PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Corticosteroids, Inhalant
    Topical Nasal Corticosteroids

    DEA CLASS

    Rx

    DESCRIPTION

    Synthetic halogenated inhaled glucocorticoid
    Used via oral inhalation for asthma or for COPD
    Used intranasally for allergic or nonallergic (vasomotor) rhinitis, or prevention of nasal polyps post-surgery

    COMMON BRAND NAMES

    Beconase AQ, Qnasl, Qnasl Children's, QVAR

    HOW SUPPLIED

    Beclomethasone/Beclomethasone Dipropionate/QVAR Respiratory (Inhalation) Aer Met: 1actuation, 40mcg, 80mcg
    Beconase AQ Nasal Spray Met: 1actuation, 42mcg
    Qnasl/Qnasl Children's Nasal Pwd Met: 1actuation, 40mcg, 80mcg

    DOSAGE & INDICATIONS

    For the maintenance treatment of asthma as prophylactic therapy.
    Oral inhalation dosage (Qvar or Qvar Double Strength metered dose inhalers)
    Adults previously treated with bronchodilators alone

    The usual initial dose is 40 to 80 mcg (1 to 2 sprays 40 mcg/spray or 1 spray 80 mcg/spray) inhaled orally twice daily. The usual maximum dose is 320 mcg (8 sprays 40 mcg/spray or 4 sprays 80 mcg/spray) inhaled orally twice daily, although higher-dose therapy has occasionally been used.

    Adults previously treated with other inhaled corticosteroids

    The usual initial dose is 40 to 160 mcg (1 to 4 sprays 40 mcg/spray or 1 to 2 sprays 80 mcg/spray) inhaled orally twice daily. The usual maximum dose is 320 mcg (8 sprays 40 mcg/spray or 4 sprays 80 mcg/spray) inhaled orally twice daily, although higher-dose therapy has occasionally been used.

    Children and Adolescents 12 years and older previously treated with bronchodilators alone

    Initially, 40 to 80 mcg via oral inhalation twice daily. May titrate after 3 to 4 weeks if patient response not adequate to a maximum dose of 320 mcg inhaled twice daily. The National Asthma Education and Prevention Program Expert Panel defines low dose therapy as 80 to 240 mcg/day, medium dose as 241 to 480 mcg/day, and high dose therapy as more than 480 mcg/day for children 12 years and older. The Global Initiative for Asthma guidelines define low dose therapy as 100 to 200 mcg/day, medium dose as 201 to 400 mcg/day, and high dose therapy as more than 400 mcg/day. Titrate to the lowest effective dose once asthma stability is achieved. Prolonged use of high doses (i.e., more than 480 mcg/day) may be associated with additional adverse effects.

    Children and Adolescents 12 years and older previously treated with other inhaled corticosteroids

    Initially, 40 to 160 mcg via oral inhalation twice daily. May titrate after 3 to 4 weeks if patient response not adequate to a maximum dose of 320 mcg inhaled twice daily. The National Asthma Education and Prevention Program Expert Panel defines low dose therapy as 80 to 240 mcg/day, medium dose as 241 to 480 mcg/day, and high dose therapy as more than 480 mcg/day for children 12 years and older. The Global Initiative for Asthma guidelines define low dose therapy as 100 to 200 mcg/day, medium dose as 201 to 400 mcg/day, and high dose therapy as more than 400 mcg/day. Titrate to the lowest effective dose once asthma stability is achieved. Prolonged use of high doses (i.e., more than 480 mcg/day) may be associated with additional adverse effects.

    Children 6 to 11 years

    Initially, 40 mcg via oral inhalation twice daily, regardless of prior treatment. May titrate after 3 to 4 weeks if patient response not adequate to a maximum dose of 80 mcg inhaled twice daily. The National Asthma Education and Prevention Program Expert Panel defines low dose therapy as 80 to 160 mcg/day, medium dose as 161 to 320 mcg/day, and high dose therapy as more than 320 mcg/day for children ages 5 to 11 years. The Global Initiative for Asthma guidelines define low dose therapy as 50 to 100 mcg/day, medium dose as 101 to 200 mcg/day, and high dose therapy as more than 200 mcg/day. Titrate to the lowest effective dose once asthma stability is achieved. Prolonged use of high doses (i.e., more than 320 mcg/day) may be associated with additional adverse effects.

    Children 5 years

    Initially, 40 mcg via oral inhalation twice daily, regardless of prior treatment. May titrate after 3 to 4 weeks if patient response not adequate to a maximum dose of 80 mcg inhaled twice daily. The National Asthma Education and Prevention Program Expert Panel defines low dose therapy as 80 to 160 mcg/day, medium dose as 161 to 320 mcg/day, and high dose therapy as more than 320 mcg/day for children ages 5 to 11 years. The Global Initiative for Asthma guidelines define low dose therapy as 100 mcg/day in children 5 years and younger. Titrate to the lowest effective dose once asthma stability is achieved. Prolonged use of high doses (i.e., more than 320 mcg/day) may be associated with additional adverse effects.

    Oral inhalation dosage (Qvar Redihaler)
    Adults not previously treated with an inhaled corticosteroid

    40 to 80 mcg inhaled twice daily, approximately 12 hours apart, is the recommended starting dose. For patients who do not respond adequately to the initial dosage after 2 weeks of therapy, increasing the dosage may provide additional asthma control. The maximum recommended dosage is 320 mcg twice daily. The starting dosage is based on the severity of asthma, including consideration of the patients’ current control of asthma symptoms and risk of future exacerbation. Improvement in asthma symptoms can occur within 24 hours of the beginning of treatment and should be expected within the first or second week, but maximum benefit should not be expected until 3 to 4 weeks of therapy. Improvement in pulmonary function is usually apparent within 1 to 4 weeks after the start of therapy. Titrate to the lowest effective dose once asthma stability is achieved.

    Adults previously treated with other inhaled corticosteroids

    The starting dosage is based on previous asthma therapy and asthma severity, including consideration of the current control of asthma symptoms and risk of future exacerbation: 40, 80, 160, or 320 mcg inhaled twice daily. For patients who do not respond adequately to the initial dosage after 2 weeks of therapy, increasing the dosage may provide additional asthma control. The maximum recommended dosage is 320 mcg twice daily. Improvement in asthma symptoms can occur within 24 hours of the beginning of treatment and should be expected within the first or second week, but maximum benefit should not be expected until 3 to 4 weeks of therapy. Improvement in pulmonary function is usually apparent within 1 to 4 weeks after the start of therapy. Titrate to the lowest effective dose once asthma stability is achieved.

    Children and Adolescents 12 years and older not previously treated with an inhaled corticosteroid

    40 to 80 mcg inhaled twice daily, approximately 12 hours apart, is the recommended starting dose. For patients who do not respond adequately to the initial dosage after 2 weeks of therapy, increasing the dosage may provide additional asthma control. The maximum recommended dosage is 320 mcg twice daily. The starting dosage is based on the severity of asthma, including consideration of the patients’ current control of asthma symptoms and risk of future exacerbation. Improvement in asthma symptoms can occur within 24 hours of the beginning of treatment and should be expected within the first or second week, but maximum benefit should not be expected until 3 to 4 weeks of therapy. Improvement in pulmonary function is usually apparent within 1 to 4 weeks after the start of therapy. The National Asthma Education and Prevention Program Expert Panel defines low dose therapy as 80 to 240 mcg/day, medium dose as 241 to 480 mcg/day, and high dose therapy as more than 480 mcg/day for children 12 years and older. The Global Initiative for Asthma guidelines define low dose therapy as 100 to 200 mcg/day, medium dose as 201 to 400 mcg/day, and high dose therapy as more than 400 mcg/day. Titrate to the lowest effective dose once asthma stability is achieved.

    Children and Adolescents 12 years and older previously treated with other inhaled corticosteroids

    The starting dosage is based on previous asthma therapy and asthma severity, including consideration of the current control of asthma symptoms and risk of future exacerbation: 40, 80, 160, or 320 mcg inhaled twice daily. For patients who do not respond adequately to the initial dosage after 2 weeks of therapy, increasing the dosage may provide additional asthma control. The maximum recommended dosage is 320 mcg twice daily. Improvement in asthma symptoms can occur within 24 hours of the beginning of treatment and should be expected within the first or second week, but maximum benefit should not be expected until 3 to 4 weeks of therapy. Improvement in pulmonary function is usually apparent within 1 to 4 weeks after the start of therapy. The National Asthma Education and Prevention Program Expert Panel defines low dose therapy as 80 to 240 mcg/day, medium dose as 241 to 480 mcg/day, and high dose therapy as more than 480 mcg/day for children 12 years and older. The Global Initiative for Asthma guidelines define low dose therapy as 100 to 200 mcg/day, medium dose as 201 to 400 mcg/day, and high dose therapy as more than 400 mcg/day. Titrate to the lowest effective dose once asthma stability is achieved.

    Children 6 to 11 years

    40 mcg inhaled twice daily, approximately 12 hours apart, is the recommended starting dose. For patients who do not respond adequately to 40 mcg after 2 weeks of therapy, increasing the dosage to 80 mcg twice daily may provide additional asthma control. The maximum recommended dosage is 80 mcg twice daily. The starting dosage is based on the severity of asthma, including consideration of the patients’ current control of asthma symptoms and risk of future exacerbation. Improvement in asthma symptoms can occur within 24 hours of the beginning of treatment and should be expected within the first or second week, but maximum benefit should not be expected until 3 to 4 weeks of therapy. Improvement in pulmonary function is usually apparent within 1 to 4 weeks after the start of therapy. The National Asthma Education and Prevention Program Expert Panel defines low dose therapy as 80 to 160 mcg/day, medium dose as 161 to 320 mcg/day, and high dose therapy as more than 320 mcg/day for children ages 5 to 11 years. The Global Initiative for Asthma guidelines define low dose therapy as 50 to 100 mcg/day, medium dose as 101 to 200 mcg/day, and high dose therapy as more than 200 mcg/day. Titrate to the lowest effective dose once asthma stability is achieved.

    Children 4 to 5 years

    40 mcg inhaled twice daily, approximately 12 hours apart, is the recommended starting dose. For patients who do not respond adequately to 40 mcg after 2 weeks of therapy, increasing the dosage to 80 mcg twice daily may provide additional asthma control. The maximum recommended dosage is 80 mcg twice daily. The starting dosage is based on the severity of asthma, including consideration of the patients’ current control of asthma symptoms and risk of future exacerbation. Improvement in asthma symptoms can occur within 24 hours of the beginning of treatment and should be expected within the first or second week, but maximum benefit should not be expected until 3 to 4 weeks of therapy. Improvement in pulmonary function is usually apparent within 1 to 4 weeks after the start of therapy. The National Asthma Education and Prevention Program Expert Panel defines low dose therapy as 80 to 160 mcg/day, medium dose as 161 to 320 mcg/day, and high dose therapy as more than 320 mcg/day for children ages 5 to 11 years. The Global Initiative for Asthma (GINA) guidelines define low dose therapy as 100 mcg/day in this age group. Titrate to the lowest effective dose once asthma stability is achieved.

