Thiazide diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine.
Asenapine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Aspirin, ASA: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Barbiturates, such as butalbital, may potentiate orthostatic hypotension when given concomitantly with spironolactone. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Aspirin, ASA; Caffeine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Concomitant use of codeine with spironolactone may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of spironolactone could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If spironolactone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Spironolactone is a weak inhibitor of CYP3A4. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Aspirin, ASA; Dipyridamole: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Aspirin, ASA; Omeprazole: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor magnesium concentration before and periodically during concomitant omeprazole and thiazide diuretic use due to risk for hypomagnesemia. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Aspirin, ASA; Oxycodone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like spironolactone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If spironolactone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Atorvastatin: (Minor) Because HMG-CoA reductase inhibitors may theoretically blunt adrenal and/or gonadal steroid production by interfering with cholesterol synthesis, the manufacturer recommends that caution should be exercised when atorvastatin is administered concomitantly with drugs that may decrease the concentrations or

activity of endogenous hormones, such as spironolactone. The clinical relevance of these potential interactions has not been established.
Atracurium: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Atropine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Atropine; Difenoxin: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Azelastine; Fluticasone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Azilsartan: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Azilsartan; Chlorthalidone: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Baclofen: (Moderate) Baclofen has been associated with hypotension. Concurrent use with baclofen and antihypertensive agents may result in additive hypotension. Dosage adjustments of the antihypertensive medication may be required.
Barbiturates: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Beclomethasone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Belladonna; Opium: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with opium. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with opium. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Benazepril: (Major) Discontinue the thiazide diuretic prior to starting benazepril, if possible, or start benazepril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Benazepril; Hydrochlorothiazide, HCTZ: (Major) Discontinue the thiazide diuretic prior to starting benazepril, if possible, or start benazepril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Benzhydrocodone; Acetaminophen: (Moderate) Consider a reduced dose of benzhydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. Benzhydrocodone is a prodrug for hydrocodone. Hydrocodone is a CYP3A substrate, and coadministration with weak CYP3A inhibitors like spironolactone can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of benzhydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If spironolactone is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to benzhydrocodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with benzhydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with benzhydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Benzphetamine: (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH. (Minor) Benzphetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like potassium-sparing diuretics. Close monitoring of blood pressure is advised.
Benztropine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Beta-agonists: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Betamethasone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Bismuth Subsalicylate: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor renal function periodically during concomitant use of spironolactone with bismuth subsalicylate. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and bismuth subsalicylate may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor renal function periodically during concomitant use of spironolactone with bismuth subsalicylate. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and bismuth subsalicylate may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
Bortezomib: (Moderate) Patients on antihypertensive agents receiving bortezomib treatment may require close monitoring of their blood pressure and dosage adjustment of their medication. During clinical trials of bortezomib, hypotension was reported in roughly 12 percent of patients. (Moderate) Patients on antihypertensive agents receiving bortezomib treatment may require close monitoring of their blood pressure and dosage adjustment of their medication. During clinical trials of bortezomib, hypotension was reported in roughly 12 percent of patients.
Brexpiprazole: (Moderate) Due to brexpiprazole's antagonism at alpha 1-adrenergic receptors, the drug may enhance the hypotensive effects of alpha-blockers and other antihypertensive agents.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Brompheniramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Brompheniramine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Budesonide: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Budesonide; Formoterol: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms. (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Bumetanide: (Moderate) Monitor blood pressure, renal function, and serum electrolytes during concomitant loop diuretic and thiazide diuretic use; dosage adjustments may be necessary. Concomitant use may result in additive hypotension and fluid and/or electrolyte loss.
Bupivacaine; Epinephrine: (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and potassium-sparing diuretic use. Potassium-sparing diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine. (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and thiazide diuretic use. Thiazide diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine.
Bupivacaine; Lidocaine: (Moderate) Monitor for lidocaine toxicity if coadministration with spironolactone is necessary as concurrent use may increase lidocaine exposure. Lidocaine is a CYP3A4 substrate and spironolactone is a weak CYP3A4 inhibitor.
Bupivacaine; Meloxicam: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Buprenorphine: (Moderate) Concomitant use of buprenorphine and spironolactone can increase the plasma concentration of buprenorphine, resulting in increased or prolonged opioid effects, particularly when spironolactone is added after a stable buprenorphine dose is achieved. If concurrent use is necessary, consider dosage reduction of buprenorphine until stable drug effects are achieved. Monitor patient for respiratory depression and sedation at frequent intervals. When stopping spironolactone, the buprenorphine concentration may decrease, potentially resulting in decreased opioid efficacy or a withdrawal syndrome in patients who had developed physical dependency. If spironolactone is discontinued, consider increasing buprenorphine dosage until stable drug effects are achieved. Monitor for signs of opioid withdrawal. Buprenorphine is a substrate of CYP3A4 and spironolactone is a CYP3A4 inhibitor. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with buprenorphine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and buprenorphine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Buprenorphine; Naloxone: (Moderate) Concomitant use of buprenorphine and spironolactone can increase the plasma concentration of buprenorphine, resulting in increased or prolonged opioid effects, particularly when spironolactone is added after a stable buprenorphine dose is achieved. If concurrent use is necessary, consider dosage reduction of buprenorphine until stable drug effects are achieved. Monitor patient for respiratory depression and sedation at frequent intervals. When stopping spironolactone, the buprenorphine concentration may decrease, potentially resulting in decreased opioid efficacy or a withdrawal syndrome in patients who had developed physical dependency. If spironolactone is discontinued, consider increasing buprenorphine dosage until stable drug effects are achieved. Monitor for signs of opioid withdrawal. Buprenorphine is a substrate of CYP3A4 and spironolactone is a CYP3A4 inhibitor. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with buprenorphine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and buprenorphine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Butalbital; Acetaminophen: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Barbiturates, such as butalbital, may potentiate orthostatic hypotension when given concomitantly with spironolactone.
Butalbital; Acetaminophen; Caffeine: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Barbiturates, such as butalbital, may potentiate orthostatic hypotension when given concomitantly with spironolactone.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Barbiturates, such as butalbital, may potentiate orthostatic hypotension when given concomitantly with spironolactone. (Moderate) Concomitant use of codeine with spironolactone may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of spironolactone could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If spironolactone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Spironolactone is a weak inhibitor of CYP3A4. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Barbiturates, such as butalbital, may potentiate orthostatic hypotension when given concomitantly with spironolactone. (Moderate) Concomitant use of codeine with spironolactone may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of spironolactone could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If spironolactone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Spironolactone is a weak inhibitor of CYP3A4. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Moderate) Monitor renal function and for decreased efficacy of spironolactone if coadministration with aspirin is necessary. The spironolactone dose may need to be titrated to higher maintenance dose. In persons who are elderly, volume-depleted (including those receiving diuretic therapy), or with compromised renal function, coadministration of spironolactone and aspirin may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. Aspirin may reduce the efficacy of spironolactone. A single aspirin 600 mg dose inhibited the natriuretic effect of spironolactone, which was hypothesized be due to inhibition of tubular secretion of canrenone, causing decreased effectiveness of spironolactone.
Cabergoline: (Moderate) Cabergoline should be used cautiously with antihypertensive agents, including potassium-sparing diuretics. Cabergoline has been associated with hypotension. Initial doses of cabergoline higher than 1 mg may produce orthostatic hypotension. It may be advisable to monitor blood pressure. (Moderate) Cabergoline should be used cautiously with antihypertensive agents, including thiazide diuretics. Cabergoline has been associated with hypotension. Initial doses of cabergoline higher than 1 mg may produce orthostatic hypotension. It may be advisable to monitor blood pressure.
Calcifediol: (Moderate) Monitor serum calcium concentrations during concomitant use of thiazide diuretics and vitamin D analogs; a dosage adjustment of the vitamin D analog may be needed. Hypercalcemia may be exacerbated by concomitant administration.
Calcitriol: (Moderate) Monitor serum calcium concentrations during concomitant use of thiazide diuretics and vitamin D analogs; a dosage adjustment of the vitamin D analog may be needed. Hypercalcemia may be exacerbated by concomitant administration.
Calcium Acetate: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Calcium Carbonate: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Calcium Carbonate; Famotidine; Magnesium Hydroxide: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Calcium Carbonate; Magnesium Hydroxide: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Calcium Carbonate; Magnesium Hydroxide; Simethicone: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Calcium Carbonate; Simethicone: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Calcium Chloride: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Calcium Gluconate: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Calcium Phosphate, Supersaturated: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as diuretics may increase the risk of acute phosphate nephropathy in patients receiving sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous. (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as diuretics, may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
Calcium: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Calcium; Vitamin D: (Moderate) Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with thiazide diuretics. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia. Hypercalcemia may be exacerbated by coadministration of vitamin D or vitamin D analogs and thiazide diuretics. Thiazide diuretics are known to induce hypercalcemia by reducing the excretion of calcium in the urine. (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Canagliflozin: (Major) Assess and correct volume status before initiating canagliflozin in persons receiving concomitant thiazide diuretics. Monitor for signs and symptoms of volume depletion and loss of glycemic control after initiating therapy due to increased risk for volume depletion or hypotension and loss of blood glucose control. Persons receiving thiazide diuretics may be at increased risk for volume depletion or hypotension with concomitant canagliflozin therapy. Thiazide diuretics tend to produce hyperglycemia and may lead to loss of glycemic control.
Canagliflozin; Metformin: (Major) Assess and correct volume status before initiating canagliflozin in persons receiving concomitant thiazide diuretics. Monitor for signs and symptoms of volume depletion and loss of glycemic control after initiating therapy due to increased risk for volume depletion or hypotension and loss of blood glucose control. Persons receiving thiazide diuretics may be at increased risk for volume depletion or hypotension with concomitant canagliflozin therapy. Thiazide diuretics tend to produce hyperglycemia and may lead to loss of glycemic control. (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients.
Candesartan: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Captopril: (Major) Discontinue the thiazide diuretic prior to starting captopril, if possible, or start captopril at the lower dose of 6.25 or 12.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Captopril; Hydrochlorothiazide, HCTZ: (Major) Discontinue the thiazide diuretic prior to starting captopril, if possible, or start captopril at the lower dose of 6.25 or 12.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Carbamazepine: (Moderate) Monitor carbamazepine concentrations closely during coadministration of spironolactone; carbamazepine dose adjustments may be needed. Concomitant use may increase carbamazepine concentrations. Carbamazepine is a CYP3A substrate and spironolactone is a CYP3A inhibitor. (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant use of carbamazepine and thiazide diuretics due to additive risk of developing hyponatremia.
Carbidopa; Levodopa: (Moderate) Monitor blood pressure during concomitant levodopa and potassium-sparing diuretic use due to risk for additive hypotension; a potassium-sparing diuretic dosage adjustment may be necessary. Symptomatic postural hypotension has occurred when carbidopa; levodopa was added in a person receiving antihypertensive drugs. (Moderate) Monitor blood pressure during concomitant levodopa and thiazide diuretic use due to risk for additive hypotension; a thiazide diuretic dosage adjustment may be necessary. Symptomatic postural hypotension has occurred when carbidopa; levodopa was added in a person receiving antihypertensive drugs.
Carbidopa; Levodopa; Entacapone: (Moderate) Monitor blood pressure during concomitant levodopa and potassium-sparing diuretic use due to risk for additive hypotension; a potassium-sparing diuretic dosage adjustment may be necessary. Symptomatic postural hypotension has occurred when carbidopa; levodopa was added in a person receiving antihypertensive drugs. (Moderate) Monitor blood pressure during concomitant levodopa and thiazide diuretic use due to risk for additive hypotension; a thiazide diuretic dosage adjustment may be necessary. Symptomatic postural hypotension has occurred when carbidopa; levodopa was added in a person receiving antihypertensive drugs.
Carbonic anhydrase inhibitors: (Moderate) Carbonic anhydrase inhibitors promote electrolyte excretion including hydrogen ions, sodium, and potassium. They can enhance the sodium depleting effects of other diuretics when used concurrently. Pre-existing hypokalemia and hyperuricemia can also be potentiated by carbonic anhydrase inhibitors. Monitor serum potassium to determine the need for potassium supplementation and alteration in drug therapy.
Cardiac glycosides: (Major) Monitor serum digoxin concentrations before initiating concomitant spironolactone. Reduce digoxin concentrations by decreasing the dose by approximately 15% to 30% or by modifying the dosing frequency and continue monitoring. Concomitant use increased digoxin concentrations by 25%. Spironolactone and its metabolites interfere with radioimmunoassays for digoxin and increase the apparent exposure to digoxin. It is unknown to what extent, if any, spironolactone may increase actual digoxin exposure. In persons taking concomitant digoxin, use an assay that does not interact with spironolactone. (Moderate) Monitor serum magnesium and potassium during concomitant cardiac glycoside and thiazide diuretic use. Potassium-depleting diuretics are a major contributing factor to digoxin toxicity.
Cariprazine: (Moderate) Orthostatic vital signs should be monitored in patients who are at risk for hypotension, such as those receiving cariprazine in combination with antihypertensive agents. Atypical antipsychotics may cause orthostatic hypotension and syncope, most commonly during treatment initiation and dosage increases. Patients should be informed about measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning, or rising slowly from a seated position. Consider a cariprazine dose reduction if hypotension occurs.
Celecoxib: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Celecoxib; Tramadol: (Moderate) Consider a tramadol dosage reduction until stable drug effects are achieved if coadministration with spironolactone is necessary. Closely monitor for seizures, serotonin syndrome, and signs of sedation and respiratory depression. Respiratory depression from increased tramadol exposure may be fatal. Concurrent use of spironolactone, a weak CYP3A inhibitor, may increase tramadol exposure and result in greater CYP2D6 metabolism thereby increasing exposure to the active metabolite M1, which is a more potent mu-opioid agonist. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with tramadol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and tramadol; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Cetirizine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlordiazepoxide; Clidinium: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Chloroprocaine: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents.
Chlorpheniramine; Codeine: (Moderate) Concomitant use of codeine with spironolactone may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of spironolactone could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If spironolactone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Spironolactone is a weak inhibitor of CYP3A4. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Hydrocodone: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like spironolactone can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If spironolactone is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpromazine: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Chlorpropamide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Cholestyramine: (Moderate) Cholestyramine, an ion exchange resin, binds hydrochlorothiazide and reduces its absorption from the gastrointestinal tract by up to 85% when co-administered as single doses. Although the manufacturer for Questran recommends that other medicines be taken at least 1 hour before or 4-6 hours after cholestyramine, it has been recommended that thiazides be administered at least 4 hours before or after cholestyramine to minimize the reduction in absorption. By administering hydrochlorothiazide at least 4 hours before cholestyramine, the decrease in absorption of hydrochlorothiazide is approximately 30-35%. (Moderate) Use caution if spironolactone is administered concurrently with cholestyramine. Hyperkalemic metabolic acidosis has been reported in patients given spironolactone concurrently with cholestyramine.
Choline Salicylate; Magnesium Salicylate: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and magnesium salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia.
Chromium: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Ciclesonide: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Cidofovir: (Contraindicated) The administration of cidofovir with another potentially nephrotoxic agent, such as diuretics, is contraindicated. Diuretics should be discontinued at least 7 days prior to beginning cidofovir.
Cisapride: (Major) Cisapride should be used with great caution in patients receiving thiazide diuretics. Drugs that are associated with depletion of electrolytes may cause cisapride-induced cardiac arrhythmias. Serum electrolytes and creatinine should be assessed prior to administration of cisapride and whenever conditions develop that may affect electrolyte imbalance or renal function.
Cisatracurium: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Citalopram: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Citric Acid; Potassium Citrate; Sodium Citrate: (Major) The use of potassium supplements in patients receiving spironolactone may increase the risk for hyperkalemia. Potassium supplements should generally be avoided in heart failure patients receiving spironolactone. Monitor serum potassium concentrations closely if concomitant use is necessary.
Clindamycin; Tretinoin: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Clozapine: (Moderate) Caution is advisable during concurrent use of clozapine and thiazide diuretics as concurrent use may increase the risk and severity of hypotension. In addition, electrolyte imbalance caused by thiazide diuretics may increase the risk of QT prolongation by clozapine. (Moderate) Consider a clozapine dose reduction if coadministered with spironolactone and monitor for adverse reactions. If spironolactone is discontinued, monitor for lack of clozapine effect, and increase dose if necessary. A clinically relevant increase in the plasma concentration of clozapine may occur during concurrent use. Clozapine is partially metabolized by CYP3A. Spironolactone is a weak CYP3A inhibitor. Additionally, monitor blood pressure and adjust spironolactone dose accordingly as clozapine may enhance the hypotensive effects of antihypertensive agents.
Cocaine: (Major) Use of cocaine with antihypertensive agents may increase the antihypertensive effects of the antihypertensive medications or may potentiate cocaine-induced sympathetic stimulation.
Codeine: (Moderate) Concomitant use of codeine with spironolactone may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of spironolactone could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If spironolactone is discontinued, monitor the pa tient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Spironolactone is a weak inhibitor of CYP3A4. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Codeine; Guaifenesin: (Moderate) Concomitant use of codeine with spironolactone may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of spironolactone could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If spironolactone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Spironolactone is a weak inhibitor of CYP3A4. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Concomitant use of codeine with spironolactone may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of spironolactone could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If spironolactone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Spironolactone is a weak inhibitor of CYP3A4. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Codeine; Phenylephrine; Promethazine: (Moderate) Concomitant use of codeine with spironolactone may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of spironolactone could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If spironolactone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Spironolactone is a weak inhibitor of CYP3A4. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Codeine; Promethazine: (Moderate) Concomitant use of codeine with spironolactone may increase codeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased morphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of codeine until stable drug effects are achieved. Discontinuation of spironolactone could decrease codeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If spironolactone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Spironolactone is a weak inhibitor of CYP3A4. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and codeine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Co-Enzyme Q10, Ubiquinone: (Moderate) Monitor blood pressure during concomitant co-enzyme Q10 (ubiquinone) and potassium-sparing diuretic use. Concomitant use may result in additive hypotension. (Moderate) Monitor blood pressure during concomitant co-enzyme Q10 (ubiquinone) and thiazide diuretic use. Concomitant use may result in additive hypotension.
Colestipol: (Moderate) Although to a lesser extent than cholestyramine, colestipol also has been shown to inhibit the GI absorption and therapeutic response of thiazide diuretics. Single doses of colestipol resins reduce the absorption of HCTZ by up to 43%. Administering thiazide diuretics at least 2 hours before colestipol has been suggested to minimize the interaction.
Corticosteroids: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Corticotropin, ACTH: (Minor) Monitor potassium concentrations during concomitant corticotropin and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticotropin and thiazide diuretics cause increased renal potassium loss. (Minor) Monitor serum electrolytes, particularly serum calcium concentrations, during concomitant corticotropin and potassium-sparing diuretic use. Corticotropin may accentuate the electrolyte loss associated with diuretic therapy.
Cortisone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Cosyntropin: (Major) Patients receiving spironolactone should omit their pre-test doses on the day selected for testing. Patients taking inadvertent doses of spironolactone may exhibit abnormally high basal plasma cortisol concentrations and a decreased response to the test. (Moderate) Use cosyntropin cautiously in patients receiving diuretics. Cosyntropin may accentuate the electrolyte loss associated with diuretic therapy.
Cyclophosphamide: (Moderate) Closely monitor complete blood counts if coadministration of cyclophosphamide with thiazide diuretics is necessary as there is an increased risk of hematologic toxicity and immunosuppression.
Cyclosporine: (Major) Avoid concomitant use of cyclosporine and potassium-sparing diuretics, such as spironolactone, due to the risk of hyperkalemia. If concomitant use is necessary, closely monitor serum potassium concentrations. Additionally, closely monitor cyclosporine whole blood trough concentrations as appropriate and watch for cyclosporine-related adverse reactions as concurrent use may increase cyclosporine exposure. The dose of cyclosporine may need to be adjusted. Cyclosporine is a CYP3A substrate and spironolactone is a weak CYP3A inhibitor.
Dalteparin: (Moderate) Monitor serum potassium during concomitant low molecular weight heparin (LMWH) and spironolactone use due to the risk for hyperkalemia. Cases of hyperkalemia have been reported with coadministration of LMWH and spironolactone.
Dapagliflozin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Dapagliflozin; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Dapagliflozin; Saxagliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Darifenacin: (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Deflazacort: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Desloratadine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Desmopressin: (Moderate) Monitor serum sodium more frequently during concomitant desmopressin and thiazide diuretic use due to increased risk of water intoxication with hyponatremia.
Desvenlafaxine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and serotonin norepinephrine reuptake inhibitor (SNRI) use; consider discontinuing the SNRI if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Dexamethasone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Dexbrompheniramine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dexlansoprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with thiazide diuretics (chlorothiazide, hydrochlorothiazide, indapamide, and metolazone). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Dexmethylphenidate: (Moderate) Monitor blood pressure during concomitant potassium-sparing diuretic and methylphenidate use; a potassium-sparing diuretic dose adjustment may be necessary. Methylphenidate may decrease the effectiveness of medications used to treat hypertension. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and methylphenidate use; a thiazide diuretic dose adjustment may be necessary. Methylphenidate may decrease the effectiveness of medications used to treat hypertension.
Dextroamphetamine: (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like potassium-sparing diuretics. Close monitoring of blood pressure is advised. (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dextromethorphan; Quinidine: (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension. (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension.
Diazepam: (Moderate) Monitor for an increase in diazepam-related adverse reactions, including sedation and respiratory depression, if coadministration with spironolactone is necessary. Concurrent use may increase diazepam exposure. Diazepam is a CYP3A substrate and spironolactone is a CYP3A inhibitor.
Diazoxide: (Moderate) Additive hypotensive effects can occur with the concomitant administration of diazoxide with other antihypertensive agents. This interaction can be therapeutically advantageous, but dosages must be adjusted accordingly. The manufacturer advises that IV diazoxide should not be administered to patients within 6 hours of receiving other antihypertensive agents. (Moderate) Enhanced hyperglycemia is possible during concurrent use of diazoxide and thiazide diuretics. Additive hypotensive effects can also occur with the concomitant administration of diazoxide with thiazide diuretics.
Dichlorphenamide: (Moderate) Use dichlorphenamide and diuretics together with caution. Dichlorphenamide increases potassium excretion and can cause hypokalemia and should be used cautiously with other drugs that may cause hypokalemia including loop diuretics and thiazide diuretics. Measure potassium concentrations at baseline and periodically during dichlorphenamide treatment. If hypokalemia occurs or persists, consider reducing the dose or discontinuing dichlorphenamide therapy. (Moderate) Use dichlorphenamide and spironolactone together with caution. Metabolic acidosis is associated with the use of dichlorphenamide and has been reported with spironolactone in patients with decompensated hepatic cirrhosis. Concurrent use may increase the severity of metabolic acidosis. Measure sodium bicarbonate concentrations at baseline and periodically during dichlorphenamide treatment. If metabolic acidosis occurs or persists, consider reducing the dose or discontinuing dichlorphenamide therapy.
Diclofenac: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Diclofenac; Misoprostol: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Dicyclomine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Diethylpropion: (Major) Diethylpropion has vasopressor effects and may limit the benefit of thiazide diuretics. Although leading drug interaction texts differ in the potential for an interaction between diethylpropion and this group of antihypertensive agents, these effects are likely to be clinically significant and have been described in hypertensive patients on these medications.
Diflunisal: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Digoxin: (Major) Monitor serum digoxin concentrations before initiating concomitant spironolactone. Reduce digoxin concentrations by decreasing the dose by approximately 15% to 30% or by modifying the dosing frequency and continue monitoring. Concomitant use increased digoxin concentrations by 25%. Spironolactone and its metabolites interfere with radioimmunoassays for digoxin and increase the apparent exposure to digoxin. It is unknown to what extent, if any, spironolactone may increase actual digoxin exposure. In persons taking concomitant digoxin, use an assay that does not interact with spironolactone. (Moderate) Monitor serum magnesium and potassium during concomitant cardiac glycoside and thiazide diuretic use. Potassium-depleting diuretics are a major contributing factor to digoxin toxicity.
Diphenhydramine; Ibuprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Diphenhydramine; Naproxen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Diphenhydramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Diphenoxylate; Atropine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Disopyramide: (Moderate) Monitor for an increase in disopyramide-related adverse reactions if coadministration with spironolactone is necessary as concurrent use may increase disopyramide exposure. Disopyramide is a CYP3A substrate and spironolactone is a weak CYP3A inhibitor. Although specific drug interaction studies have not been done for disopyramide, cases of life-threatening interactions have been reported when disopyramide was coadministered with moderate and strong CYP3A inhibitors.
Dobutamine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives such as metolazone when administered concomitantly.
Dofetilide: (Contraindicated) Hypokalemia or hypomagnesemia may occur with administration of potassium-depleting drugs such as loop diuretics and thiazide diuretics, increasing the potential for dofetilide-induced torsade de pointes. Additionally, in patients treated with either hydrochlorothiazide 50 mg or hydrochlorothiazide/triamterene 50 mg/100 mg daily in combination with dofetilide 500 mcg twice daily for 5 days, dofetilide AUC and Cmax concentrations increased by 27% and 21%, respectively, for the hydrochlorothiazide alone group and by 30% and 16%, respectively, for the hydrochlorothiazide/triamterene group. Furthermore, a 197% and 190% QTc increase over time was seen in the hydrochlorothiazide and hydrochlorothiazide/triamterene groups, respectively. Based on these findings, the manufacturer of dofetilide contraindicates the concomitant use of hydrochlorothiazide (alone or in combination with other drugs such as triamterene); these findings can be explained both by an increase in the plasma concentration of dofetilide and a reduction in the serum potassium concentration. In a population pharmacokinetic analysis of plasma dofetilide concentrations, the mean dofetilide clearance of dofetilide was 16% lower in patients on thiazide diuretics. It is prudent to avoid the use of any thiazide diuretic in combination with dofetilide. (Moderate) Monitor for an increase in dofetilide-related adverse reactions, including QT prolongation, if coadministration with spironolactone is necessary as concurrent use may increase dofetilide exposure. Spironolactone is a weak CYP3A4 inhibitor. Dofetilide is a minor CYP3A4 substrate; however, because there is a linear relationship between dofetilide plasma concentration and QTc, concomitant administration of CYP3A4 inhibitors may increase the risk of arrhythmia (torsade de pointes).