    For relief of seasonal or perennial allergic rhinitis.
    Nasal dosage (e.g., Beconase AQ pump nasal spray)
    Adults, Adolescents, and Children 12 years and older

    1 to 2 sprays (42 mcg/spray) into each nostril twice per day is the usual dosage. If no improvement is seen after 3 weeks of continuous administration, discontinue use.

    Children 6 to 11 years

    Initially, 1 spray (42 mcg/spray) into each nostril twice per day. Patients not responding or those with more severe symptoms may use 2 sprays into each nostril twice a day. Once symptoms are controlled, the dose should be decreased to 1 spray into each nostril twice a day. If no improvement is seen after 3 weeks of continuous administration, discontinue use.

    Nasal aerosol dosage (e.g., Qnasl nasal aerosol)
    Adults, Adolescents, and Children 12 years and older

    2 sprays using the 80 mcg/spray formulation into each nostril once daily. Max: 320 mcg/day.

    Children 4 to 11 years

    1 spray using the 40 mcg/spray formulation into each nostril once daily. Max: 80 mcg/day. In a randomized, placebo-controlled study of children 6 to 11 years with seasonal allergic rhinitis (n = 713), 80 to 160 mcg/day administered as 1 spray (40 or 80 mcg/spray) into each nostril once daily resulted in significant improvements in nasal symptoms, with a safety profile similar to that of placebo.

    For relief of vasomotor rhinitis (nonallergic rhinitis).
    Nasal inhalation dosage (e.g., Beconase AQ nasal spray)
    Adults, Adolescents, and Children 12 years and older

    1 to 2 sprays (42 mcg/spray) into each nostril twice per day is the usual dose. If no improvement is seen after 3 weeks of continuous administration, discontinue use.

    Children 6 to 11 years

    Initially, 1 spray (42 mcg/spray) into each nostril twice per day. Patients not responding or those with more severe symptoms may use 2 sprays into each nostril twice per day. Once symptoms are controlled, the dose should be decreased to 1 spray into each nostril twice per day. If no improvement is seen after 3 weeks of continuous administration, discontinue use.

    For the prevention of recurrence of nasal polyps after surgical removal.
    Nasal spray dosage (e.g., Beconase AQ pump nasal spray)
    Adults, Adolescents, and Children 12 years and older

    1 to 2 sprays (42 mcg/spray) into each nostril twice a day is the usual dose. If no improvement is seen after 3 weeks of continuous administration, discontinue use.

    Children 6 to 11 years

    Initially, 1 spray (42 mcg/spray) into each nostril twice a day; the dosage may be increased to 2 sprays into each nostril twice a day if needed.

    For the maintenance treatment of chronic obstructive pulmonary disease (COPD)† such as chronic bronchitis† or emphysema†.
    Oral inhalation dosage
    Adults

    The optimal dose of inhaled beclomethasone for the treatment of COPD is not established. Typical doses range from 40 mcg to 320 mcg inhaled twice daily, using commercially available products. High dose therapy (e.g., 750 mcg and 1,000 mcg twice daily) has also been studied, using formulations not commercially available. Do not use for the relief of acute bronchospasm; use a short-acting beta-2 agonist (SABA). Regular treatment with inhaled corticosteroids (ICS) improves symptoms, lung function, quality of life, and exacerbation rates in patients with FEV-1 less than 60% of predicted; it does not affect mortality or the rate of long-term lung function decline. According to the Global Initiative for Chronic Lung Disease (GOLD) guidelines, ICS may be used in combination with an inhaled long-acting beta-2 agonist (LABA) for first-line therapy in GOLD group C and D patients (those with a high risk of exacerbation). A long-acting anticholinergic bronchodilator may be added for triple therapy in group D patients. Long-term monotherapy with ICS is not recommended because it is less effective than combination therapy with LABAs. The efficacy of high-dose inhaled beclomethasone for COPD treatment was evaluated in a double-blind, placebo-controlled study in which patients with a FEV-1 less than 70% of predicted and FEV-1/FVC less than 65% were randomized to treatment with beclomethasone 750 mcg or 1000 mcg twice daily depending on weight (total n = 49) or placebo (n = 49). All treatments were delivered from pressurized inhalers (delivering 250 mcg/actuation) with spacers. A total of 78 and 59 patients completed 1 and 2 years of treatment, respectively. There were no significant differences in withdrawal rates between groups, and those that withdrew had significantly worse airflow obstruction. The mean decline in pre- and post-bronchodilator FEV-1 in the study population at 1 year was less in the beclomethasone treated groups than the placebo group (12.1 mL/year vs. 45.2 mL/year pre-bronchodilator; 20.6 mL/year vs. 56.9 mL/year post-bronchodilator); this difference was not statistically significant. Beclomethasone treated patients had less exacerbations per year (mean rate of 0.36/year vs. 0.57/year), but the difference was not statistically significant.

    For exercise-induced bronchospasm prophylaxis†.
    Oral inhalation dosage
    Adults

    Use lowest dose typically used for asthma that controls EIB symptoms as a suggested dose. The American Thoracic Society recommends daily administration of an inhaled corticosteroid (ICS) such as beclomethasone in patients who continue to have exercise-induced bronchospasm (EIB) despite using an inhaled short-acting beta-2 agonist (SABA) before exercise, or in those who require daily (or more frequent) SABA use. Specific studies evaluating the optimal dose of inhaled beclomethasone for EIB prevention in adults are not available; however, doses of 50 mcg/day and 100 mcg/day were evaluated in 25 asthmatic children ages 5 to 14 years. During the randomized, double-blind, crossover study, the maximum percentage fall in FEV1 after exercise was less with active drug compared to placebo for both treatment regimens; no significant differences in FEV1 reductions were observed between the 2 active doses. In clinical practice, ICSs may be a first-line choice for a controller agent to be added to SABAs; leukotriene receptor antagonists may also be used. The choice between the 2 classes must be made on an individual basis considering patient preferences and baseline lung function. Patients with EIB associated with greater airway inflammation (e.g., asthma) may benefit more from ICS therapy.

    Children and Adolescents 5 years and older

    Optimal dosing is not well established; use of typical initial daily doses for asthma may be considered. American Thoracic Society guidelines recommend daily administration of an inhaled corticosteroid (ICS) in patients with exercise-induced bronchospasm (EIB) who continue to have symptoms despite use of an inhaled short-acting beta-agonist (SABA) before exercise and in those who develop SABA tolerance due to regular (e.g., daily) use. ICSs are considered the most effective anti-inflammatory agents for EIB; they are preferred controller agents in patients with below normal baseline lung function and/or asthma. Use of an ICS as an 'as needed' treatment, only before exercise is NOT recommended. Beclomethasone doses of 50 mcg and 100 mcg daily were evaluated in a randomized, double-blind, crossover study in 25 children with asthma ages 5 to 14 years. The maximum fall in FEV1 after exercise was significantly less with active drug compared to placebo for both treatment regimens; no differences were observed between the 2 active doses.

    †Indicates off-label use

    MAXIMUM DOSAGE

    Adults

    Maximum dependent on specific drug formulation administered; 640 mcg/day via oral inhalation (Qvar and Qvar Redihaler); 336 mcg/day intranasal spray (Beconase AQ); 320 mcg/day intranasal aerosol (Qnasl).

    Geriatric

    Maximum dependent on specific drug formulation administered; 640 mcg/day via oral inhalation (Qvar and Qvar Redihaler); 336 mcg/day intranasal spray (Beconase AQ); 320 mcg/day intranasal aerosol (Qnasl).

    Adolescents

    Maximum dependent on specific drug formulation administered; 640 mcg/day via oral inhalation (Qvar and Qvar Redihaler); 336 mcg/day intranasal spray (Beconase AQ); 320 mcg/day intranasal aerosol (Qnasl)

    Children

    12 years: 640 mcg/day via oral inhalation (Qvar and Qvar Redihaler); 336 mcg/day intranasal spray (Beconase AQ); 320 mcg/day intranasal aerosol (Qnasl) .
    6 to 11 years: 160 mcg/day via oral inhalation (Qvar and Qvar Redihaler); 336 mcg/day intranasal spray (Beconase AQ); 80 mcg/day intranasal aerosol (Qnasl).
    4 to 5 years: 160 mcg/day via oral inhalation (Qvar Redihaler); 80 mcg/day intranasal aerosol (Qnasl).
    1 to 3 years: Safety and efficacy have not been established.

    Infants

    Safety and efficacy have not been established.

    Neonates

    Safety and efficacy have not been established.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    Specific guidelines for dosage adjustments in hepatic impairment are not available; it appears that no dosage adjustments are needed.

    Renal Impairment

    Specific guidelines for dosage adjustments in renal impairment are not available; it appears that no dosage adjustments are needed.

    ADMINISTRATION

    Inhalation Administration
    Oral Inhalation Administration

    If the patient is also using a bronchodilator aerosol spray, instruct them to use the bronchodilator first and wait a few minutes, then use beclomethasone.
    To avoid the spread of infection, do not use the inhaler for more than 1 person.
     
    Oral inhalation (metered-dose aerosol) (Qvar):
    NOTE: Qvar metered-dose inhaler delivers 40 mcg/actuation; Qvar Double Strength delivers 80 mcg/actuation to the patient after oral inhalation.
    The canister does not require shaking prior to administration.
    Instruct patient on proper inhalation technique.
    Use of Qvar with a spacer device in children younger than 5 years is not recommended. Studies have shown a rapid decrease in medication delivery secondary to short (5 to 10 seconds) wait times when a spacer was used by this population.
    The choice of using a mouthpiece vs. a face mask with a spacer/valved holding chamber (VHC) device must be made based on the skills and understanding of each individual patient. However, in general, children younger than 4 years require administration with a tight fitting face mask and spacer/VHC device to achieve optimal delivery. If a face mask is used, allow 3 to 5 inhalations per actuation. For patients 5 years and older unable to coordinate inhalation and actuation, a spacer or VHC may be beneficial. If a spacer device is used, the patient should be instructed to inhale immediately as the medication delivered through the device decreases rapidly with increasing wait times. Limited data are available regarding the use of spacers/VHC devices with ultrafine-particle-generated HFA MDIs.
    Prime the inhaler prior to first use and in cases where the inhaler has not been used for more than 10 days. Prime by spraying 2 actuations of the inhaler into the air, away from the eyes and face.
    When the patient initially receives the inhaler, a black dot will be apparent in the dose counter window until the inhaler has been primed, at which point the total number of actuations will display.
    The dose counter displays how many doses are left. When the counter reaches 20, red numbers appear warning the patient to refill the medication.
    After administration, instruct patient to rinse mouth (and gargle, if possible) thoroughly with water or mouthwash to remove beclomethasone deposited in the mouth.
    For normal hygiene, the mouthpiece of the inhaler should be cleaned weekly with a clean dry tissue or cloth. Do not wash the Qvar inhaler or put any part of the inhaler in water.
    Instruct the patient to safely dispose of the inhaler when the dose counter displays 0 or the product expires, whichever comes first.
    Storage: Store so the inhaler rests on the concave end of the canister with the plastic actuator on top when not being used.
     