Dolasetron: (Moderate) Caution is advisable during concurrent use of dolasetron and thiazide diuretics as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with dolasetron.
Donepezil; Memantine: (Minor) Memantine reduced the bioavailability of hydrochlorothiazide by roughly 20% in a drug interaction study. The clinical significance of this pharmacokinetic interaction, if any, is unknown.
Dopamine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives such as metolazone when administered concomitantly.
Doxercalciferol: (Moderate) Monitor serum calcium concentrations during concomitant use of thiazide diuretics and vitamin D analogs; a dosage adjustment of the vitamin D analog may be needed. Hypercalcemia may be exacerbated by concomitant administration.
Droperidol: (Moderate) Caution is advised when using droperidol in combination with thiazide diuretics which may lead to electrolyte abnormalities, especially hypokalemia or hypomagnesemia, as such abnormalities may increase the risk for QT prolongation or cardiac arrhythmias.
Drospirenone: (Moderate) Monitor serum potassium concentration during concomitant drospirenone and potassium-sparing diuretic use due to increased risk for hyperkalemia. Drospirenone has anti-mineralocorticoid activity, including the potential for hyperkalemia.
Drospirenone; Estetrol: (Moderate) Monitor serum potassium concentration during concomitant drospirenone and potassium-sparing diuretic use due to increased risk for hyperkalemia. Drospirenone has anti-mineralocorticoid activity, including the potential for hyperkalemia.
Drospirenone; Estradiol: (Moderate) Monitor serum potassium concentration during concomitant drospirenone and potassium-sparing diuretic use due to increased risk for hyperkalemia. Drospirenone has anti-mineralocorticoid activity, including the potential for hyperkalemia.
Drospirenone; Ethinyl Estradiol: (Moderate) Monitor serum potassium concentration during concomitant drospirenone and potassium-sparing diuretic use due to increased risk for hyperkalemia. Drospirenone has anti-mineralocorticoid activity, including the potential for hyperkalemia.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Moderate) Monitor serum potassium concentration during concomitant drospirenone and potassium-sparing diuretic use due to increased risk for hyperkalemia. Drospirenone has anti-mineralocorticoid activity, including the potential for hyperkalemia.
Dulaglutide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Duloxetine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and serotonin norepinephrine reuptake inhibitor (SNRI) use; consider discontinuing the SNRI if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Eliglustat: (Major) Coadministration of eliglustat and spironolactone is not recommended in poor CYP2D6 metabolizers (PMs). In extensive CYP2D6 metabolizers (EM) with mild hepatic impairment, coadministration of these agents requires dosage reduction of eliglustat to 84 mg PO once daily. Spironolactone is a weak CYP3A inhibitor; eliglustat is a CYP3A and CYP2D6 substrate. Because CYP3A plays a significant role in the metabolism of eliglustat in CYP2D6 PMs, coadministration of eliglustat with CYP3A inhibitors may increase eliglustat exposure and the risk of serious adverse events (e.g., QT prolongation and cardiac arrhythmias).
Empagliflozin: (Moderate) Administer empagliflozin with caution in patients receiving diuretics. When empagliflozin is initiated in patients already receiving diuretics, volume depletion can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may also be at a greater risk for volume depletion and perhaps symptomatic hypotension. Before initiating empagliflozin in patients with one or more of these characteristics, assess volume status and correct if necessary. Monitor for signs and symptoms after initiating therapy. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Empagliflozin; Linagliptin: (Moderate) Administer empagliflozin with caution in patients receiving diuretics. When empagliflozin is initiated in patients already receiving diuretics, volume depletion can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may also be at a greater risk for volume depletion and perhaps symptomatic hypotension. Before initiating empagliflozin in patients with one or more of these characteristics, assess volume status and correct if necessary. Monitor for signs and symptoms after initiating therapy. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Empagliflozin; Linagliptin; Metformin: (Moderate) Administer empagliflozin with caution in patients receiving diuretics. When empagliflozin is initiated in patients already receiving diuretics, volume depletion can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may also be at a greater risk for volume depletion and perhaps symptomatic hypotension. Before initiating empagliflozin in patients with one or more of these characteristics, assess volume status and correct if necessary. Monitor for signs and symptoms after initiating therapy. (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Empagliflozin; Metformin: (Moderate) Administer empagliflozin with caution in patients receiving diuretics. When empagliflozin is initiated in patients already receiving diuretics, volume depletion can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may also be at a greater risk for volume depletion and perhaps symptomatic hypotension. Before initiating empagliflozin in patients with one or more of these characteristics, assess volume status and correct if necessary. Monitor for signs and symptoms after initiating therapy. (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Enalapril, Enalaprilat: (Major) Discontinue the thiazide diuretic prior to starting enalapril, if possible, or start enalapril at the lower dose of 2.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Enalapril; Hydrochlorothiazide, HCTZ: (Major) Discontinue the thiazide diuretic prior to starting enalapril, if possible, or start enalapril at the lower dose of 2.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Enoxaparin: (Moderate) Monitor serum potassium during concomitant low molecular weight heparin (LMWH) and spironolactone use due to the risk for hyperkalemia. Cases of hyperkalemia have been reported with coadministration of LMWH and spironolactone.
Ephedrine: (Major) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by potassium-sparing diuretics. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Major) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by thiazide diuretics. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Ephedrine; Guaifenesin: (Major) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by potassium-sparing diuretics. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Major) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by thiazide diuretics. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Epinephrine: (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and potassium-sparing diuretic use. Potassium-sparing diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine. (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and thiazide diuretic use. Thiazide diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine.
Eplerenone: (Contraindicated) Eplerenone should not be used concomitantly with potassium-sparing diuretics (e.g., amiloride, spironolactone, triamterene) because of the increased risk of developing hyperkalemia. The combine use of these medications in patients with hypertension or renal impairment contraindicated.
Epoprostenol: (Moderate) Epoprostenol can have additive effects when administered with other antihypertensive agents. These effects can be used to therapeutic advantage, but dosage adjustments may be necessary.
Eprosartan: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Ertugliflozin; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients.
Ertugliflozin; Sitagliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Escitalopram: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and escitalopram use; consider discontinuing escitalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Esomeprazole: (Moderate) Monitor magnesium concentration before and periodically during concomitant esomeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Estradiol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Ethacrynic Acid: (Moderate) Monitor blood pressure, renal function, and serum electrolytes during concomitant loop diuretic and thiazide diuretic use; dosage adjustments may be necessary. Concomitant use may result in additive hypotension and fluid and/or electrolyte loss.
Ethanol: (Major) Advise patients to avoid alcohol while taking thiazide diuretics. Ingesting alcohol can increase the risk for orthostatic hypotension when taking a thiazide diuretic.
Ethiodized Oil: (Major) Do not use diuretics before non-ionic contrast media administration. Concomitant use of diuretics and non-ionic contrast media may increase the risk for acute kidney injury, including renal failure.
Etodolac: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Etomidate: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents. (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Exenatide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Felodipine: (Moderate) Concurrent use of felodipine and spironolactone should be approached with caution and conservative dosing of felodipine due to the potential for significant increases in felodipine exposure. Monitor for evidence of increased felodipine effects including decreased blood pressure and increased heart rate. Felodipine is a sensitive CYP3A4 substrate and spironolactone is a weak CYP3A4 inhibitor. Concurrent use of another weak CYP3A4 inhibitor increased felodipine AUC and Cmax by approximately 50%.
Fenoprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Fentanyl: (Moderate) Consider a reduced dose of fentanyl with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, consider increasing the fentanyl dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Fentanyl is a CYP3A substrate, and coadministration with CYP3A inhibitors like spironolactone can increase fentanyl exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of fentanyl. If spironolactone is discontinued, fentanyl plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to fentanyl. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with fentanyl. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and fentanyl; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Fexofenadine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Finerenone: (Moderate) Monitor serum potassium during initiation or dose adjustment of ei ther finerenone or spironolactone; a finerenone dosage reduction may be necessary. Concomitant use may increase finerenone exposure and the risk of hyperkalemia. Finerenone is a CYP3A substrate and spironolactone is a weak CYP3A inhibitor. Coadministration with another weak CYP3A inhibitor increased overall exposure to finerenone by 21%.
Fish Oil, Omega-3 Fatty Acids (Dietary Supplements): (Moderate) Monitor blood pressure during concomitant fish oil and potassium-sparing diuretic use. Concomitant use may result in additive hypotension; high doses of fish oil may produce a blood pressure lowering effect. (Moderate) Monitor blood pressure during concomitant fish oil and thiazide diuretic use. Concomitant use may result in additive hypotension; high doses of fish oil may produce a blood pressure lowering effect.
Flavoxate: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Flibanserin: (Moderate) The concomitant use of flibanserin and multiple weak CYP3A4 inhibitors, including spironolactone, may increase flibanserin concentrations, which may increase the risk of flibanserin-induced adverse reactions. Therefore, patients should be monitored for hypotension, syncope, somnolence, or other adverse reactions, and the potential outcomes of combination therapy with multiple weak CYP3A4 inhibitors and flibanserin should be discussed with the patient.
Fluconazole: (Moderate) Monitor for fluconazole-related adverse events during concomitant hydrochlorothiazide use. Hydrochlorothiazide may decrease the renal clearance of fluconazole. Coadministration of fluconazole 100 mg PO and hydrochlorothiazide 50 mg PO for 10 days in normal volunteers (n = 13) resulted in a significant increase in fluconazole AUC and Cmax compared to fluconazole given alone. There was a mean +/- SD increase in fluconazole AUC and Cmax of 45% +/- 31% and 43% +/- 31%, respectively. These changes are attributed to a mean +/- SD reduction in fluconazole renal clearance of 30% +/- 12%.
Fludrocortisone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Flunisolide: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Fluocinolone; Hydroquinone; Tretinoin: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Fluoxetine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and fluoxetine use; consider discontinuing fluoxetine if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Fluphenazine: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Flurbiprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Fluticasone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Fluticasone; Salmeterol: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Fluticasone; Vilanterol: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Fluvoxamine: (Moderate) Patients receiving a diuretic during treatment with fluvoxamine may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH has been reported during therapy with SSRIs. Cases involving serum sodium levels lower than 110 mmol/L have occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of fluvoxamine should be considered in patients who develop symptomatic hyponatremia.
Folic Acid, Vitamin B9: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Food: (Major) Licorice extract, which contains glycyrrhizic acid, possesses aldosterone-like properties. Thus, licorice candy and foods containing licorice extract should be avoided by patients taking spironolactone in order to not antagonize the drug's therapeutic actions.
Formoterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Formoterol; Mometasone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Fosinopril: (Major) Discontinue the thiazide diuretic prior to starting fosinopril, if possible, or start fosinopril at a lower dose to minimize hypotension. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Fosinopril; Hydrochlorothiazide, HCTZ: (Major) Discontinue the thiazide diuretic prior to starting fosinopril, if possible, or start fosinopril at a lower dose to minimize hypotension. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Furosemide: (Moderate) Monitor blood pressure, renal function, and serum electrolytes during concomitant loop diuretic and thiazide diuretic use; dosage adjustments may be necessary. Concomitant use may result in additive hypotension and fluid and/or electrolyte loss.
General anesthetics: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents. (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Glimepiride: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Glipizide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Glipizide; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Glyburide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Glyburide; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Glycopyrrolate: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Glycopyrrolate; Formoterol: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms. (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Granisetron: (Moderate) According to the manufacturer, caution is warranted when administering granisetron to patients with preexisting electrolyte abnormalities. Patients taking certain diuretics may develop an electrolyte abnormality that may lead to cardiac dysrhythmias and/or QT prolongation. Hypokalemia or hypomagnesemia may occur with administration of potassium-depleting drugs such as loop diuretics and thiazide diuretics, increasing the potential for cardiac arrhythmias.
Guaifenesin; Hydrocodone: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like spironolactone can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If spironolactone is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Halobetasol; Tazarotene: (Moderate) The manufacturer states that tazarotene should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Haloperidol: (Moderate) Caution is advisable during concurrent use of haloperidol and thiazide diuretics as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with haloperidol. Concomitant use may also cause additive hypotension. (Moderate) In general, haloperidol should be used cautiously with antihypertensive agents due to the possibility of additive hypotension.
Homatropine; Hydrocodone: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like spironolactone can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If spironolactone is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Hydralazine; Isosorbide Dinitrate, ISDN: (Moderate) Monitor blood pressure during concomitant potassium-sparing diuretic and nitrate use due to risk for additive hypotension. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and nitrate use due to risk for additive hypotension.