    Oral inhalation (metered-dose aerosol) (Qvar Redihaler):
    NOTE: Qvar Redihaler delivers 40 or 80 mcg/actuation to the patient after oral inhalation.
    The canister does not require shaking prior to administration; do not shake the inhaler with the cap open to avoid possible actuation of the device.
    The white cap on the Redihaler must be closed before each inhalation; advise the patient not to open the white cap until ready to take the inhalation. If the dose requires more than 1 inhalation the white cap must be closed between inhalations.
    Instruct patient on proper inhalation technique.
    Do not use with a spacer device or volume holding chamber.
    The Redihaler does not require priming.
    The Redihaler has a dose counter attached to the actuator. When the patient receives the inhaler, the number 120 will be displayed.
    The dose counter will count down each time a spray is released. When the dose counter reaches 20, red numbers appear warning the patient to refill the medication.
    After administration, instruct patient to rinse mouth (and gargle, if possible) thoroughly with water or mouthwash to remove beclomethasone deposited in the mouth.
    For normal hygiene, the mouthpiece of the inhaler should be cleaned weekly with a clean dry tissue or cloth. Do not wash the Redihaler or put any part of the inhaler in water; the patient should replace the Redihaler if washed or placed in water. Never take the Redihaler apart.
    Instruct the patient to safely dispose of the inhaler when the dose counter displays 0 (background color will change to solid red) or the product expires, whichever comes first.
    Storage: Store so the inhaler rests on the concave end of the canister with the plastic actuator on top when not being used. Store at room temperature and avoid exposure to extreme heat and cold.

    Intranasal Inhalation Administration

    Different nasal dosage forms are commercially available. Products are not always interchangeable due to differences in route of administration and in the amount of active drug released per spray.
    To avoid the spread of infection, do not use the container for more than 1 person.
     
    Nasal inhalation (metered-dose aerosol) (i.e., Qnasl):
    Instruct patient to shake the canister well before administering.
    Prior to first use, instruct the patient to prime the pump by actuating 4 times into the air, away from the eyes and face. After the initial priming, the dose-counter should read 120 (120-actuation products) or 60 (60-actuation products).
    If the canister is not used for 7 consecutive days, instruct the patient to prime by actuating 2 times.
    Instruct patient on proper administration technique (see manufacturer-provided patient instructions).
    After administration, wipe the nasal actuator tip with a clean, dry tissue or cloth. Replace the cap right after cleaning.
     
    Nasal inhalation (pump spray) (e.g., Beconase AQ):
    Instruct patient to shake the nasal sprayer well before administering.
    Prior to first use, instruct the patient to prime the pump by actuating 6 times into the air or until a fine spray appears, away from the eyes and face.
    If the pump is not used for 7 consecutive days, instruct the patient to prime by actuating until a fine spray appears.
    Instruct patient on proper administration technique (see manufacturer-provided patient instructions).
    After administration, rinse the tip of the bottle with hot water, taking care not to suck water into the bottle, and dry with a clean tissue. Replace the cap right after cleaning.

    STORAGE

    Beconase AQ:
    - Store at room temperature (between 59 to 86 degrees F)
    Qnasl:
    - Do Not Store at Temperatures Above 120 degrees F (49 degrees C)
    - Flammable, keep away from heat and flame
    - Store at 77 degrees F; excursions permitted to 59-86 degrees F
    Qnasl Children's:
    - Exposure to temperatures above 120 degrees F may cause bursting
    - Flammable, keep away from heat and flame
    - Store at 77 degrees F; excursions permitted to 59-86 degrees F
    QVAR:
    - Exposure to temperatures above 120 degrees F may cause bursting
    - Flammable, keep away from heat and flame
    - Store at 77 degrees F; excursions permitted to 59-86 degrees F

    CONTRAINDICATIONS / PRECAUTIONS

    General Information

    Use of beclomethasone does not contraindicate administration of live-virus vaccines. According to the Advisory Committee on Immunization Practices (ACIP), administration of live-virus vaccines is safe and effective when steroid therapy is administered by the inhalation route.

    Acute bronchospasm, status asthmaticus

    Inhaled beclomethasone is contraindicated as primary therapy for patients with status asthmaticus or other types of acute episodes of asthma, such as acute bronchospasm, for which intensive and immediate therapy is warranted. Patients should be advised that beclomethasone is not to be used as a bronchodilator and is not indicated for relief of acute bronchospasm. Although inhaled corticosteroids (ICSs) are not indicated for primary treatment of an acute exacerbation, they may be initiated at any time during an exacerbation for patients not using long-term control therapy. An ICS may also be continued during an exacerbation for patients previously using the drug for chronic control. Additionally, the drug is contraindicated for use in any patient with a known hypersensitivity to beclomethasone.

    Paradoxical bronchospasm

    As with other inhaled asthma medications, paradoxical bronchospasm can occur with an immediate increase in wheezing after administration of inhaled beclomethasone that may be life-threatening. If bronchospasm occurs after dosing, treat the patient immediately with a fast-acting inhaled bronchodilator, discontinue beclomethasone, and institute alternative therapy.

    Abrupt discontinuation, adrenal insufficiency, Cushing's syndrome, hypothalamic-pituitary-adrenal (HPA) suppression, surgery

    Systemic absorption of inhaled or intranasal beclomethasone may result in varying complications depending on the clinical situation and type of administration. Carefully observe patients for evidence of systemic corticosteroid effects and adrenal insufficiency, particularly during periods of physiologic stress (e.g., trauma, surgery, infection). Systemic absorption of inhaled or intranasal corticosteroids has produced reversible hypothalamic-pituitary-adrenal (HPA) suppression, manifestations of Cushing's syndrome, hyperglycemia, and glucosuria in some patients; use with caution in patient's with underlying Cushing's syndrome. To minimize the risk of HPA dysfunction, do not exceed recommended dosages and titrate patients to the lowest effective dosage. Patients with low body mass index (BMI) may have an increased risk of HPA suppression; some experts recommend adrenal screening in this population. If signs of HPA suppression occur, the drug should be slowly reduced; intranasal corticosteroids should be ultimately discontinued. If HPA suppression occurs with any beclomethasone formulation, patients will require systemic corticosteroids during periods of physiologic stress. If surgery is required, patients should notify all health care providers that they have received corticosteroids within the last 12 months. Use beclomethasone with caution when substituting it for systemic corticosteroid administration and avoid abrupt discontinuation; deaths due to adrenal insufficiency have been reported in asthma patients during and after such a change. Beclomethasone may not produce systemic concentrations high enough to avoid adrenocortical insufficiency in patients transitioning from systemic corticosteroids. Adult patients who have been maintained on at least 20 mg of prednisone equivalent may be most susceptible; the precise dosage that increases risk in children is not as clearly defined. Recommended doses of inhaled corticosteroids (ICSs) provide less than normal physiologic amounts of systemic glucocorticoid and do not provide the mineralocorticoid necessary for coping with stress. Patients receiving ICS may require initiation or resumption of systemic corticosteroids during periods of stress or during severe asthma attacks. When transferring patients to ICS therapy, systemic corticosteroids should be weaned slowly. Monitor patients closely for asthma control (e.g., lung function, beta-agonist use, asthma symptoms) as well as signs and symptoms of adrenal insufficiency (e.g., fatigue, lassitude, weakness, nausea, vomiting, and hypotension). Infrequently, signs and symptoms of corticosteroid withdrawal may occur, requiring supplemental systemic corticosteroids.

    Fungal infection, herpes infection, infection, measles, tuberculosis, varicella, viral infection

    The incidence or course of acute viral infection or bacterial infection is probably minimally affected by inhaled corticosteroids in most immunocompetent individuals. However, the use of inhaled beclomethasone in the presence of infection, specifically active or latent tuberculosis of the respiratory tract; untreated systemic fungal, bacterial, parasitic, or viral infections; or ocular herpes infection should be initiated or continued cautiously, if at all. Because of the potential for worsening infection, beclomethasone therapy may need to be interrupted during some active infections. Chickenpox (varicella) and measles can have a more serious or even fatal course in susceptible children using corticosteroids; the exact risk associated with inhaled beclomethasone is unclear. If an unimmunized patient is exposed to chickenpox or measles, proper prophylaxis may be indicated. Corticosteroid therapy can reactivate tuberculosis and should not be used except when chemoprophylaxis is instituted concomitantly. The use of nasal or orally inhaled beclomethasone may result in localized fungal infection of the nose, mouth, and pharynx with Candida albicans. Instruct patients to rinse mouth after each use of orally inhaled beclomethasone to minimize risk. If oropharyngeal candidiasis develops, it should be treated with appropriate local or systemic antifungal therapy while still continuing beclomethasone therapy; temporary interruption of inhaler use should only be done under close medical supervision. Patients using beclomethasone nasal spray for extended periods (i.e., months) should be examined periodically for evidence of infection or other adverse effects on the nasal mucosa.

    Malnutrition, osteoporosis, tobacco smoking

    Detrimental effects on bone metabolism, such as osteoporosis, are expected to be much lower with inhaled corticosteroids than systemically-administered corticosteroids. However, some data suggest that high-dose inhaled beclomethasone (more than 1000 mcg/day) may also decrease bone formation and increased resorption, and decreases in bone mineral density have been reported in patients receiving long-term therapy of inhaled corticosteroids. Compounding risk factors for bone loss include preexisting osteopenia, prolonged immobilization, family history of osteoporosis, tobacco smoking, malnutrition, and use of other medications that may reduce bone mass.

    Nasal septal perforation, nasal surgery, nasal trauma

    Nasal septal perforation and ulceration have been reported with intranasal beclomethasone use. As with any long-term topical treatment of the nasal cavity, patients using intranasal beclomethasone over several months or longer should be examined periodically for possible changes in the nasal mucosa. Furthermore, because of the inhibitory effect of corticosteroids on wound healing, patients who have experienced recent nasal septal perforation or ulcer, nasal surgery, or nasal trauma should not use a nasal corticosteroid until healing has occurred.