Hydrochlorothiazide, HCTZ; Moexipril: (Major) Discontinue the thiazide diuretic prior to starting moexipril, if possible, or start moexipril at the lower dose of 3.75 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Hydrocodone: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like spironolactone can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If spironolactone is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Hydrocodone; Ibuprofen: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like spironolactone can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If spironolactone is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Hydrocodone; Pseudoephedrine: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like spironolactone can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If spironolactone is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and hydrocodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Hydrocortisone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Hydromorphone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Hyoscyamine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Ibritumomab Tiuxetan: (Major) Avoid coadministration of potassium phosphate and potassium-sparing diuretics as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations. (Major) The use of potassium supplements in patients receiving spironolactone may increase the risk for hyperkalemia. Potassium supplements should generally be avoided in heart failure patients receiving spironolactone. Monitor serum potassium concentrations closely if concomitant use is necessary.
Ibuprofen lysine: (Moderate) Ibuprofen lysine may reduce the effect of diuretics; diuretics can increase the risk of nephrotoxicity of NSAIDs in dehydrated patients. During coadministration of NSAIDs and diuretic therapy, patients should be monitored for changes in the effectiveness of their diuretic therapy and for signs and symptoms of renal impairment.
Ibuprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Ibuprofen; Famotidine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Ibuprofen; Oxycodone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like spironolactone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If spironolactone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Ibuprofen; Pseudoephedrine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Icosapent ethyl: (Moderate) Thiazide diuretics may exacerbate hypertriglyceridemia and should be discontinued or changed to alternate therapy, if possible, prior to initiation of icosapent ethyl.
Iloperidone: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Iloprost: (Moderate) Amiloride can have additive effects when administered with other antihypertensive agents. These effects can be used to therapeutic advantage, but dosage adjustments may be necessary.
Incretin Mimetics: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Indacaterol; Glycopyrrolate: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms. (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Indapamide: (Moderate) The effects of indapamide may be additive when administered with other antihypertensive agents or diuretics. This may be desirable, but occasionally orthostatic hypotension may occur. Dosages should be adjusted based on clinical response.
Indomethacin: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Inotersen: (Moderate) Use caution with concomitant use of inotersen and diuretics due to the risk of glomerulonephritis and nephrotoxicity.
Insulin Aspart: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Insulin Aspart; Insulin Aspart Protamine: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Insulin Degludec: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Insulin Degludec; Liraglutide: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Insulin Detemir: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Insulin Glargine: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Insulin Glargine; Lixisenatide: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Insulin Glulisine: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Insulin Lispro: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Insulin Lispro; Insulin Lispro Protamine: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Insulin, Inhaled: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Insulins: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Intravenous Lipid Emulsions: (Moderate) Monitor blood pressure during concomitant fish oil and potassium-sparing diuretic use. Concomitant use may result in additive hypotension; high doses of fish oil may produce a blood pressure lowering effect. (Moderate) Monitor blood pressure during concomitant fish oil and thiazide diuretic use. Concomitant use may result in additive hypotension; high doses of fish oil may produce a blood pressure lowering effect.
Iodine; Potassium Iodide, KI: (Major) The use of potassium supplements in patients receiving spironolactone may increase the risk for hyperkalemia. Potassium supplements should generally be avoided in heart failure patients receiving spironolactone. Monitor serum potassium concentrations closely if concomitant use is necessary.
Iodixanol: (Major) Do not use diuretics before non-ionic contrast media administration. Concomitant use of diuretics and non-ionic contrast media may increase the risk for acute kidney injury, including renal failure.
Iohexol: (Major) Do not use diuretics before non-ionic contrast media administration. Concomitant use of diuretics and non-ionic contrast media may increase the risk for acute kidney injury, including renal failure.
Iomeprol: (Major) Do not use diuretics before non-ionic contrast media administration. Concomitant use of diuretics and non-ionic contrast media may increase the risk for acute kidney injury, including renal failure.
Iopamidol: (Major) Do not use diuretics before non-ionic contrast media administration. Concomitant use of diuretics and non-ionic contrast media may increase the risk for acute kidney injury, including renal failure.
Iopromide: (Major) Do not use diuretics before non-ionic contrast media administration. Concomitant use of diuretics and non-ionic contrast media may increase the risk for acute kidney injury, including renal failure.
Ioversol: (Major) Do not use diuretics before non-ionic contrast media administration. Concomitant use of diuretics and non-ionic contrast media may increase the risk for acute kidney injury, including renal failure.
Ipratropium; Albuterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Irbesartan: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Isocarboxazid: (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with diuretics. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider. (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with diuretics. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider.
Isoflurane: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents. (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Isophane Insulin (NPH): (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Isoproterenol: (Moderate) The pharmacologic effects of isoproterenol may cause an increase in blood pressure. If isoproterenol is used concomitantly with antihypertensives, the blood pressure should be monitored as the administration of isoproterenol can compromise the effectiveness of antihypertensive agents. (Moderate) The pharmacologic effects of isoproterenol may cause an increase in blood pressure. If isoproterenol is used concomitantly with antihypertensives, the blood pressure should be monitored as the administration of isoproterenol can compromise the effectiveness of antihypertensive agents.
Isosorbide Dinitrate, ISDN: (Moderate) Monitor blood pressure during concomitant potassium-sparing di uretic and nitrate use due to risk for additive hypotension. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and nitrate use due to risk for additive hypotension.
Isosorbide Mononitrate: (Moderate) Monitor blood pressure during concomitant potassium-sparing diuretic and nitrate use due to risk for additive hypotension. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and nitrate use due to risk for additive hypotension.
Isosulfan Blue: (Major) Do not use diuretics before non-ionic contrast media administration. Concomitant use of diuretics and non-ionic contrast media may increase the risk for acute kidney injury, including renal failure.
Isradipine: (Minor) Monitor for an increase in isradipine-related adverse reactions including hypotension if coadministration with spironolactone is necessary. Concomitant use may increase isradipine exposure. Isradipine is a CYP3A substrate and spironolactone is a weak CYP3A inhibitor.
Ixabepilone: (Moderate) Monitor for ixabepilone toxicity and reduce the ixabepilone dose as needed if concurrent use of spironolactone is necessary. Concomitant use may increase ixabepilone exposure and the risk of adverse reactions. Ixabepilone is a CYP3A substrate and spironolactone is a weak CYP3A inhibitor.
Ketamine: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents. (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Ketoprofen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Ketorolac: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Lansoprazole: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Lemborexant: (Major) Limit the dose of lemborexant to 5 mg PO once daily if coadministered with spironolactone as concurrent use may increase lemborexant exposure and the risk of adverse effects. Lemborexant is a CYP3A4 substrate; spironolactone is a weak CYP3A4 inhibitor. Coadministration with a weak CYP3A4 inhibitor is predicted to increase lemborexant exposure by less than 2-fold.
Lesinurad; Allopurinol: (Moderate) Monitor renal function and for signs and symptoms of hypersensitivity and skin rash during concomitant use of allopurinol and thiazide diuretics; reduce the allopurinol dose in persons with renal impairment and concomitant thiazide diuretic use. Concomitant use may increase the risk of severe skin rash and renal impairment may further increase the risk. Discontinue allopurinol at the first appearance of skin rash or other signs which may indicate a hypersensitivity when using these drugs concomitantly.
Levalbuterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Levodopa: (Moderate) Monitor blood pressure during concomitant levodopa and potassium-sparing diuretic use due to risk for additive hypotension; a potassium-sparing diuretic dosage adjustment may be necessary. Symptomatic postural hypotension has occurred when carbidopa; levodopa was added in a person receiving antihypertensive drugs. (Moderate) Monitor blood pressure during concomitant levodopa and thiazide diuretic use due to risk for additive hypotension; a thiazide diuretic dosage adjustment may be necessary. Symptomatic postural hypotension has occurred when carbidopa; levodopa was added in a person receiving antihypertensive drugs.
Levomilnacipran: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and serotonin norepinephrine reuptake inhibitor (SNRI) use; consider discontinuing the SNRI if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Levorphanol: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with levorphanol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with levorphanol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Lidocaine: (Moderate) Monitor for lidocaine toxicity if coadministration with spironolactone is necessary as concurrent use may increase lidocaine exposure. Lidocaine is a CYP3A4 substrate and spironolactone is a weak CYP3A4 inhibitor.
Lidocaine; Epinephrine: (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and potassium-sparing diuretic use. Potassium-sparing diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine. (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and thiazide diuretic use. Thiazide diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine. (Moderate) Monitor for lidocaine toxicity if coadministration with spironolactone is necessary as concurrent use may increase lidocaine exposure. Lidocaine is a CYP3A4 substrate and spironolactone is a weak CYP3A4 inhibitor.
Lidocaine; Prilocaine: (Moderate) Monitor for lidocaine toxicity if coadministration with spironolactone is necessary as concurrent use may increase lidocaine exposure. Lidocaine is a CYP3A4 substrate and spironolactone is a weak CYP3A4 inhibitor.
Linagliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Linagliptin; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Liraglutide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Lisdexamfetamine: (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH. (Minor) Lisedexamfetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like potassium-sparing diuretics. Close monitoring of blood pressure is advised.
Lisinopril: (Major) Discontinue the thiazide diuretic prior to starting lisinopril, if possible, or start lisinopril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Lisinopril; Hydrochlorothiazide, HCTZ: (Major) Discontinue the thiazide diuretic prior to starting lisinopril, if possible, or start lisinopril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Lithium: (Moderate) Monitor lithium concentrations during concomitant use with thiazide diuretics; consider lower lithium starting doses and titrating slowly while frequently monitoring lithium concentrations and for signs of lithium toxicity. Thiazide diuretics reduce the renal clearance of lithium and increase the risk for lithium toxicity. (Minor) The risk of lithium toxicity may be increased in patients receiving medications that affect kidney function and sodium excretion, such as diuretics. However, concurrent use of potassium-sparing diuretics (e.g., amiloride, spironolactone, triamterene) with lithium is generally regarded as safe. Lithium is primarily reabsorbed from the proximal tubules whereas potassium-sparing diuretics inhibit the endothelial sodium channel in the renal collecting duct thereby inhibiting reabsorption of sodium and lithium. In one small study evaluating concurrent use of lithium and spironolactone, lithium clearance was increased by 16%, which was not considered clinically significant. Amiloride has been safely used as a reversal agent for lithium-induced nephrogenic diabetes insipidus. There is a lack of evidence to evaluate the effect of lithium and triamterene co-administration, however, a significant interaction would not be expected due to the pharmacologic similarities with other potassium-sparing diuretics.
Lixisenatide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Lomitapide: (Major) Decrease the dose of lomitapide by one-half not to exceed 30 mg/day PO if coadministration with spironolactone is necessary. Concomitant use may significantly increase the serum concentration of lomitapide. Spironolactone is a weak CYP3A4 inhibitor; the exposure to lomitapide is increased by approximately 2-fold in the presence of weak CYP3A4 inhibitors.
Lonafarnib: (Major) Avoid coadministration of lonafarnib and spironolactone; concurrent use may increase the exposure of lonafarnib and the risk of adverse effects. If coadministration is unavoidable, reduce to or continue lonafarnib at a dosage of 115 mg/m2 and closely monitor patients for lonafarnib-related adverse reactions. Resume previous lonafarnib dosage 14 days after discontinuing spironolactone. Lonafarnib is a sensitive CYP3A4 substrate and spironolactone is a weak CYP3A4 inhibitor.
Loop diuretics: (Moderate) Monitor blood pressure, renal function, and serum electrolytes during concomitant loop diuretic and thiazide diuretic use; dosage adjustments may be necessary. Concomitant use may result in additive hypotension and fluid and/or electrolyte loss.
Loratadine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Losartan: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Low Molecular Weight Heparins: (Moderate) Monitor serum potassium during concomitant low molecular weight heparin (LMWH) and spironolactone use due to the risk for hyperkalemia. Cases of hyperkalemia have been reported with coadministration of LMWH and spironolactone.
Lurasidone: (Moderate) Due to the antagonism of lurasidone at alpha-1 adrenergic receptors, the drug may enhance the hypotensive effects of alpha-blockers and other antihypertensive agents. If concurrent use of lurasidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Magnesium Salicylate: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and magnesium salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
Magnesium Sulfate; Potassium Sulfate; Sodium Sulfate: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as diuretics.
Mannitol: (Major) Avoid use of other diuretics with mannitol, if possible. Concomitant administration may potentiate the renal toxicity of mannitol.
Meclofenamate Sodium: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Mefenamic Acid: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Mefloquine: (Moderate) Use mefloquine with caution if coadministration with spironolactone is necessary as concurrent use may increase mefloquine exposure and mefloquine-related adverse events. Mefloquine is a substrate of CYP3A4 and spironolactone is a weak CYP3A4 inhibitor.
Meglitinides: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Meloxicam: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Memantine: (Minor) Memantine reduced the bioavailability of hydrochlorothiazide by roughly 20% in a drug interaction study. The clinical significance of this pharmacokinetic interaction, if any, is unknown.
Meperidine: (Moderate) Consider a reduced dose of meperidine with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, meperidine plasma concentrations can decrease resulting in reduced efficacy and potential withdrawal syndrome in a patient who has developed physical dependence to meperidine. Meperidine is a substrate of CYP3A4 and spironolactone is a weak CYP3A4 inhibitor. Concomitant use with spironolactone can increase meperidine exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of meperidine. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with meperidine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with meperidine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Metaproterenol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients.