    Infants, neonates, pregnancy

    There are no adequate and well-controlled studies with beclomethasone in pregnant women; there are clinical considerations with the use of beclomethasone in pregnant women. Current studies of beclomethasone therapy during pregnancy are incomplete; but published medical literature describing the drug's use during gestation does exist. Despite adverse effects observed with the parenteral use of beclomethasone in animal studies, fetal harm from inhaled administration in humans appears remote. Human reports evaluating the use of inhaled beclomethasone currently do not support an association between drug use and congenital defects. Infants and neonates born of mothers receiving substantial doses of beclomethasone during pregnancy should, however, be observed for adrenal suppression. A position statement by the American College of Allergy, Asthma and Immunology notes that beclomethasone is a potential alternative for pregnant women requiring inhaled steroids for effective asthma or allergy management. Low-dose inhaled corticosteroids are considered first line therapy for control of mild persistent asthma during pregnancy according to the 2004 guidelines of the National Asthma Education and Prevention Program (NAEPP) Asthma and Pregnancy Working Group. Data on the use of medium to high dose inhaled corticosteroid during pregnancy are limited. However, dose titration may be considered for those with moderate to severe persistent asthma, preferably using budesonide. Due to the availability of safety information during pregnancy, budesonide is preferred over other inhaled corticosteroid. However, there are no data to indicate safety concerns with other inhaled corticosteroids, and maintaining a previously established treatment regimen may be more beneficial to the patient. Selection of any pharmacologic treatment for asthma control during pregnancy should include the specific needs of the patient, based on an individual evaluation, and consideration of the potential benefits or risks to the fetus.

    Breast-feeding

    Corticosteroids distribute into breast-milk in low concentrations; according to FDA-approved product labels of beclomethasone, caution should be exercised when administering beclomethasone to women who are breast-feeding. Beclomethasone via inhaled administration typically results in low systemic concentrations; therefore, the amount excreted into breast-milk after inhalation is expected to be very low. Reviewers and an expert panel consider inhaled and oral corticosteroids acceptable to use during breast-feeding. Low-dose inhaled corticosteroids are considered first line therapy for control of mild persistent asthma during pregnancy and lactation according to the National Asthma Education and Prevention Program (NAEPP) Asthma and Pregnancy Working Group. Due to greater availability of data in pregnancy, budesonide is the preferred agent in this population. However, there are no data to indicate safety concerns with other inhaled corticosteroids and maintaining a previously established treatment regimen may be more beneficial to the patient. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to a maternally administered drug, healthcare providers are encouraged to report the adverse effect to the FDA.

    Children, growth inhibition, increased intracranial pressure

    The safety and efficacy of nasally- and orally-inhaled formulations of beclomethasone in children varies depending on the product. A reduction in growth velocity in children may occur as a result of inadequate control of chronic diseases (e.g., asthma) or from use of corticosteroids for asthma or allergy treatment. Growth inhibition has been observed in the absence of laboratory evidence of hypothalamic-pituitary-adrenal (HPA) suppression, suggesting that growth velocity is a more sensitive indicator of systemic corticosteroid exposure in pediatric patients. The long-term effects of this reduction in growth velocity, including the impact on final adult height, are unknown. In a 56 week study of asthmatic children 6 to 8 years of age receiving montelukast 5 mg per day, inhaled beclomethasone 168 mcg twice daily, or placebo, children receiving either montelukast or placebo had higher growth rates than those receiving inhaled beclomethasone. Health care professionals should closely follow the growth of children taking beclomethasone and weigh the benefits of therapy and disease control against the possibility of growth suppression and HPA-suppression. Pediatric patients receiving maximal dosages of beclomethasone oral or intranasal inhalation may be more susceptible to these effects. To minimize the effects of intranasal or orally inhaled corticosteroids, each patient should be titrated to the lowest effective dose. Pediatric patients may be more susceptible to developing systemic toxicity; adrenal suppression and increased intracranial pressure have been reported with the use and/or withdrawal of intranasal and orally inhaled corticosteroid formulations in young patients.

    Diabetes mellitus, hyperglycemia

    Systemic absorption of inhaled corticosteroids has produced reversible hyperglycemia and glucosuria in some patients. Inhaled corticosteroids should generally be used with caution in those patients with diabetes mellitus. Exacerbation of diabetes may occur with significant systemic absorption of the inhaled corticosteroid.

    Cataracts, glaucoma, increased intraocular pressure, ocular exposure, visual disturbance

    Rare instances of glaucoma, increased intraocular pressure, and cataracts have been reported following the inhaled administration of corticosteroids. Use inhaled beclomethasone with caution in patients potentially predisposed to these conditions; have patients using beclomethasone report any unexplained visual disturbance promptly. To avoid adverse ophthalmic effects related to drug administration, remind patients to avoid unintended ocular exposure by actuating the medication properly.

    Corticosteroid hypersensitivity

    Although true corticosteroid hypersensitivity is rare, patients who have demonstrated a prior hypersensitivity reaction to beclomethasone should not receive any form of beclomethasone. It is possible, though also rare, that such patients will display cross-hypersensitivity to other corticosteroids. It is advisable that patients who have a hypersensitivity reaction to any corticosteroid undergo skin testing, which, although not a conclusive predictor, may help to determine if hypersensitivity to another corticosteroid exists. Such patients should be carefully monitored during and following the administration of any corticosteroid.

    Depression, psychosis, suicidal ideation

    Use beclomethasone with caution in patients with psychosis. During postmarketing experience, psychiatric events and behavioral changes such as aggression, depression, sleep disorders, psychomotor hyperactivity, and suicidal ideation have been reported; these effects were primarily reported in children.

    Hepatic disease

    Use inhaled and intranasal beclomethasone cautiously in patients with severe hepatic disease as the drug is primarily eliminated by the liver. Adverse effects may be more pronounced in this population.

    Geriatric

    The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents (e.g., geriatric adults) of long-term care facilities (LTCFs). The OBRA guidelines caution that orally inhaled corticosteroids, such as beclomethasone, can cause throat irritation and oral candidiasis, particularly if the mouth is not rinsed after administration.

    ADVERSE REACTIONS

    Severe

    nasal septum perforation / Delayed / 0-1.0
    angioedema / Rapid / 0-1.0
    anaphylactoid reactions / Rapid / 0-1.0
    ocular hypertension / Delayed / Incidence not known
    visual impairment / Early / Incidence not known
    increased intracranial pressure / Early / Incidence not known
    skeletal changes / Delayed / Incidence not known
    bronchospasm / Rapid / Incidence not known
    suicidal ideation / Delayed / Incidence not known

    Moderate

    dysphonia / Delayed / 5.0-50.0
    candidiasis / Delayed / 0-13.0
    hypothalamic-pituitary-adrenal (HPA) suppression / Delayed / 0-1.0
    growth inhibition / Delayed / 10.0
    eosinophilia / Delayed / Incidence not known
    blurred vision / Early / Incidence not known
    cataracts / Delayed / Incidence not known
    immunosuppression / Delayed / Incidence not known
    Cushing's syndrome / Delayed / Incidence not known
    adrenocortical insufficiency / Delayed / Incidence not known
    withdrawal / Early / Incidence not known
    osteoporosis / Delayed / Incidence not known
    osteopenia / Delayed / Incidence not known
    wheezing / Rapid / Incidence not known
    depression / Delayed / Incidence not known

    Mild

    hoarseness / Early / 5.0-50.0
    headache / Early / 0-12.0
    epistaxis / Delayed / 0-11.0
    infection / Delayed / 0-9.0
    pharyngitis / Delayed / 2.0-8.0
    rhinitis / Early / 6.0-6.0
    nausea / Early / 0-5.0
    sneezing / Early / 4.0-4.0
    rhinorrhea / Early / 0-3.0
    sinusitis / Delayed / 3.0-3.0
    fever / Early / 3.0-3.0
    cough / Delayed / 1.0-3.0
    dysmenorrhea / Delayed / 1.0-3.0
    back pain / Delayed / 1.0-1.0
    nasal irritation / Early / 10.0
    anosmia / Delayed / Incidence not known
    dysgeusia / Early / Incidence not known
    nasal dryness / Early / Incidence not known
    xerostomia / Early / Incidence not known
    Cushingoid features / Delayed / Incidence not known
    purpura / Delayed / Incidence not known
    urticaria / Rapid / Incidence not known
    rash (unspecified) / Early / Incidence not known

    DRUG INTERACTIONS

    Abatacept: (Moderate) Concomitant use of immunosuppressives, as well as long-term corticosteroids, may potentially increase the risk of serious infection in abatacept treated patients. Advise patients taking abatacept to seek immediate medical advice if they develop signs and symptoms suggestive of infection.
    Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Acetaminophen; Caffeine; Magnesium Salicylate; Phenyltoloxamine: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Acetaminophen; Caffeine; Phenyltoloxamine; Salicylamide: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Acetaminophen; Chlorpheniramine; Phenylephrine; Phenyltoloxamine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Acetazolamide: (Moderate) Corticosteroids may increase the risk of hypokalemia if used concurrently with acetazolamide. Hypokalemia may be especially severe with prolonged use of corticotropin, ACTH. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
    Acetohexamide: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Adalimumab: (Moderate) Closely monitor for the development of signs and symptoms of infection if coadministration of a corticosteroid with adalimumab is necessary. Adalimumab treatment increases the risk for serious infections that may lead to hospitalization or death. Patients taking concomitant immunosuppressants including corticosteroids may be at greater risk of infection.
    Albiglutide: (Moderate) When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia and cause blood glucose concentrations to rise. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Aldesleukin, IL-2: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Alemtuzumab: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Alogliptin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Alogliptin; Metformin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted. (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Alogliptin; Pioglitazone: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Alpha-glucosidase Inhibitors: (Moderate) Systemic corticosteroids increase blood glucose levels. Because of this action, a potential pharmacodynamic interaction exists between corticosteroids and acarbose. Patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of acarbose.
    Altretamine: (Minor) Concurrent use of altretamine with other agents which cause bone marrow or immune suppression such as corticosteroids may result in additive effects.
    Ambenonium Chloride: (Minor) Corticosteroids may interact with cholinesterase inhibitors including ambenonium, neostigmine, and pyridostigmine, occasionally causing severe muscle weakness in patients with myasthenia gravis. Glucocorticoids are occasionally used therapeutically, however, in the treatment of some patients with myasthenia gravis. In such patients, it is recommended that corticosteroid therapy be initiated at low dosages and with close clinical monitoring. The dosage should be increased gradually as tolerated, with continued careful monitoring of the patient's clinical status.
    Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Amlodipine; Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Amlodipine; Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Amphotericin B cholesteryl sulfate complex (ABCD): (Moderate) The potassium-wasting effects of corticosteroid therapy can be exacerbated by concomitant administration of other potassium-depleting drugs including amphotericin B. Serum potassium levels should be monitored in patients receiving these drugs concomitantly.
    Amphotericin B lipid complex (ABLC): (Moderate) The potassium-wasting effects of corticosteroid therapy can be exacerbated by concomitant administration of other potassium-depleting drugs including amphotericin B. Serum potassium levels should be monitored in patients receiving these drugs concomitantly.
    Amphotericin B liposomal (LAmB): (Moderate) The potassium-wasting effects of corticosteroid therapy can be exacerbated by concomitant administration of other potassium-depleting drugs including amphotericin B. Serum potassium levels should be monitored in patients receiving these drugs concomitantly.
    Amphotericin B: (Moderate) The potassium-wasting effects of corticosteroid therapy can be exacerbated by concomitant administration of other potassium-depleting drugs including amphotericin B. Serum potassium levels should be monitored in patients receiving these drugs concomitantly.
    Anthracyclines: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents. Also, dexamethasone is a CYP3A4 inducer and doxorubicin is a major substrate of CYP3A4. However, these drugs are commonly used together in treatment
    Antithymocyte Globulin: (Moderate) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Antitumor antibiotics: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Argatroban: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Arsenic Trioxide: (Major) Because electrolyte abnormalities increase the risk of QT interval prolongation and serious arrhythmias, avoid the concomitant use of arsenic trioxide with drugs that may cause electrolyte abnormalities, particularly hypokalemia and hypomagnesemia. Examples of drugs that may cause electrolyte abnormalities include corticosteroids. If concomitant drug use is unavoidable, frequently monitor serum electrolytes (and replace as necessary) and electrocardiograms.
    Asparaginase Erwinia chrysanthemi: (Moderate) Concomitant use of L-asparaginase with corticosteroids can result in additive hyperglycemia. L-Asparaginase transiently inhibits insulin production contributing to hyperglycemia seen during concurrent corticosteroid therapy. Insulin therapy may be required in some cases. Administration of L-asparaginase after rather than before corticosteroids reportedly has produced fewer hypersensitivity reactions.
    Aspirin, ASA: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Aspirin, ASA; Butalbital; Caffeine: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Aspirin, ASA; Caffeine; Dihydrocodeine: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Aspirin, ASA; Carisoprodol: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Aspirin, ASA; Dipyridamole: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Aspirin, ASA; Omeprazole: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Aspirin, ASA; Oxycodone: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Aspirin, ASA; Pravastatin: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Atenolol; Chlorthalidone: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Atracurium: (Moderate) Caution and close monitoring are advised if corticosteroids and neuromuscular blockers are used together, particularly for long periods, due to enhanced neuromuscular blocking effects. In such patients, a peripheral nerve stimulator may be of value in monitoring the response. Concurrent use may increase the risk of acute myopathy. This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years.
    Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Azacitidine: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Azathioprine: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Azilsartan; Chlorthalidone: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Bacillus Calmette-Guerin Vaccine, BCG: (Severe) Live virus vaccines should generally not be administered to an immunosuppressed patient. Live virus vaccines may induce the illness they are intended to prevent and are generally contraindicated for use during immunosuppressive treatment. The immune response of the immunocompromised patient to vaccines may be decreased, even despite alternate vaccination schedules or more frequent booster doses. If immunization is necessary, choose an alternative to live vaccination, or, consider a delay or change in the immunization schedule. Practitioners should refer to the most recent CDC guidelines regarding vaccination of patients who are receiving drugs that adversely affect the immune system. Children who are receiving high doses of systemic corticosteroids (i.e., greater than or equal to 2 mg/kg prednisone orally per day) for 2 weeks or more may be vaccinated after steroid therapy has been discontinued for at least 3 months in accordance with general recommendations for the use of live-virus vaccines. The CDC has stated that discontinuation of steroids for 1 month prior to varicella virus vaccine live administration may be sufficient. Budesonide may affect the immunogenicity of live vaccines. An open-label study examined the immune responsiveness to varicella vaccine in 243 pediatric asthma patients who were treated with budesonide inhalation suspension 0.251 mg daily (n = 151) or non-corticosteroid asthma therapy (n = 92). The percentage of patients developing a seroprotective antibody titer of at least 5 (gpELISA value) in response to the vaccination was slightly lower in patients treated with budesonide compared to patients treated with non-corticosteroid asthma therapy (85% vs. 90%). Even though no patient treated with budesonide inhalation suspension developed chicken pox because of vaccination, live-virus vaccines should not be given to individuals who are considered to be immunocompromised until more information is available.
    Basiliximab: (Minor) Because systemically administered corticosteroids have immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Bendroflumethiazide; Nadolol: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Bepridil: (Moderate) Hypokalemia-producing agents, including corticosteroids, may increase the risk of bepridil-induced arrhythmias and should therefore be administered cautiously in patients receiving bepridil therapy.
    Bevacizumab: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Bismuth Subsalicylate: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Bortezomib: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Brompheniramine; Carbetapentane; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Bupropion: (Major) Bupropion is associated with a dose-related risk of seizures. Extreme caution is recommended during concurrent use of other drugs that may lower the seizure threshold such as systemic corticosteroids. The manufacturer recommends low initial dosing and slow dosage titration if these combinations must be used; the patient should be closely monitored.
    Bupropion; Naltrexone: (Major) Bupropion is associated with a dose-related risk of seizures. Extreme caution is recommended during concurrent use of other drugs that may lower the seizure threshold such as systemic corticosteroids. The manufacturer recommends low initial dosing and slow dosage titration if these combinations must be used; the patient should be closely monitored.
    Calcium Carbonate: (Moderate) Calcium absorption is reduced when calcium carbonate is taken concomitantly with systemic corticosteroids.
    Calcium Carbonate; Magnesium Hydroxide: (Moderate) Calcium absorption is reduced when calcium carbonate is taken concomitantly with systemic corticosteroids.
    Calcium Carbonate; Risedronate: (Moderate) Calcium absorption is reduced when calcium carbonate is taken concomitantly with systemic corticosteroids.
    Calcium; Vitamin D: (Moderate) Calcium absorption is reduced when calcium carbonate is taken concomitantly with systemic corticosteroids.
    Canagliflozin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Canagliflozin; Metformin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted. (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Capecitabine: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Carbetapentane; Chlorpheniramine; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Carbetapentane; Diphenhydramine; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Carbetapentane; Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Carbetapentane; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Carbetapentane; Phenylephrine; Pyrilamine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Carbinoxamine; Hydrocodone; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Carbinoxamine; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Carmustine, BCNU: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Chlophedianol; Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Chlorambucil: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Chlorothiazide: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Chlorpheniramine; Hydrocodone; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Chlorpheniramine; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Chlorpropamide: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Chlorthalidone: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Chlorthalidone; Clonidine: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Choline Salicylate; Magnesium Salicylate: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Cimetidine: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Cisatracurium: (Moderate) Caution and close monitoring are advised if corticosteroids and neuromuscular blockers are used together, particularly for long periods, due to enhanced neuromuscular blocking effects. In such patients, a peripheral nerve stimulator may be of value in monitoring the response. Concurrent use may increase the risk of acute myopathy. This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years.
    Citalopram: (Major) Citalopram causes dose-dependent QT interval prolongation. Concurrent use of citalopram and medications known to cause electrolyte imbalance may increase the risk of developing QT prolongation. Therefore, caution is advisable during concurrent use of citalopram and corticosteroids. It should be noted that CYP3A4 is one of the isoenzymes involved in the metabolism of citalopram, and dexamethasone is an inducer of this isoenzyme. In theory, decreased efficacy of citalopram is possible during combined use with dexamethasone; however, because citalopram is metabolized by multiple enzyme systems, induction of one pathway may not appreciably increase citalopram clearance.
    Clindamycin: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Clofarabine: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Cod Liver Oil: (Minor) A relationship of functional antagonism exists between vitamin D analogs, which promote calcium absorption, and corticosteroids, which inhibit calcium absorption. Therapeutic effect of cod liver oil should be monitored when used concomitantly with corticosteroids.
    Codeine; Phenylephrine; Promethazine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Conivaptan: (Moderate) Conivaptan has been associated with hypokalemia (9.8%). Although not studied, consider the potential for additive hypokalemic effects if conivaptan is coadministered with drugs known to induce hypokalemia, such as corticosteroids.
    Cytarabine, ARA-C: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Dapagliflozin: (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Dapagliflozin; Metformin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted. (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Dapagliflozin; Saxagliptin: (Moderate) Systemic corticosteroids increase blood glucose levels. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. (Moderate) Systemic corticosteroids increase blood glucose levels; a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. Blood lactate concentrations and the lactate to pyruvate ratio increased when metformin was coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with an increased risk of lactic acidosis, so patients on metformin concurrently with systemic steroids should be monitored closely.