Metformin; Repaglinide: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with spironolactone is necessary. Repaglinide is a CYP2C8 substrate and spironolactone is a CYP2C8 inhibitor. (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Metformin; Saxagliptin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Metformin; Sitagliptin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Methadone: (Moderate) Consider a reduced dose of methadone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, methadone plasma concentrations can decrease resulting in reduced efficacy and potential withdrawal syndrome in a patient who has developed physical dependence to methadone. Methadone is a substrate of CYP3A4, CYP2B6, CYP2C19, CYP2C9, and CYP2D6; spironolactone is a weak CYP3A inhibitor. Concomitant use with spironolactone can increase methadone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of methadone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with methadone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Diuretics can cause electrolyte disturbances such as hypomagnesemia and hypokalemia, which may prolong the QT interval. As methadone may also prolong the QT interval, cautious coadministration with diuretics is needed. In addition, opiate agonists may potentiate orthostatic hypotension when used concurrently with diuretics.
Methamphetamine: (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like potassium-sparing diuretics. Close monitoring of blood pressure is advised. (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH.
Methazolamide: (Moderate) Carbonic anhydrase inhibitors promote electrolyte excretion including hydrogen ions, sodium, and potassium. They can enhance the sodium depleting effects of other diuretics when used concurrently. Pre-existing hypokalemia and hyperuricemia can also be potentiated by carbonic anhydrase inhibitors. Monitor serum potassium to determine the need for potassium supplementation and alteration in drug therapy. (Moderate) Thiazide diuretics may increase the risk of hypokalemia if used concurrently with methazolamide. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy. There may also be an additive diuretic or hyperuricemic effect.
Methenamine: (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Methenamine; Sodium Salicylate: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde.
Methohexital: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Concurrent use of methohexital and antihypertensive agents increases the risk of developing hypotension.
Methotrexate: (Moderate) Monitor for increased methotrexate-related adverse reactions during concomitant thiazide diuretic use. Thiazide diuretics may decrease renal excretion of cytotoxic agents and enhance their myelosuppressive effects.
Methoxsalen: (Moderate) Concomitant administration of methoxsalen and other photosensitizing agents, such as thiazide diuretics, can increase the incidence or severity of photsensitization from either compound.
Methscopolamine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Methylphenidate Derivatives: (Moderate) Monitor blood pressure during concomitant potassium-sparing diuretic and methylphenidate use; a potassium-sparing diuretic dose adjustment may be necessary. Methylphenidate may decrease the effectiveness of medications used to treat hypertension. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and methylphenidate use; a thiazide diuretic dose adjustment may be necessary. Methylphenidate may decrease the effectiveness of medications used to treat hypertension.
Methylphenidate: (Moderate) Monitor blood pressure during concomitant potassium-sparing diuretic and methylphenidate use; a potassium-sparing diuretic dose adjustment may be necessary. Methylphenidate may decrease the effectiveness of medications used to treat hypertension. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and methylphenidate use; a thiazide diuretic dose adjustment may be necessary. Methylphenidate may decrease the effectiveness of medications used to treat hypertension.
Methylprednisolone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Metoclopramide: (Minor) Coadministration of thiazides and prokinetic agents may result in decreased bioavailability of the thiazide diuretic.
Midazolam: (Moderate) Use caution when midazolam is coadministered with spironolactone. Concurrent use may increase midazolam exposure leading to prolonged sedation. Midazolam is a sensitive CYP3A4 substrate and spironolactone is a weak CYP3A4 inhibitor.
Midodrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Miglitol: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Milnacipran: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and serotonin norepinephrine reuptake inhibitor (SNRI) use; consider discontinuing the SNRI if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Milrinone: (Moderate) Concurrent administration of antihypertensive agents could lead to additive hypotension when administered with milrinone. Titrate milrinone dosage according to hemodynamic response. (Moderate) Concurrent administration of antihypertensive agents could lead to additive hypotension when administered with milrinone. Titrate milrinone dosage according to hemodynamic response.
Mirtazapine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and mirtazapine use; consider discontinuing mirtazapine if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Mitotane: (Moderate) An isolated case report indicated that mitotane activity might be antagonized by the concurrent administration of spironolactone. Until more data are available to confirm an interaction, the use of spironolactone with mitotane should be approached with caution.
Moexipril: (Major) Discontinue the thiazide diuretic prior to starting moexipril, if possible, or start moexipril at the lower dose of 3.75 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Mometasone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Morphine: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a potassium-sparing diuretic and morphine; increase the dosage of the potassium-sparing diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and morphine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Morphine; Naltrexone: (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a potassium-sparing diuretic and morphine; increase the dosage of the potassium-sparing diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and morphine; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Nabumetone: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Nanoparticle Albumin-Bound Paclitaxel: (Moderate) Monitor for an increase in paclitaxel-related adverse reactions if coadministration of nab-paclitaxel with spironolactone is necessary due to the risk of increased plasma concentrations of paclitaxel. Nab-paclitaxel is a CYP2C8 substrate and spironolactone is a weak CYP2C8 inhibitor. In vitro, the metabolism of paclitaxel to 6-alpha-hydroxypaclitaxel was inhibited by another inhibitor of CYP2C8.
Nanoparticle Albumin-Bound Sirolimus: (Major) Reduce the nab-sirolimus dose to 56 mg/m2 during concomitant use of spironolactone. Coadministration may increase sirolimus concentrations and increase the risk for sirolimus-related adverse effects. Sirolimus is a CYP3A substrate and spironolactone is a weak CYP3A inhibitor.
Naproxen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Naproxen; Esomeprazole: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor magnesium concentration before and periodically during concomitant esomeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Naproxen; Pseudoephedrine: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Nateglinide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Nebivolol; Valsartan: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Nefazodone: (Minor) Although relatively infrequent, nefazodone may cause orthostatic hypotension in some patients; this effect may be additive with antihypertensive agents. Blood pressure monitoring and dosage adjustments of either drug may be necessary.
Neostigmine; Glycopyrrolate: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Nesiritide, BNP: (Major) The potential for hypotension may be increased when coadministering nesiritide with antihypertensive agents. (Moderate) The potential for hypotension may be increased when coadministering nesiritide with antihypertensive agents.
Neuromuscular blockers: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Niacin, Niacinamide: (Moderate) Cutaneous vasodilation induced by niacin may become problematic if high-dose niacin is used concomitantly with other antihypertensive agents. This effect is of particular concern in the setting of acute myocardial infarction, unstable angina, or other acute hemodynamic compromise.
Nimodipine: (Moderate) Monitor blood pressure and reduce the dose of nimodipine as clinically appropriate if coadministration with spironolactone is necessary. Concurrent use may increase nimodipine exposure. Nimodipine is a CYP3A4 substrate and spironolactone is a weak CYP3A4 inhibitor.
Niraparib; Abiraterone: (Major) Avoid using spironolactone in persons with prostate cancer receiving abiraterone. Spironolactone has been observed to increase prostate-specific antigen (PSA) concentrations and has been associated with tumor progression in persons with prostate cancer treated with abiraterone. Spironolactone is considered an androgen receptor antagonist but may exhibit androgen agonism in the setting of abiraterone-related androgen depletion.
Nisoldipine: (Major) Avoid coadministration of nisoldipine with spironolactone due to increased plasma concentrations of nisoldipine. If coadministration is unavoidable, monitor blood pressure closely during concurrent use of these medications. Nisoldipine is a CYP3A4 substrate and spironolactone is a CYP3A4 inhibitor. Coadministration with another CYP3A4 inhibitor increased the AUC of nisoldipine by 30% to 45%.
Nitrates: (Moderate) Monitor blood pressure during concomitant potassium-sparing diuretic and nitrate use due to risk for additive hypotension. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and nitrate use due to risk for additive hypotension.
Nitroglycerin: (Moderate) Monitor blood pressure during concomitant potassium-sparing diuretic and nitrate use due to risk for additive hypotension. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and nitrate use due to risk for additive hypotension.
Nitroprusside: (Moderate) Additive hypotensive effects may occur when nitroprusside is used concomitantly with other antihypertensive agents. Dosages should be adjusted carefully, according to blood pressure. (Moderate) Additive hypotensive effects may occur when nitroprusside is used concomitantly with other antihypertensive agents. Dosages should be adjusted carefully, according to blood pressure.
Non-Ionic Contrast Media: (Major) Do not use diuretics before non-ionic contrast media administration. Concomitant use of diuretics and non-ionic contrast media may increase the risk for acute kidney injury, including renal failure.
Nonsteroidal antiinflammatory drugs: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Norepinephrine: (Moderate) Spironolactone may reduce the vascular responsiveness to norepinephrine. Caution should be exercised with coadministration of spironolactone and norepinephrine. (Moderate) Thiazide diuretics can cause decreased arterial responsiveness to norepinephrine, but the effect is not sufficient to preclude their coadministration.
Octreotide: (Moderate) Patients receiving diuretics or other agents to control fluid and electrolyte balance may require dosage adjustments while receiving octreotide due to additive effects. (Moderate) Patients receiving diuretics or other agents to control fluid and electrolyte balance may require dosage adjustments while receiving octreotide due to additive effects.
Olanzapine: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Olanzapine; Fluoxetine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and fluoxetine use; consider discontinuing fluoxetine if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia. (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Olanzapine; Samidorphan: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Oliceridine: (Moderate) Monitor patients for signs of diminished diuresis and/or effects on blood pressure if diuretics are used concomitantly with oliceridine; increase the dosage of the diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
Olmesartan: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Olodaterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Olopatadine; Mometasone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Omeprazole: (Moderate) Monitor magnesium concentration before and periodically during concomitant omeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Omeprazole; Amoxicillin; Rifabutin: (Moderate) Monitor magnesium concentration before and periodically during concomitant omeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Omeprazole; Sodium Bicarbonate: (Moderate) Monitor magnesium concentration before and periodically during concomitant omeprazole and thiazide diuretic use due to risk for hypomagnesemia.
Oxaprozin: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects o f diuretics.
Oxybutynin: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms. (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Oxycodone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like spironolactone can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If spironolactone is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and oxycodone; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Oxymetazoline: (Major) The vasoconstricting actions of oxymetazoline, an alpha adrenergic agonist, may reduce the antihypertensive effects produced by diuretics. If these drugs are used together, closely monitor for changes in blood pressure. (Major) The vasoconstricting actions of oxymetazoline, an alpha adrenergic agonist, may reduce the antihypertensive effects produced by diuretics. If these drugs are used together, closely monitor for changes in blood pressure.
Oxymorphone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when potassium-sparring diuretics are administered with oxymorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with oxymorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Paclitaxel: (Moderate) Monitor for an increase in paclitaxel-related adverse reactions if coadministration of paclitaxel with spironolactone is necessary due to the risk of increased plasma concentrations of paclitaxel. Paclitaxel is a CYP2C8 substrate and spironolactone is a CYP2C8 inhibitor. In vitro, the metabolism of paclitaxel to 6-alpha-hydroxypaclitaxel was inhibited by another inhibitor of CYP2C8.
Paliperidone: (Moderate) Paliperidone may cause orthostatic hypotension, thereby enhancing the hypotensive effects of antihypertensive agents. Orthostatic vital signs should be monitored in patients receiving paliperidone and potassium-sparing diuretics who are susceptible to hypotension. (Moderate) Paliperidone may cause orthostatic hypotension, thereby enhancing the hypotensive effects of antihypertensive agents. Orthostatic vital signs should be monitored in patients receiving paliperidone and thiazide diuretics who are susceptible to hypotension.
Pancuronium: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Pantoprazole: (Moderate) Monitor magnesium concentration before and periodically during concomitant pantoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Paricalcitol: (Moderate) Monitor serum calcium concentrations during concomitant use of thiazide diuretics and vitamin D analogs; a dosage adjustment of the vitamin D analog may be needed. Hypercalcemia may be exacerbated by concomitant administration.
Paroxetine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and paroxetine use; consider discontinuing paroxetine if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Pasireotide: (Moderate) Cautious use of pasireotide and thiazide diuretics is advised as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with pasireotide. Assess the patient's potassium and magnesium concentration before and periodically during pasireotide receipt. Correct hypokalemia and hypomagnesemia before pasireotide receipt.
Penicillin G: (Major) Concomitant use of high doses of parenteral penicillin G potassium with potassium-sparing diuretics can cause hyperkalemia.
Pentamidine: (Moderate) Drugs that are associated with hypokalemia and/or hypomagnesemia such as thiazide diuretics should be used with caution in patients also receiving pentamidine. Since pentamidine may cause QT prolongation independently of electrolyte imbalances, the risk for cardiac arrhythmias is potentiated by the concomitant use of agents associated with electrolyte loss. Closely monitor serum electrolytes during pentamidine therapy.
Pentazocine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when potassium-sparring diuretics are administered with pentazocine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with pentazocine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Pentazocine; Naloxone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when potassium-sparring diuretics are administered with pentazocine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with pentazocine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Pentobarbital: (Moderate) Barbiturates may potentiate orthostatic hypotension when given concomitantly with spironolactone. (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Pentoxifylline: (Moderate) Pentoxifylline has been used concurrently with antihypertensive drugs (beta blockers, diuretics) without observed problems. Small decreases in blood pressure have been observed in some patients treated with pentoxifylline; periodic systemic blood pressure monitoring is recommended for patients receiving concomitant antihypertensives. If indicated, dosage of the antihypertensive agents should be reduced.