    Decitabine: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Denileukin Diftitox: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Denosumab: (Moderate) The safety and efficacy of denosumab use in patients with immunosuppression have not been evaluated. Patients receiving immunosuppressives along with denosumab may be at a greater risk of developing an infection.
    Desmopressin: (Major) Desmopressin, when used in the treatment of nocturia is contraindicated with corticosteroids because of the risk of severe hyponatremia. Desmopressin can be started or resumed 3 days or 5 half-lives after the corticosteroid is discontinued, whichever is longer.
    Dextran: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Digoxin: (Moderate) Hypokalemia, hypomagnesemia, or hypercalcemia increase digoxin's effect. Corticosteroids can precipitate digoxin toxicity via their effect on electrolyte balance. It is recommended that serum potassium, magnesium, and calcium be monitored regularly in patients receiving digoxin.
    Diphenhydramine; Hydrocodone; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Diphenhydramine; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Dofetilide: (Major) Corticosteroids can cause increases in blood pressure, sodium and water retention, and hypokalemia, predisposing patients to interactions with certain other medications. Corticosteroid-induced hypokalemia could also enhance the proarrhythmic effects of dofetilide.
    Doxacurium: (Moderate) Caution and close monitoring are advised if corticosteroids and neuromuscular blockers are used together, particularly for long periods, due to enhanced neuromuscular blocking effects. In such patients, a peripheral nerve stimulator may be of value in monitoring the response. Concurrent use may increase the risk of acute myopathy. This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years.
    Droperidol: (Moderate) Caution is advised when using droperidol in combination with corticosteroids which may lead to electrolyte abnormalities, especially hypokalemia or hypomagnesemia, as such abnormalities may increase the risk for QT prolongation or cardiac arrhythmias.
    Dulaglutide: (Moderate) When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia and cause blood glucose concentrations to rise. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Echinacea: (Moderate) Echinacea possesses immunostimulatory activity and may theoretically reduce the response to immunosuppressant drugs like corticosteroids. For some patients who are using corticosteroids for serious illness, such as cancer or organ transplant, this potential interaction may result in the preferable avoidance of Echinacea. Although documentation is lacking, coadministration of echinacea with immunosuppressants is not recommended by some resources.
    Econazole: (Minor) In vitro studies indicate that corticosteroids inhibit the antifungal activity of econazole against C. albicans in a concentration-dependent manner. When the concentration of the corticosteroid was equal to or greater than that of econazole on a weight basis, the antifungal activity of econazole was substantially inhibited. When the corticosteroid concentration was one-tenth that of econazole, no inhibition of antifungal activity was observed.
    Efalizumab: (Major) Patients receiving immunosuppressives should not receive concurrent therapy with efalizumab because of the possibility of increased infections and malignancies.
    Empagliflozin: (Moderate) Systemic corticosteroids increase blood glucose levels. Because of this action, a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Empagliflozin; Linagliptin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents, such as linagliptin, should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted. (Moderate) Systemic corticosteroids increase blood glucose levels. Because of this action, a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Empagliflozin; Metformin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted. (Moderate) Systemic corticosteroids increase blood glucose levels. Because of this action, a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Ephedrine: (Moderate) Ephedrine may enhance the metabolic clearance of corticosteroids. Decreased blood concentrations and lessened physiologic activity may necessitate an increase in corticosteroid dosage.
    Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Estramustine: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Estrogens: (Moderate) Estrogens have been associated with elevated serum concentrations of corticosteroid binding globulin (CBG), leading to increased total circulating corticosteroids, although the free concentrations of these hormones may be lower; the clinical significance is not known. Estrogens are CYP3A4 substrates and dexamethasone is a CYP3A4 inducer; concomitant use may decrease the clinical efficacy of estrogens. Patients should be monitored for signs of decreased clinical effects of estrogens (e.g., breakthrough bleeding), oral contraceptives, or non-oral combination contraceptives if these drugs are used together.
    Exenatide: (Moderate) When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia and cause blood glucose concentrations to rise. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Floxuridine: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Fluconazole: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Fluorouracil, 5-FU: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Fluoxymesterone: (Moderate) Coadministration of corticosteroids and fluoxymesterone may increase the risk of edema, especially in patients with underlying cardiac or hepatic disease. Corticosteroids with greater mineralocorticoid activity, such as fludrocortisone, may be more likely to cause edema. Administer these drugs in combination with caution.
    Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Gallium Ga 68 Dotatate: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia. Also, corticotropin may cause calcium loss and sodium and fluid retention. Mannitol itself can cause hypernatremia. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
    Gemcitabine: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Gentamicin: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Glimepiride: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Glimepiride; Pioglitazone: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Glimepiride; Rosiglitazone: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Glipizide: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Glipizide; Metformin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted. (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Glyburide: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Glyburide; Metformin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted. (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Glycerol Phenylbutyrate: (Moderate) Corticosteroids may induce elevated blood ammonia concentrations. Corticosteroids should be used with caution in patients receiving glycerol phenylbutyrate. Monitor ammonia concentrations closely.
    Guaifenesin; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Halofantrine: (Major) Due to the risks of cardiac toxicity of halofantrine in patients with hypokalemia and/or hypomagnesemia, the use of halofantrine should be avoided in combination with agents that may lead to electrolyte losses, such as corticosteroids.
    Haloperidol: (Major) QT prolongation has been observed during haloperidol treatment. Use of haloperidol and medications known to cause electrolyte imbalance may increase the risk of QT prolongation. Therefore, caution is advisable during concurrent use of haloperidol and corticosteroids. Topical corticosteroids are less likely to interact.
    Hemin: (Moderate) Hemin works by inhibiting aminolevulinic acid synthetase. Corticosteroids increase the activity of this enzyme should not be used with hemin.
    Heparin: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Hetastarch: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ; Irbesartan: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ; Lisinopril: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ; Losartan: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ; Metoprolol: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ; Propranolol: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required. (Moderate) Patients receiving corticosteroids during propranolol therapy may be at increased risk of hypoglycemia due to the loss of counter-regulatory cortisol response. This effect may be more pronounced in infants and young children. If concurrent use is necessary, carefully monitor vital signs and blood glucose concentrations as clinically indicated.
    Hydrochlorothiazide, HCTZ; Quinapril: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ; Spironolactone: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ; Telmisartan: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ; Triamterene: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Hydrocodone; Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Hydroxyurea: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided. (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
    Ibritumomab Tiuxetan: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together. (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia. (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Ifosfamide: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Incretin Mimetics: (Moderate) When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia and cause blood glucose concentrations to rise. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Indapamide: (Moderate) Additive hypokalemia may occur when indapamide is coadministered with other drugs with a significant risk of hypokalemia such as systemic corticosteroids. Coadminister with caution and careful monitoring.
    Insulin Degludec; Liraglutide: (Moderate) When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia and cause blood glucose concentrations to rise. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Insulin Glargine; Lixisenatide: (Moderate) When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia and cause blood glucose concentrations to rise. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Insulins: (Moderate) Monitor patients receiving insulin closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Endogenous counter-regulatory hormones are released in response to hypoglycemia. When released, blood glucose concentrations rise. When these hormones or their derivatives (e.g., corticosteroids) are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of insulin.
    Interferon Alfa-2a: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Interferon Alfa-2b: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Interferon Alfa-2b; Ribavirin: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Intranasal Influenza Vaccine: (Severe) Live virus vaccines should generally not be administered to an immunosuppressed patient. Live virus vaccines may induce the illness they are intended to prevent and are generally contraindicated for use during immunosuppressive treatment. The immune response of the immunocompromised patient to vaccines may be decreased, even despite alternate vaccination schedules or more frequent booster doses. If immunization is necessary, choose an alternative to live vaccination, or, consider a delay or change in the immunization schedule. Practitioners should refer to the most recent CDC guidelines regarding vaccination of patients who are receiving drugs that adversely affect the immune system. Children who are receiving high doses of systemic corticosteroids (i.e., greater than or equal to 2 mg/kg prednisone orally per day) for 2 weeks or more may be vaccinated after steroid therapy has been discontinued for at least 3 months in accordance with general recommendations for the use of live-virus vaccines. The CDC has stated that discontinuation of steroids for 1 month prior to varicella virus vaccine live administration may be sufficient. Budesonide may affect the immunogenicity of live vaccines. An open-label study examined the immune responsiveness to varicella vaccine in 243 pediatric asthma patients who were treated with budesonide inhalation suspension 0.251 mg daily (n = 151) or non-corticosteroid asthma therapy (n = 92). The percentage of patients developing a seroprotective antibody titer of at least 5 (gpELISA value) in response to the vaccination was slightly lower in patients treated with budesonide compared to patients treated with non-corticosteroid asthma therapy (85% vs. 90%). Even though no patient treated with budesonide inhalation suspension developed chicken pox because of vaccination, live-virus vaccines should not be given to individuals who are considered to be immunocompromised until more information is available.
    Isoproterenol: (Moderate) The risk of cardiac toxicity with isoproterenol in asthma patients appears to be increased with the coadministration of corticosteroids. Intravenous infusions of isoproterenol in refractory asthmatic children at rates of 0.05 to 2.7 mcg/kg/min have caused clinical deterioration, myocardial infarction (necrosis), congestive heart failure and death.
    Isotretinoin: (Minor) Both isotretinoin and corticosteroids can cause osteoporosis during chronic use. Patients receiving systemic corticosteroids should receive isotretinoin therapy with caution.
    L-Asparaginase Escherichia coli: (Moderate) Concomitant use of L-asparaginase with corticosteroids can result in additive hyperglycemia. L-Asparaginase transiently inhibits insulin production contributing to hyperglycemia seen during concurrent corticosteroid therapy. Insulin therapy may be required in some cases. Administration of L-asparaginase after rather than before corticosteroids reportedly has produced fewer hypersensitivity reactions.
    Levetiracetam: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Levomethadyl: (Major) Caution is advised when using levomethadyl in combination with other agents, such as corticosteroids, that may lead to electrolyte abnormalities, especially hypokalemia or hypomagnesemia.
    Linagliptin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents, such as linagliptin, should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Linagliptin; Metformin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted. (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents, such as linagliptin, should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Liraglutide: (Moderate) When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia and cause blood glucose concentrations to rise. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Lisdexamfetamine: (Minor) The amphetamines may interfere with laboratory tests for the determination of corticosteroids. Plasma cortisol concentrations may be increased, especially during evening hours. Amphetamines may also interfere with urinary steroid determinations.
    Live Vaccines: (Severe) Live virus vaccines should generally not be administered to an immunosuppressed patient. Live virus vaccines may induce the illness they are intended to prevent and are generally contraindicated for use during immunosuppressive treatment. The immune response of the immunocompromised patient to vaccines may be decreased, even despite alternate vaccination schedules or more frequent booster doses. If immunization is necessary, choose an alternative to live vaccination, or, consider a delay or change in the immunization schedule. Practitioners should refer to the most recent CDC guidelines regarding vaccination of patients who are receiving drugs that adversely affect the immune system. Children who are receiving high doses of systemic corticosteroids (i.e., greater than or equal to 2 mg/kg prednisone orally per day) for 2 weeks or more may be vaccinated after steroid therapy has been discontinued for at least 3 months in accordance with general recommendations for the use of live-virus vaccines. The CDC has stated that discontinuation of steroids for 1 month prior to varicella virus vaccine live administration may be sufficient. Budesonide may affect the immunogenicity of live vaccines. An open-label study examined the immune responsiveness to varicella vaccine in 243 pediatric asthma patients who were treated with budesonide inhalation suspension 0.251 mg daily (n = 151) or non-corticosteroid asthma therapy (n = 92). The percentage of patients developing a seroprotective antibody titer of at least 5 (gpELISA value) in response to the vaccination was slightly lower in patients treated with budesonide compared to patients treated with non-corticosteroid asthma therapy (85% vs. 90%). Even though no patient treated with budesonide inhalation suspension developed chicken pox because of vaccination, live-virus vaccines should not be given to individuals who are considered to be immunocompromised until more information is available.
    Lixisenatide: (Moderate) When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia and cause blood glucose concentrations to rise. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Lomustine, CCNU: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Loop diuretics: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
    Magnesium Salicylate: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Mannitol: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia. Also, corticotropin may cause calcium loss and sodium and fluid retention. Mannitol itself can cause hypernatremia. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
    Measles Virus; Mumps Virus; Rubella Virus; Varicella Virus Vaccine, Live: (Severe) Live virus vaccines should generally not be administered to an immunosuppressed patient. Live virus vaccines may induce the illness they are intended to prevent and are generally contraindicated for use during immunosuppressive treatment. The immune response of the immunocompromised patient to vaccines may be decreased, even despite alternate vaccination schedules or more frequent booster doses. If immunization is necessary, choose an alternative to live vaccination, or, consider a delay or change in the immunization schedule. Practitioners should refer to the most recent CDC guidelines regarding vaccination of patients who are receiving drugs that adversely affect the immune system. Children who are receiving high doses of systemic corticosteroids (i.e., greater than or equal to 2 mg/kg prednisone orally per day) for 2 weeks or more may be vaccinated after steroid therapy has been discontinued for at least 3 months in accordance with general recommendations for the use of live-virus vaccines. The CDC has stated that discontinuation of steroids for 1 month prior to varicella virus vaccine live administration may be sufficient. Budesonide may affect the immunogenicity of live vaccines. An open-label study examined the immune responsiveness to varicella vaccine in 243 pediatric asthma patients who were treated with budesonide inhalation suspension 0.251 mg daily (n = 151) or non-corticosteroid asthma therapy (n = 92). The percentage of patients developing a seroprotective antibody titer of at least 5 (gpELISA value) in response to the vaccination was slightly lower in patients treated with budesonide compared to patients treated with non-corticosteroid asthma therapy (85% vs. 90%). Even though no patient treated with budesonide inhalation suspension developed chicken pox because of vaccination, live-virus vaccines should not be given to individuals who are considered to be immunocompromised until more information is available.
    Measles/Mumps/Rubella Vaccines, MMR: (Severe) Live virus vaccines should generally not be administered to an immunosuppressed patient. Live virus vaccines may induce the illness they are intended to prevent and are generally contraindicated for use during immunosuppressive treatment. The immune response of the immunocompromised patient to vaccines may be decreased, even despite alternate vaccination schedules or more frequent booster doses. If immunization is necessary, choose an alternative to live vaccination, or, consider a delay or change in the immunization schedule. Practitioners should refer to the most recent CDC guidelines regarding vaccination of patients who are receiving drugs that adversely affect the immune system. Children who are receiving high doses of systemic corticosteroids (i.e., greater than or equal to 2 mg/kg prednisone orally per day) for 2 weeks or more may be vaccinated after steroid therapy has been discontinued for at least 3 months in accordance with general recommendations for the use of live-virus vaccines. The CDC has stated that discontinuation of steroids for 1 month prior to varicella virus vaccine live administration may be sufficient. Budesonide may affect the immunogenicity of live vaccines. An open-label study examined the immune responsiveness to varicella vaccine in 243 pediatric asthma patients who were treated with budesonide inhalation suspension 0.251 mg daily (n = 151) or non-corticosteroid asthma therapy (n = 92). The percentage of patients developing a seroprotective antibody titer of at least 5 (gpELISA value) in response to the vaccination was slightly lower in patients treated with budesonide compared to patients treated with non-corticosteroid asthma therapy (85% vs. 90%). Even though no patient treated with budesonide inhalation suspension developed chicken pox because of vaccination, live-virus vaccines should not be given to individuals who are considered to be immunocompromised until more information is available.
    Mecasermin rinfabate: (Moderate) Additional monitoring may be required when coadministering systemic or inhaled corticosteroids and mecasermin, recombinant, rh-IGF-1. In animal studies, corticosteroids impair the growth-stimulating effects of growth hormone (GH) through interference with the physiological stimulation of epiphyseal chondrocyte proliferation exerted by GH and IGF-1. Dexamethasone administration on long bone tissue in vitro resulted in a decrease of local synthesis of IGF-1. Similar counteractive effects are expected in humans. If systemic or inhaled glucocorticoid therapy is required, the steroid dose should be carefully adjusted and growth rate monitored.
    Mecasermin, Recombinant, rh-IGF-1: (Moderate) Additional monitoring may be required when coadministering systemic or inhaled corticosteroids and mecasermin, recombinant, rh-IGF-1. In animal studies, corticosteroids impair the growth-stimulating effects of growth hormone (GH) through interference with the physiological stimulation of epiphyseal chondrocyte proliferation exerted by GH and IGF-1. Dexamethasone administration on long bone tissue in vitro resulted in a decrease of local synthesis of IGF-1. Similar counteractive effects are expected in humans. If systemic or inhaled glucocorticoid therapy is required, the steroid dose should be carefully adjusted and growth rate monitored.
    Meglitinides: (Moderate) Drugs which may cause hyperglycemia, including corticosteroids, may cause temporary loss of glycemic control. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Melphalan: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Mepenzolate: (Minor) Anticholinergics, such as mepenzolate, antagonize the effects of antiglaucoma agents. Mepenzolate is contraindicated in patients with glaucoma and therefore should not be coadministered with medications being prescribed for the treatment of glaucoma. In addition, anticholinergic drugs taken concurrently with corticosteroids in the presence of increased intraocular pressure may be hazardous.
    Metformin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Metformin; Pioglitazone: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Metformin; Repaglinide: (Moderate) Drugs which may cause hyperglycemia, including corticosteroids, may cause temporary loss of glycemic control. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent. (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Metformin; Rosiglitazone: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Metformin; Saxagliptin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted. (Moderate) Systemic corticosteroids increase blood glucose levels. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Metformin; Sitagliptin: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. In addition, blood lactate concentrations and the lactate to pyruvate ratio increase when metformin is coadministered with corticosteroids (e.g., hydrocortisone). Elevated lactic acid concentrations are associated with increased morbidity rates. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted. (Moderate) Systemic corticosteroids increase blood glucose levels. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Methazolamide: (Moderate) Corticosteroids may increase the risk of hypokalemia if used concurrently with methazolamide. Hypokalemia may be especially severe with prolonged use of corticotropin, ACTH. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy. The chronic use of corticosteroids may augment calcium excretion with methazolamide leading to increased risk for hypocalcemia and/or osteoporosis.
    Methenamine; Sodium Acid Phosphate: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
    Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
    Methoxsalen: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Methyclothiazide: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Metolazone: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Metyrapone: (Major) Medications which affect pituitary or adrenocortical function, including all corticosteroid therapy, should be discontinued prior to and during testing with metyrapone. Patients taking inadvertent doses of corticosteroids on the test day may exhibit abnormally high basal plasma cortisol levels and a decreased response to the test. Although systemic absorption of topical corticosteroids is minimal, temporary discontinuation of these products should be considered if possible to reduce the potential for interference with the test results.
    Micafungin: (Moderate) Leukopenia, neutropenia, anemia, and thrombocytopenia have been associated with micafungin. Patients who are taking immunosuppressives such as the corticosteroids with micafungin concomitantly may have additive risks for infection or other side effects. In a pharmacokinetic trial, micafungin had no effect on the pharmacokinetics of prednisolone. Acute intravascular hemolysis and hemoglobinuria was seen in a healthy volunteer during infusion of micafungin (200 mg) and oral prednisolone (20 mg). This reaction was transient, and the subject did not develop significant anemia.
    Mitoxantrone: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Mivacurium: (Moderate) Caution and close monitoring are advised if corticosteroids and neuromuscular blockers are used together, particularly for long periods, due to enhanced neuromuscular blocking effects. In such patients, a peripheral nerve stimulator may be of value in monitoring the response. Concurrent use may increase the risk of acute myopathy. This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years.
    Moxifloxacin: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Muromonab-CD3: (Major) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents. While therapy is designed to take advantage of this effect, patients may be predisposed to over-immunosuppression resulting in an increased risk for the development of severe infections. Close clinical monitoring is advised with concurrent use; in the presence of serious infections, continuation of the corticosteroid or immunosuppressive agent may be necessary but should be accompanied by appropriate antimicrobial therapies as indicated.
    Natalizumab: (Major) Ordinarily, patients receiving chronic immunosuppressant therapy should not be treated with natalizumab. Treatment recommendations for combined corticosteroid therapy are dependent on the underlying indication for natalizumab therapy. Corticosteroids should be tapered in those patients with Crohn's disease who are on chronic corticosteroids when they start natalizumab therapy, as soon as a therapeutic benefit has occurred. If the patient cannot discontinue systemic corticosteroids within 6 months, discontinue natalizumab. The concomitant use of natalizumab and corticosteroids may further increase the risk of serious infections, including progressive multifocal leukoencephalopathy, over the risk observed with use of natalizumab alone. In multiple sclerosis (MS) clinical trials, an increase in infections was seen in patients concurrently receiving short courses of corticosteroids. However, the increase in infections in natalizumab-treated patients who received steroids was similar to the increase in placebo-treated patients who received steroids. Short courses of steroid use during natalizumab, such as when they are needed for MS relapse treatment, appear to be acceptable for use concurrently.
    Nateglinide: (Moderate) Drugs which may cause hyperglycemia, including corticosteroids, may cause temporary loss of glycemic control. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Nelarabine: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Neostigmine: (Minor) Corticosteroids may interact with cholinesterase inhibitors including ambenonium, neostigmine, and pyridostigmine, occasionally causing severe muscle weakness in patients with myasthenia gravis. Glucocorticoids are occasionally used therapeutically, however, in the treatment of some patients with myasthenia gravis. In such patients, it is recommended that corticosteroid therapy be initiated at low dosages and with close clinical monitoring. The dosage should be increased gradually as tolerated, with continued careful monitoring of the patient's clinical status.
    Neuromuscular blockers: (Moderate) Caution and close monitoring are advised if corticosteroids and neuromuscular blockers are used together, particularly for long periods, due to enhanced neuromuscular blocking effects. In such patients, a peripheral nerve stimulator may be of value in monitoring the response. Concurrent use may increase the risk of acute myopathy. This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years.
    Nonsteroidal antiinflammatory drugs: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Ondansetron: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Oxymetholone: (Moderate) Concomitant use of oxymetholone with corticosteroids or corticotropin, ACTH may cause increased edema. Manage edema with diuretic and/or digitalis therapy.