Perindopril: (Major) Discontinue the thiazide diuretic prior to starting perindopril, if possible, or start perindopril at a lower dose to minimize hypotension. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Perindopril; Amlodipine: (Major) Discontinue the thiazide diuretic prior to starting perindopril, if possible, or start perindopril at a lower dose to minimize hypotension. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Perphenazine: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Perphenazine; Amitriptyline: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Phendimetrazine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Phenelzine: (Moderate) Monitor blood pressure during concomitant potassium-sparing diuretic and phenelzine use due to risk for additive hypotension. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenelzine use due to risk for additive hypotension.
Phenobarbital: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Barbiturates, such as phenobarbital, may potentiate orthostatic hypotension when given concomitantly with spironolactone.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Barbiturates, such as phenobarbital, may potentiate orthostatic hypotension when given concomitantly with spironolactone. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Phenothiazines: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Phentermine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Phentermine; Topiramate: (Moderate) Monitor serum potassium concentrations and for increased topiramate-related adverse effects during concomitant hydrochlorothiazide use. Concomitant use has been shown to increase topiramate exposure by 29% and may potentiate the potassium-wasting action of hydrochlorothiazide. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Photosensitizing agents (topical): (Moderate) Thiazide diuretics may cause photosensitivity and may increase the photosensitization effects of photosensitizing agents used in photodynamic therapy. Prevention of photosensitivity includes adequate protection from sources of UV radiation (e.g., avoiding sun exposure and tanning booths) and the use of protective clothing and sunscreens on exposed skin.
Pimozide: (Major) Avoid concomitant use of pimozide and spironolactone. Concomitant use may result in elevated pimozide concentrations resulting in QT prolongation, ventricular arrhythmias, and sudden death. Pimozide is CYP3A substrate, and spironolactone is a weak CYP3A inhibitor. (Moderate) Caution is advisable during concurrent use of pimozide and thiazide diuretics as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with pimozide. Potassium deficiencies should be corrected prior to treatment with pimozide and normalized potassium levels should be maintained during treatment.
Pioglitazone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Pioglitazone; Glimepiride: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Pioglitazone; Metformin: (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Piroxicam: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Polycarbophil: (Moderate) Coadministration may lead to hypercalcemia because thiazides cause a decrease in renal tubular excretion of calcium as well as increase in distal tubular reabsorption. Each 625 mg of calcium polycarbophil contains a substantial amount of calcium (approximately 125 mg). Moderate increases in serum calcium have been seen during the treatment with thiazides; if calcium polycarbophil is used concomitantly, monitoring of serum calcium may be prudent.
Polyethylene Glycol; Electrolytes: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as diuretics.
Polyethylene Glycol; Electrolytes; Ascorbic Acid: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as diuretics.
Porfimer: (Major) Avoid coadministration of porfimer with thiazide diuretics due to the risk of increased photosensitivity. Porfimer is a light-activated drug used in photodynamic therapy; all patients treated with porfimer will be photosensitive. Concomitant use of other photosensitizing agents like thiazide diuretics may increase the risk of a photosensitivity reaction.
Potassium Acetate: (Major) The use of potassium supplements in patients receiving spironolactone may increase the risk for hyperkalemia. Potassium supplements should generally be avoided in heart failure patients receiving spironolactone. Monitor serum potassium concentrations closely if concomitant use is necessary.
Potassium Bicarbonate: (Major) The use of potassium supplements in patients receiving spironolactone may increase the risk for hyperkalemia. Potassium supplements should generally be avoided in heart failure patients receiving spironolactone. Monitor serum potassium concentrations closely if concomitant use is necessary.
Potassium Chloride: (Major) The use of potassium supplements in patients receiving spironolactone may increase the risk for hyperkalemia. Potassium supplements should generally be avoided in heart failure patients receiving spironolactone. Monitor serum potassium concentrations closely if concomitant use is necessary.
Potassium Citrate: (Major) The use of potassium supplements in patients receiving spironolactone may increase the risk for hyperkalemia. Potassium supplements should generally be avoided in heart failure patients receiving spironolactone. Monitor serum potassium concentrations closely if concomitant use is necessary.
Potassium Citrate; Citric Acid: (Major) The use of potassium supplements in patients receiving spironolactone may increase the risk for hyperkalemia. Potassium supplements should generally be avoided in heart failure patients receiving spironolactone. Monitor serum potassium concentrations closely if concomitant use is necessary.
Potassium Gluconate: (Major) The use of potassium supplements in patients receiving spironolactone may increase the risk for hyperkalemia. Potassium supplements should generally be avoided in heart failure patients receiving spironolactone. Monitor serum potassium concentrations closely if concomitant use is necessary.
Potassium Iodide, KI: (Major) The use of potassium supplements in patients receiving spironolactone may increase the risk for hyperkalemia. Potassium supplements should generally be avoided in heart failure patients receiving spironolactone. Monitor serum potassium concentrations closely if concomitant use is necessary.
Potassium Phosphate: (Major) Avoid coadministration of potassium phosphate and potassium-sparing diuretics as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Potassium Phosphate; Sodium Phosphate: (Major) Avoid coadministration of potassium phosphate and potassium-sparing diuretics as concurrent use may increase the risk of severe and potentially fatal hyperkalemia, particularly in high-risk patients (renal impairment, cardiac disease, adrenal insufficiency). If concomitant use is necessary, closely monitor serum potassium concentrations.
Potassium: (Major) The use of potassium supplements in patients receiving spironolactone may increase the risk for hyperkalemia. Potassium supplements should generally be avoided in heart failure patients receiving spironolactone. Monitor serum potassium concentrations closely if concomitant use is necessary.
Pramlintide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Prazosin: (Moderate) Prazosin is well-known to produce a 'first-dose' phenomenon. Some patients develop significant hypotension shortly after administration of the first dose. The first dose response (acute postural hypotension) of prazosin may be exaggerated in patients who are receiving beta-adrenergic blockers, diuretics, or other antihypertensive agents. Concomitant administration of prazosin with other antihypertensive agents is not prohibited, however. This can be therapeutically advantageous, but lower dosages of each agent should be used. (Moderate) Prazosin is well-known to produce a 'first-dose' phenomenon. Some patients develop significant hypotension shortly after administration of the first dose. The first dose response (acute postural hypotension) of prazosin may be exaggerated in patients who are receiving beta-adrenergic blockers, diuretics, or other antihypertensive agents. Concomitant administration of prazosin with other antihypertensive agents is not prohibited, however. This can be therapeutically advantageous, but lower dosages of each agent should be used.
Prednisolone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Prednisone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Prilocaine; Epinephrine: (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and potassium-sparing diuretic use. Potassium-sparing diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine. (Moderate) Monitor blood pressure and heart rate during concomitant epinephrine and thiazide diuretic use. Thiazide diuretics may antagonize the pressor effects and potentiate the arrhythmogenic effects of epinephrine.
Primidone: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Barbiturates, such as primidone, may potentiate orthostatic hypotension when given concomitantly with spironolactone.
Probenecid: (Moderate) Thiazide diuretics can cause hyperuricemia. Although this effect represents a pharmacodynamic interaction and not a pharmacokinetic one, dosage adjustments of probenecid may be necessary if these agents are administered concurrently to patients being treated with probenecid.
Probenecid; Colchicine: (Moderate) Thiazide diuretics can cause hyperuricemia. Although this effect represents a pharmacodynamic interaction and not a pharmacokinetic one, dosage adjustments of probenecid may be necessary if these agents are administered concurrently to patients being treated with probenecid.
Procainamide: (Moderate) Procainamide can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents. Intravenous administration of procainamide is more likely to cause hypotensive effects. (Moderate) Procainamide can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents. Intravenous administration of procainamide is more likely to cause hypotensive effects.
Prochlorperazine: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Promethazine: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Promethazine; Dextromethorphan: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Promethazine; Phenylephrine: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Propafenone: (Moderate) Monitor for increased propafenone toxicity if coadministered with spironolactone; concurrent use may increase propafenone exposure and therefore increase the risk of proarrhythmias. Avoid simultaneous use of propafenone and spironolactone with a CYP2D6 inhibitor or in patients with CYP2D6 deficiency. Propafenone is a CYP3A4 and CYP2D6 substrate; spironolactone is a weak CYP3A4 inhibitor.
Propantheline: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Propofol: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents. (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Pseudoephedrine; Triprolidine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Pyridoxine, Vitamin B6: (Moderate) Monitor serum calcium concentration during concomitant calcium and thiazide diuretic use due to the risk for hypercalcemia. Thiazide diuretics may decrease urinary calcium excretion and cause intermittent and slight increases in serum calcium.
Quinapril: (Major) Discontinue the thiazide diuretic prior to starting quinapril, if possible, or start quinapril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Quinapril; Hydrochlorothiazide, HCTZ: (Major) Discontinue the thiazide diuretic prior to starting quinapril, if possible, or start quinapril at the lower dose of 5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Quinidine: (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension. (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension.
Rabeprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with thiazide diuretics (chlorothiazide, hydrochlorothiazide, indapamide, and metolazone). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Ramipril: (Major) Discontinue the thiazide diuretic prior to starting ramipril, if possible, or start ramipril at a lower dose to minimize hypotension. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Rasagiline: (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with diuretics. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider. (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with diuretics. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider.
Regular Insulin: (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Regular Insulin; Isophane Insulin (NPH): (Moderate) Monitor patients receiving insulin closely for changes in diabetic control when thiazide diuretics are instituted or discontinued; dosage adjustments may be required. Thiazide diuretics can decrease the hypoglycemic effects of insulin by producing an increase in blood glucose levels. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes.
Remifentanil: (Moderate) Opiate agonists like remifentanil may potentiate orthostatic hypotension when given concomitantly with spironolactone. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Repaglinide: (Moderate) A dose reduction of repaglinide and increased frequency of blood glucose monitoring may be required if coadministration with spironolactone is necessary. Repaglinide is a CYP2C8 substrate and spironolactone is a CYP2C8 inhibitor. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Risperidone: (Moderate) Risperidone may induce orthostatic hypotension and thus enhance the hypotensive effects of antihypertensive agents. Lower initial doses or slower dose titration of risperidone may be necessary in patients receiving antihypertensive agents concomitantly. (Moderate) Risperidone may induce orthostatic hypotension and thus enhance the hypotensive effects of antihypertensive agents. Lower initial doses or slower dose titration of risperidone may be necessary in patients receiving antihypertensive agents concomitantly.
Rocuronium: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Rosiglitazone: (Moderate) Monitor for an increase in rosiglitazone-related adverse effects during concomitant use with spironolactone; adjust the dose of rosiglitazone based on clinical response. Coadministration may increase the exposure of rosiglitazone. Rosiglitazone is a CYP2C8 substrate and spironolactone is a CYP2C8 inhibitor. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Sacubitril; Valsartan: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Salicylates: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention.
Salmeterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Salsalate: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant thiazide diuretic and salicylate use. Salicylate use decreases glomerular filtration rate and renal blood flow, and concomitant diuretic use may increase the risk of this reaction. Salicylates may diminish the effectiveness of diuretics due to inhibition of renal prostaglandins, leading to decreased renal blood flow and salt and fluid retention. (Moderate) Salicylates can increase the risk of renal insufficiency in patients receiving diuretics, secondary to effects on renal blood flow. Salicylates inhibit renal prostaglandin production, which causes salt and water retention and decreased renal blood flow. Coadministration may cause hyperkalemia.
Saxagliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Scopolamine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Secobarbital: (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Barbiturates, such as secobarbital, may potentiate orthostatic hypotension when given concomitantly with spironolactone.
Semaglutide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Serdexmethylphenidate; Dexmethylphenidate: (Moderate) Monitor blood pressure during concomitant potassium-sparing diuretic and methylphenidate use; a potassium-sparing diuretic dose adjustment may be necessary. Methylphenidate may decrease the effectiveness of medications used to treat hypertension. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and methylphenidate use; a thiazide diuretic dose adjustment may be necessary. Methylphenidate may decrease the effectiveness of medications used to treat hypertension.
Serotonin norepinephrine reuptake inhibitors: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and serotonin norepinephrine reuptake inhibitor (SNRI) use; consider discontinuing the SNRI if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Sertraline: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and sertraline use; consider discontinuing sertraline if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Sevoflurane: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents. (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Silodosin: (Moderate) During clinical trials with silodosin, the incidence of dizziness and orthostatic hypotension was higher in patients receiving concomitant antihypertensive treatment. Thus, caution is advisable when silodosin is administered with antihypertensive agents. (Moderate) During clinical trials with silodosin, the incidence of dizziness and orthostatic hypotension was higher in patients receiving concomitant antihypertensive treatment. Thus, caution is advisable when silodosin is administered with antihypertensive agents.
Sirolimus: (Moderate) Monitor sirolimus concentrations and adjust sirolimus dosage as appropriate during concomitant use of spironolactone. Coadministration may increase sirolimus concentrations and increase the risk for sirolimus-related adverse effects. Sirolimus is a CYP3A substrate and spironolactone is a weak CYP3A inhibitor.
Sitagliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Sodium Phosphate Monobasic Monohydrate; Sodium Phosphate Dibasic Anhydrous: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as diuretics may increase the risk of acute phosphate nephropathy in patients receiving sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous. (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as diuretics, may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
Sodium picosulfate; Magnesium oxide; Anhydrous citric acid: (Moderate) Use caution when prescribing sodium picosulfate; magnesium oxide; anhydrous citric acid in patients taking concomitant medications that may affect renal function such as diuretics. In addition, use caution in patients receiving drugs where hypokalemia is a particular risk.
Sodium Sulfate; Magnesium Sulfate; Potassium Chloride: (Major) The use of potassium supplements in patients receiving spironolactone may increase the risk for hyperkalemia. Potassium supplements should generally be avoided in heart failure patients receiving spironolactone. Monitor serum potassium concentrations closely if concomitant use is necessary.
Solifenacin: (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms. Risk versus benefit should be addressed in patients receiving diuretics and solifenacin. (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms. Risk versus benefit should be addressed in patients receiving diuretics and solifenacin.
Sparsentan: (Moderate) Monitor potassium during concomitant use of sparsentan and potassium-sparing diuretics. Concomitant use increases the risk for hyperkalemia.
Streptozocin: (Minor) Because streptozocin is nephrotoxic, concurrent or subsequent administration of other nephrotoxic agents (e.g., aminoglycosides, amphotericin B, cisplatin, foscarnet, or diuretics) could exacerbate the renal insult.
Succinylcholine: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Sufentanil: (Moderate) Because the dose of the sufentanil sublingual tablets cannot be titrated, consider an alternate opiate if spironolactone must be administered. Consider a reduced dose of sufentanil injection with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, consider increasing the sufentanil injection dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Sufentanil is a CYP3A4 substrate, and coadministration with a weak CYP3A4 inhibitor like spironolactone can increase sufentanil exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of sufentanil. If spironolactone is discontinued, sufentanil plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to sufentanil. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with sufentanil. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with sufentanil. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Sulfacetamide: (Moderate) Sulfonamides may cause photosensitization and may increase the photosensitizing effects of thiazide diuretics.
Sulfacetamide; Sulfur: (Moderate) Sulfonamides may cause photosensitization and may increase the photosensitizing effects of thiazide diuretics.
Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Major) Avoid the concomitant use of sulfamethoxazole; trimethoprim and thiazide diuretics. An increased incidence of thrombocytopenia with purpura has been reported in elderly patients during coadministration. (Moderate) Monitor serum potassium concentrations if trimethoprim and a potassium-sparing diuretic are used together. Concomitant use may increase the risk of hyperkalemia. The risk for trimethoprim-associated hyperkalemia is greatest in patients with additional risk factors for hyperkalemia such as age greater than 65 years, those with underlying disorders of potassium metabolism, renal insufficiency, or those requiring high doses of trimethoprim.
Sulfonylureas: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Sulindac: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Sumatriptan; Naproxen: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Tacrolimus: (Major) Avoid concomitant use of tacrolimus and potassium-sparing diuretics, such as spironolactone, due to the risk of hyperkalemia. If concomitant use is necessary, closely monitor serum potassium concentrations. Additionally, monitor tacrolimus serum concentrations as appropriate and watch for tacrolimus-related adverse reactions if coadministration with spironolactone is necessary. The dose of tacrolimus may need to be reduced. Tacrolimus is a sensitive CYP3A substrate with a narrow therapeutic range; spironolactone is a weak CYP3A inhibitor.
Tapentadol: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when potassium-sparing diuretics are administered with tapentadol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with tapentadol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Tazarotene: (Moderate) The manufacturer states that tazarotene should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Tegaserod: (Minor) Coadminisitration of thiazides and prokinetic agents may result in decreased bioavailability of the thiazide diuretic.
Telmisartan: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Telmisartan; Amlodipine: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Terbutaline: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Tetrabenazine: (Moderate) Tetrabenazine may induce orthostatic hypotension and thus enhance the hypotensive effects of antihypertensive agents. Lower initial doses or slower dose titration of tetrabenazine may be necessary in patients receiving antihypertensive agents concomitantly. (Moderate) Tetrabenazine may induce orthostatic hypotension and thus enhance the hypotensive effects of antihypertensive agents. Lower initial doses or slower dose titration of tetrabenazine may be necessary in patients receiving antihypertensive agents concomitantly.
Tetracaine: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of tetracaine and antihypertensive agents. (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of tetracaine and antihypertensive agents.
Thiazolidinediones: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Thioridazine: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Thiothixene: (Moderate) Thiothixene should be used cautiously in patients receiving antihypertensive agents. Additive hypotensive effects are possible.
Tiotropium; Olodaterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Tirzepatide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Tizanidine: (Moderate) Monitor blood pressure during concomitant potassium-sparing diuretic and tizanidine use due to risk for additive hypotension. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and tizanidine use due to risk for additive hypotension.
Tolmetin: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics. (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipita te overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
Tolterodine: (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms. (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Tolvaptan: (Moderate) Monitor serum potassium concentrations closely if tolvaptan and potassium-sparing diuretics are used together. In clinical studies, hyperkalemia was reported at a rate 1% to 2% higher when tolvaptan was administered with potassium-sparing diuretics compared to administration of these medications with placebo. (Moderate) Monitor serum sodium closely if tolvaptan and thiazide diuretics are used together. Coadministration increases the risk of too rapid correction of serum sodium.
Topiramate: (Moderate) Monitor serum potassium concentrations and for increased topiramate-related adverse effects during concomitant hydrochlorothiazide use. Concomitant use has been shown to increase topiramate exposure by 29% and may potentiate the potassium-wasting action of hydrochlorothiazide.
Toremifene: (Moderate) Monitor serum calcium levels in patients receiving concomitant treatment with toremifene and thiazide diuretics. Thiazide diuretics decrease renal calcium excretion and may increase the risk of hypercalcemia in patients receiving toremifene.
Torsemide: (Moderate) Monitor blood pressure, renal function, and serum electrolytes during concomitant loop diuretic and thiazide diuretic use; dosage adjustments may be necessary. Concomitant use may result in additive hypotension and fluid and/or electrolyte loss.
Tramadol: (Moderate) Consider a tramadol dosage reduction until stable drug effects are achieved if coadministration with spironolactone is necessary. Closely monitor for seizures, serotonin syndrome, and signs of sedation and respiratory depression. Respiratory depression from increased tramadol exposure may be fatal. Concurrent use of spironolactone, a weak CYP3A inhibitor, may increase tramadol exposure and result in greater CYP2D6 metabolism thereby increasing exposure to the active metabolite M1, which is a more potent mu-opioid agonist. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with tramadol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and tramadol; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Tramadol; Acetaminophen: (Moderate) Consider a tramadol dosage reduction until stable drug effects are achieved if coadministration with spironolactone is necessary. Closely monitor for seizures, serotonin syndrome, and signs of sedation and respiratory depression. Respiratory depression from increased tramadol exposure may be fatal. Concurrent use of spironolactone, a weak CYP3A inhibitor, may increase tramadol exposure and result in greater CYP2D6 metabolism thereby increasing exposure to the active metabolite M1, which is a more potent mu-opioid agonist. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with tramadol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for signs of diminished diuresis and/or effects on blood pressure during coadministration of a thiazide diuretic and tramadol; increase the dosage of the thiazide diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone. Opioids may also potentiate orthostatic hypotension when given concomitantly with a thiazide diuretic.
Trandolapril: (Major) Discontinue the thiazide diuretic prior to starting trandolapril, if possible, or start trandolapril at the lower dose of 0.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Trandolapril; Verapamil: (Major) Discontinue the thiazide diuretic prior to starting trandolapril, if possible, or start trandolapril at the lower dose of 0.5 mg/day. Monitor blood pressure, particularly when doses are increased, and renal function during concomitant use. Concomitant use may increase the risk for hypotension or renal failure. (Moderate) Monitor serum potassium concentrations closely if ACE inhibitors and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function.
Tranylcypromine: (Contraindicated) The use of hypotensive agents and tranylcypromine is contraindicated by the manufacturer of tranylcypromine because the effects of hypotensive agents may be markedly potentiated. (Contraindicated) The use of hypotensive agents and tranylcypromine is contraindicated by the manufacturer of tranylcypromine because the effects of hypotensive agents may be markedly potentiated.
Trazodone: (Minor) Due to additive hypotensive effects, patients receiving antihypertensive agents concurrently with trazodone may have excessive hypotension. Decreased dosage of the antihypertensive agent may be required when given with trazodone. (Minor) Due to additive hypotensive effects, patients receiving antihypertensive agents concurrently with trazodone may have excessive hypotension. Decreased dosage of the antihypertensive agent may be required when given with trazodone.
Treprostinil: (Moderate) Thiazide diuretics can enhance the hypotensive effects of antihypertensive agents or diuretics if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly.
Tretinoin, ATRA: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Tretinoin; Benzoyl Peroxide: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Triamcinolone: (Moderate) Monitor potassium concentrations during concomitant corticosteroid and thiazide diuretic use due to risk for additive hypokalemia; potassium supplementation may be necessary. Both corticosteroids and thiazide diuretics cause increased renal potassium loss. (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
Triazolam: (Moderate) Monitor for signs of triazolam toxicity during coadministration with spironolactone and consider appropriate dose reduction of triazolam if clinically indicated. Coadministration may increase triazolam exposure. Triazolam is a sensitive CYP3A substrate and spironolactone is a weak CYP3A inhibitor.
Trifluoperazine: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Trihexyphenidyl: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Trimethoprim: (Moderate) Monitor serum potassium concentrations if trimethoprim and a potassium-sparing diuretic are used together. Concomitant use may increase the risk of hyperkalemia. The risk for trimethoprim-associated hyperkalemia is greatest in patients with additional risk factors for hyperkalemia such as age greater than 65 years, those with underlying disorders of potassium metabolism, renal insufficiency, or those requiring high doses of trimethoprim.
Trospium: (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Ubrogepant: (Major) Limit the initial and second dose of ubrogepant to 50 mg if coadministered with spironolactone. Concurrent use may increase ubrogepant exposure and the risk of adverse effects. Ubrogepant is a CYP3A4 substrate; spironolactone is a weak CYP3A4 inhibitor.
Umeclidinium; Vilanterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
Valsartan: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor serum potassium concentrations closely if angiotensin II receptor antagonists and spironolactone are used together. Concomitant use may increase the risk of hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
Vecuronium: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Venlafaxine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and serotonin norepinephrine reuptake inhibitor (SNRI) use; consider discontinuing the SNRI if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Verteporfin: (Moderate) Use caution if coadministration of verteporfin with thiazide diuretics is necessary due to the risk of increased photosensitivity. Verteporfin is a light-activated drug used in photodynamic therapy; all patients treated with verteporfin will be photosensitive. Concomitant use of other photosensitizing agents like thiazide diuretics may increase the risk of a photosensitivity reaction.
Vilazodone: (Moderate) Patients receiving vilazodone with medications known to cause hyponatremia, such as diuretics, may be at increased risk of developing hyponatremia. Hyponatremia has occurred in association with the use of antidepressants such as selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), and mirtazapine. Hyponatremia may manifest as headache, difficulty concentrating, memory impairment, confusion, weakness, and unsteadiness which may result in falls. Severe manifestations include hallucinations, syncope, seizure, coma, respiratory arrest, and death. Symptomatic hyponatremia may require discontinuation of vilazodone, as well as implementation of the appropriate medical interventions.
Vinorelbine: (Moderate) Monitor for an earlier onset and/or increased severity of vinorelbine-related adverse reactions, including constipation and peripheral neuropathy, if coadministration with spironolactone is necessary. Vinorelbine is a CYP3A4 substrate and spironolactone is a weak CYP3A4 inhibitor.
Vitamin D analogs: (Moderate) Monitor serum calcium concentrations during concomitant use of thiazide diuretics and vitamin D analogs; a dosage adjustment of the vitamin D analog may be needed. Hypercalcemia may be exacerbated by concomitant administration.
Vitamin D: (Moderate) Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with thiazide diuretics. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia. Hypercalcemia may be exacerbated by coadministration of vitamin D or vitamin D analogs and thiazide diuretics. Thiazide diuretics are known to induce hypercalcemia by reducing the excretion of calcium in the urine.
Vitamin D: (Moderate) Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with thiazide diuretics. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia. Hypercalcemia may be exacerbated by coadministration of vitamin D or vitamin D analogs and thiazide diuretics. Thiazide diuretics are known to induce hypercalcemia by reducing the excretion of calcium in the urine.
Vorinostat: (Moderate) Use vorinostat and thiazide diuretics together with caution; the risk of QT prolongation and arrhythmias may be increased if electrolyte abnormalities occur. Thiazide diuretics may cause electrolyte imbalances including low potassium; hypomagnesemia, hypokalemia, or hypocalcemia may increase the risk of QT prolongation with vorinostat. Frequently monitor serum electrolytes if concomitant use of these drugs is necessary.
Vortioxetine: (Moderate) Patients receiving a diuretic during treatment with vortioxetine may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Clinically significant hyponatremia has been reported during therapy with vortioxetine. One case involving serum sodium levels lower than 110 mmol/l has occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of vortioxetine should be considered in patients who develop symptomatic hyponatremia.
Warfarin: (Moderate) Closely monitor the INR if coadministration of warfarin with spironolactone is necessary as concurrent use may increase the exposure of warfarin leading to increased bleeding risk. Spironolactone is a weak CYP3A4 inhibitor and the R-enantiomer of warfarin is a CYP3A4 substrate. The S-enantiomer of warfarin exhibits 2 to 5 times more anticoagulant activity than the R-enantiomer, but the R-enantiomer generally has a slower clearance.
Ziconotide: (Moderate) Patients taking diuretics with ziconotide may be at higher risk of depressed levels of consciousness. If altered consciousness occurs, consideration of diuretic cessation is warranted in addition to ziconotide discontinuation.
Ziprasidone: (Moderate) Additive hypotensive effects are possible if ziprasidone is used concurrently with antihypertensive agents. Ziprasidone is a moderate antagonist of alpha-1 receptors and may cause orthostatic hypotension with or without tachycardia, dizziness, or syncope. (Moderate) Monitor potassium and magnesium levels when thiazide diuretics are used during ziprasidone therapy. The risk of QT prolongation from ziprasidone is increased in the presence of hypokalemia or hypomagnesemia.

How Supplied

Aldactazide/Spironolactone, Hydrochlorothiazide Oral Tab: 25-25mg

Maximum Dosage
Adults

200 mg/day PO spironolactone and 200 mg/day PO hydrochlorothiazide.

Geriatric

200 mg/day PO spironolactone and 200 mg/day PO hydrochlorothiazide.

Adolescents

Safety and efficacy have not been established.

Children

Safety and efficacy have not been established.

Infants

Safety and efficacy have not been established.

Mechanism Of Action

Spironolactone; hydrochlorothiazide provides complementary diuretic and antihypertensive activity, which results in the potentiation of their effects. Both drugs increase angiotensin II and aldosterone serum concentrations. Thus, concomitant use of spironolactone is beneficial, since secondary hyperaldosteronism is produced by hydrochlorothiazide monotherapy. Additionally, hydrochlorothiazide, but not spironolactone, increases the molar ratio of plasminogen activator inhibitor-1(PAI-1):tissue plasminogen activator (t-PA). The effect of concomitant therapy on fibrinolytic balance is unknown, but the effects of spironolactone on the PAI-1:t-PA ratio may be a mechanism by which aldosterone receptor antagonism may reduce death due to thrombotic effects.
Spironolactone: Spironolactone is an aldosterone antagonist. Spironolactone competitively binds to receptors at the aldosterone-dependent sodium-potassium/hydrogen exchange site in the distal renal tubules. Unlike amiloride and triamterene, spironolactone exhibits its diuretic effect only in the presence of aldosterone, and this effect is enhanced in patients with hyperaldosteronism. Aldosterone antagonism enhances sodium, chloride, and water excretion, and reduces the excretion of potassium and magnesium. Spironolactone does not inhibit renal transport mechanisms or carbonic anhydrase activity. Spironolactone is a poor antihypertensive, but it does have modest hypotensive effects. The hypotensive mechanism of spironolactone is unknown. It is possibly due to the ability of the drug to inhibit aldosterone's effect on arteriole smooth muscle. Aldosterone impairs arterial compliance, activates the sympathetic nervous system, and causes baroreceptor dysfunction. Dose-dependent reductions in N-terminal atrial natriuretic factor (ANF) concentrations occur with spironolactone beginning at a dose of 12.5 mg daily. Natriuresis, vasodilation, and a reduction in aldosterone concentrations occur with ANF. Correlations of right atrial and pulmonary capillary wedge pressures with ANF concentrations have been demonstrated.
Beneficial effects on the myocardium may result from aldosterone antagonism. Aldosterone causes myocardial and vascular fibrosis and prevents the uptake of norepinephrine by myocardium. It is hypothesized that spironolactone prevents myocardial fibrosis by preventing aldosterone-induced collagen formation. Variations in ventricular-conduction times and thus, reentry ventricular arrhythmias caused by myocardial fibrosis may be inhibited. Receipt of the main metabolite of spironolactone, canrenone, resulted in the improvement of left ventricular indices of patients with hypertension despite a lack of further blood pressure lowering. Before canrenone addition, patients were taking an ACE inhibitor plus a dihydropyridine and hydrochlorothiazide, if needed.
Spironolactone decreases serum testosterone concentrations and increases serum estradiol and estrone concentrations in a dose-dependent manner. These changes may be modulated by estrogen and dihydrotestosterone (DHT) receptors in the cytosol. The changes are not a result of decreased testosterone production or by interference of receptor binding by DHT.
 
Hydrochlorothiazide: Hydrochlorothiazide increases the excretion of water by inhibiting the reabsorption of sodium and chloride ions in the cortical diluting segment of the distal renal tubule. Solute reabsorption inhibition occurs at nephron sites involved in the dilution of urine, and chronic use increases proximal tubular solute reabsorption and, thus, water reabsorption. Due to the inability to maximally dilute urine, an inherent risk of dilutional hyponatremia exists. The natriuretic effects of hydrochlorothiazide are accompanied by a secondary loss of potassium, since increased sodium delivery to the collecting tubules leads to an electrochemical gradient favoring sodium reabsorption and potassium secretion. Hydrochlorothiazide increases the elimination of magnesium and decreases the elimination of calcium and uric acid. Hydrochlorothiazide can cause hyperglycemia due to potassium loss. Hypokalemia inhibits insulin secretion.
Hydrochlorothiazide usually does not affect normal blood pressure. Initially, diuretics lower blood pressure by decreasing cardiac output, plasma volume and extracellular fluid volume. Cardiac output eventually returns to normal, plasma and extracellular fluid values return to slightly less than normal, but peripheral vascular resistance is reduced, resulting in lower blood pressure. The exact mechanism responsible for the lowered peripheral resistance is not known; however, excretion of urinary sodium by the kidneys is required to achieve blood pressure reduction. Hydrochlorothiazide has to be secreted in the renal tubules to reach its site of action. If drug delivery is slowed due to renal impairment (GFR less than 60 mL/minute), a prolonged diuresis that results in a greater net water loss than that obtained from a patient with better renal function may occur. This phenomemon is a result of the hydrochlorothiazide tubular concentration remaining on the upward steep part of the dose-response curve for a greater time. The changes in plasma volume induce an elevation in plasma renin activity and aldosterone secretion which contributes to the potassium losses associated with hydrochlorothiazide.

Pharmacokinetics

Spironolactone; hydrochlorothiazide is administered orally. The onset of diuretic action of the combination product is within 1 to 2 hours. The duration of action is approximately 2 to 3 days due to the spironolactone component.
Spironolactone: Spironolactone and its metabolites are more than 90% bound to plasma proteins. Spironolactone and its metabolites may cross the placenta, and canrenone, a metabolite, distributes into breast milk. There is considerable first-pass elimination and significant enterohepatic recirculation. The onset of diuresis is gradual, with peak effects occurring on the third day after administration. The duration of action after multiple doses of spironolactone is 2 to 3 days. Spironolactone is extensively metabolized, via hepatic pathways, to active sulfur-containing metabolites. The clinical effects of spironolactone are partially due to canrenone. Both unchanged drug (less than 10%) and its metabolites are excreted primarily in the urine. The remainder of a dose is excreted in the feces via biliary elimination. The half-life of spironolactone after a single dose is 1.3 to 2 hours. The half-life of canrenone ranges from 10 to 35 hours. There is no change in the elimination half-life of spironolactone between healthy patients and those with renal impairment or cirrhosis.
Hydrochlorothiazide: Hydrochlorothiazide crosses the placenta, but not the blood-brain barrier, and is distributed into breast milk. Hydrochlorothiazide is not significantly metabolized and is excreted unchanged in the urine. At least 61% of the oral dose is eliminated unchanged within 24 hours. The elimination half-life ranges from 5.6 to 14.8 hours.

Oral Route

Spironolactone: Approximately 70% to 90% of a dose of spironolactone is absorbed from the GI tract following oral administration. Food will enhance absorption, resulting in an increased bioavailability of unmetabolized drug by almost 100%. There is considerable first-pass elimination and significant enterohepatic recirculation.
Hydrochlorothiazide: Hydrochlorothiazide absorption from the GI tract varies depending on the formulation, dose, and presence of concomitant disease states. Absorption is reduced in patients with hepatic, cardiac, and/or renal disease. The bioavailability is approximately 60% to 70%. The onset of action is 2 hours following oral administration, with peak effects occurring at 4 hours. The duration of action ranges from 6 to 12 hours.

Pregnancy And Lactation
Pregnancy

Spironolactone is not present in breast milk; however, canrenone, the major metabolite of spironolactone, does appear in breast milk in low amounts that are not expected to be clinically relevant. It has been estimated that the amount of canrenone a breast-feeding infant would ingest is no more than 0.2% of the mother's total daily dose of spironolactone.[48406] Thiazide diuretics distribute into breast milk, and it has been recommended by some manufacturers that women not nurse while receiving selected thiazide diuretics. High doses of some thiazide diuretics have been used off-label to suppress lactation, and thus should be used with caution during the establishment of breast-feeding. Some experts consider doses of 50 mg/day or less to be compatible with breast-feeding. Previous American Academy of Pediatrics recommendations classified spironolactone and hydrochlorothiazide as usually compatible with breast-feeding.[27500] The manufacturer does not recommend use of spironolactone; hydrochlorothiazide during breast-feeding; however, if it is utilized, the lowest possible doses should be used.[48413]