    Pancuronium: (Moderate) Caution and close monitoring are advised if corticosteroids and neuromuscular blockers are used together, particularly for long periods, due to enhanced neuromuscular blocking effects. In such patients, a peripheral nerve stimulator may be of value in monitoring the response. Concurrent use may increase the risk of acute myopathy. This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years.
    Pegaspargase: (Moderate) Concomitant use of pegaspargase with corticosteroids can result in additive hyperglycemia. Insulin therapy may be required in some cases.
    Penicillamine: (Major) Agents such as immunosuppressives have adverse reactions similar to those of penicillamine. Concomitant use of penicillamine with these agents is contraindicated because of the increased risk of developing severe hematologic and renal toxicity.
    Phenylephrine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Phenylephrine; Promethazine: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
    Phosphorus Salts: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
    Photosensitizing agents: (Minor) Corticosteroids administered systemically prior to or concomitantly with photosensitizing agents may decrease the efficacy of photodynamic therapy.
    Physostigmine: (Minor) Corticosteroids may interact with cholinesterase inhibitors, occasionally causing severe muscle weakness in patients with myasthenia gravis. Glucocorticoids are occasionally used therapeutically, however, in the treatment of some patients with myasthenia gravis. In such patients, it is recommended that corticosteroid therapy be initiated at low dosages and with close clinical monitoring. The dosage should be increased gradually as tolerated, with continued careful monitoring of the patient's clinical status.
    Pimozide: (Moderate) Pimozide is associated with a well-established risk of QT prolongation and torsade de pointes (TdP). Use of pimozide and medications known to cause electrolyte imbalance may increase the risk of QT prolongation. Therefore, caution is advisable during concurrent use of pimozide and corticosteroids. Topical corticosteroids are less likely to interact. According to the manufacturer, potassium deficiencies should be correctly prior to treatment with pimozide and normalized potassium levels should be maintained during treatment.
    Potassium Phosphate; Sodium Phosphate: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
    Potassium Salts: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Potassium: (Moderate) Corticotropin can cause alterations in serum potassium levels. The use of potassium salts or supplements would be expected to alter the effects of corticotropin on serum potassium levels. Also, there have been reports of generalized tonic-clonic seizures and/or loss of consciousness associated with use of bowel preparation products in patients with no prior history of seizure disorder. Therefore, magnesium sulfate; potassium sulfate; sodium sulfate should be administered with caution during concurrent use of medications that lower the seizure threshold such as systemic corticosteroids.
    Potassium-sparing diuretics: (Minor) The manufacturer of spironolactone lists corticosteroids as a potential drug that interacts with spironolactone. Intensified electrolyte depletion, particularly hypokalemia, may occur. However, potassium-sparing diuretics such as spironolactone do not induce hypokalemia. In fact, hypokalemia is one of the indications for potassium-sparing diuretic therapy. Therefore, drugs that induce potassium loss, such as corticosteroids, could counter the hyperkalemic effects of potassium-sparing diuretics.
    Pramlintide: (Moderate) Systemic corticosteroids increase blood glucose levels. Because of this action, a potential pharmacodynamic interaction exists between corticosteroids and all antidiabetic agents. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Propranolol: (Moderate) Patients receiving corticosteroids during propranolol therapy may be at increased risk of hypoglycemia due to the loss of counter-regulatory cortisol response. This effect may be more pronounced in infants and young children. If concurrent use is necessary, carefully monitor vital signs and blood glucose concentrations as clinically indicated.
    Purine analogs: (Minor) Concurrent use of purine analogs with other agents which cause bone marrow or immune suppression such as other antineoplastic agents or immunosuppressives may result in additive effects.
    Pyridostigmine: (Minor) Corticosteroids may interact with cholinesterase inhibitors including ambenonium, neostigmine, and pyridostigmine, occasionally causing severe muscle weakness in patients with myasthenia gravis. Glucocorticoids are occasionally used therapeutically, however, in the treatment of some patients with myasthenia gravis. In such patients, it is recommended that corticosteroid therapy be initiated at low dosages and with close clinical monitoring. The dosage should be increased gradually as tolerated, with continued careful monitoring of the patient's clinical status.
    Pyrimidine analogs: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Quetiapine: (Major) QT prolongation has occurred during concurrent use of quetiapine and medications known to cause electrolyte imbalance. Therefore, caution is advisable during concurrent use of quetiapine and corticosteroids.
    Rapacuronium: (Moderate) Caution and close monitoring are advised if corticosteroids and neuromuscular blockers are used together, particularly for long periods, due to enhanced neuromuscular blocking effects. In such patients, a peripheral nerve stimulator may be of value in monitoring the response. Concurrent use may increase the risk of acute myopathy. This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years.
    Repaglinide: (Moderate) Drugs which may cause hyperglycemia, including corticosteroids, may cause temporary loss of glycemic control. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Ritodrine: (Major) Ritodrine has caused maternal pulmonary edema, which appears more often in patients treated concomitantly with corticosteroids. Patients so treated should be closely monitored in the hospital.
    Rituximab: (Moderate) Rituximab and corticosteroids are commonly used together; however, monitor the patient for immunosuppression and signs and symptoms of infection during combined chronic therapy.
    Rituximab; Hyaluronidase: (Moderate) Rituximab and corticosteroids are commonly used together; however, monitor the patient for immunosuppression and signs and symptoms of infection during combined chronic therapy.
    Rocuronium: (Moderate) Caution and close monitoring are advised if corticosteroids and neuromuscular blockers are used together, particularly for long periods, due to enhanced neuromuscular blocking effects. In such patients, a peripheral nerve stimulator may be of value in monitoring the response. Concurrent use may increase the risk of acute myopathy. This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years.
    Rotavirus Vaccine: (Severe) Live virus vaccines should generally not be administered to an immunosuppressed patient. Live virus vaccines may induce the illness they are intended to prevent and are generally contraindicated for use during immunosuppressive treatment. The immune response of the immunocompromised patient to vaccines may be decreased, even despite alternate vaccination schedules or more frequent booster doses. If immunization is necessary, choose an alternative to live vaccination, or, consider a delay or change in the immunization schedule. Practitioners should refer to the most recent CDC guidelines regarding vaccination of patients who are receiving drugs that adversely affect the immune system. Children who are receiving high doses of systemic corticosteroids (i.e., greater than or equal to 2 mg/kg prednisone orally per day) for 2 weeks or more may be vaccinated after steroid therapy has been discontinued for at least 3 months in accordance with general recommendations for the use of live-virus vaccines. The CDC has stated that discontinuation of steroids for 1 month prior to varicella virus vaccine live administration may be sufficient. Budesonide may affect the immunogenicity of live vaccines. An open-label study examined the immune responsiveness to varicella vaccine in 243 pediatric asthma patients who were treated with budesonide inhalation suspension 0.251 mg daily (n = 151) or non-corticosteroid asthma therapy (n = 92). The percentage of patients developing a seroprotective antibody titer of at least 5 (gpELISA value) in response to the vaccination was slightly lower in patients treated with budesonide compared to patients treated with non-corticosteroid asthma therapy (85% vs. 90%). Even though no patient treated with budesonide inhalation suspension developed chicken pox because of vaccination, live-virus vaccines should not be given to individuals who are considered to be immunocompromised until more information is available.
    Rubella Virus Vaccine Live: (Severe) Live virus vaccines should generally not be administered to an immunosuppressed patient. Live virus vaccines may induce the illness they are intended to prevent and are generally contraindicated for use during immunosuppressive treatment. The immune response of the immunocompromised patient to vaccines may be decreased, even despite alternate vaccination schedules or more frequent booster doses. If immunization is necessary, choose an alternative to live vaccination, or, consider a delay or change in the immunization schedule. Practitioners should refer to the most recent CDC guidelines regarding vaccination of patients who are receiving drugs that adversely affect the immune system. Children who are receiving high doses of systemic corticosteroids (i.e., greater than or equal to 2 mg/kg prednisone orally per day) for 2 weeks or more may be vaccinated after steroid therapy has been discontinued for at least 3 months in accordance with general recommendations for the use of live-virus vaccines. The CDC has stated that discontinuation of steroids for 1 month prior to varicella virus vaccine live administration may be sufficient. Budesonide may affect the immunogenicity of live vaccines. An open-label study examined the immune responsiveness to varicella vaccine in 243 pediatric asthma patients who were treated with budesonide inhalation suspension 0.251 mg daily (n = 151) or non-corticosteroid asthma therapy (n = 92). The percentage of patients developing a seroprotective antibody titer of at least 5 (gpELISA value) in response to the vaccination was slightly lower in patients treated with budesonide compared to patients treated with non-corticosteroid asthma therapy (85% vs. 90%). Even though no patient treated with budesonide inhalation suspension developed chicken pox because of vaccination, live-virus vaccines should not be given to individuals who are considered to be immunocompromised until more information is available.
    Salicylates: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Salsalate: (Moderate) Salicylates or NSAIDs should be used cautiously in patients receiving corticosteroids. While there is controversy regarding the ulcerogenic potential of corticosteroids alone, concomitant administration of corticosteroids with aspirin may increase the GI toxicity of aspirin and other non-acetylated salicylates. Withdrawal of corticosteroids can result in increased plasma concentrations of salicylate and possible toxicity. Concomitant use of corticosteroids may increase the risk of adverse GI events due to NSAIDs. Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged coadministration should be avoided.
    Saxagliptin: (Moderate) Systemic corticosteroids increase blood glucose levels. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Simvastatin; Sitagliptin: (Moderate) Systemic corticosteroids increase blood glucose levels. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Sitagliptin: (Moderate) Systemic corticosteroids increase blood glucose levels. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Smallpox Vaccine, Vaccinia Vaccine: (Severe) Live virus vaccines should generally not be administered to an immunosuppressed patient. Live virus vaccines may induce the illness they are intended to prevent and are generally contraindicated for use during immunosuppressive treatment. The immune response of the immunocompromised patient to vaccines may be decreased, even despite alternate vaccination schedules or more frequent booster doses. If immunization is necessary, choose an alternative to live vaccination, or, consider a delay or change in the immunization schedule. Practitioners should refer to the most recent CDC guidelines regarding vaccination of patients who are receiving drugs that adversely affect the immune system. Children who are receiving high doses of systemic corticosteroids (i.e., greater than or equal to 2 mg/kg prednisone orally per day) for 2 weeks or more may be vaccinated after steroid therapy has been discontinued for at least 3 months in accordance with general recommendations for the use of live-virus vaccines. The CDC has stated that discontinuation of steroids for 1 month prior to varicella virus vaccine live administration may be sufficient. Budesonide may affect the immunogenicity of live vaccines. An open-label study examined the immune responsiveness to varicella vaccine in 243 pediatric asthma patients who were treated with budesonide inhalation suspension 0.251 mg daily (n = 151) or non-corticosteroid asthma therapy (n = 92). The percentage of patients developing a seroprotective antibody titer of at least 5 (gpELISA value) in response to the vaccination was slightly lower in patients treated with budesonide compared to patients treated with non-corticosteroid asthma therapy (85% vs. 90%). Even though no patient treated with budesonide inhalation suspension developed chicken pox because of vaccination, live-virus vaccines should not be given to individuals who are considered to be immunocompromised until more information is available.
    Sodium Benzoate; Sodium Phenylacetate: (Moderate) Corticosteroids may cause protein breakdown, which could lead to elevated blood ammonia concentrations, especially in patients with an impaired ability to form urea. Corticosteroids should be used with caution in patients receiving treatment for hyperammonemia.
    Sodium Chloride: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Sodium Phenylbutyrate: (Moderate) The concurrent use of corticosteroids with sodium phenylbutyrate may increase plasma ammonia levels (hyperammonemia) by causing the breakdown of body protein. Patients with urea cycle disorders being treated with sodium phenylbutyrate usually should not receive regular treatment with corticosteroids.
    Somatropin, rh-GH: (Moderate) Corticosteroids can retard bone growth and therefore, can inhibit the growth-promoting effects of somatropin. If corticosteroid therapy is required, the corticosteroid dose should be carefully adjusted.
    Succinylcholine: (Moderate) Caution and close monitoring are advised if corticosteroids and neuromuscular blockers are used together, particularly for long periods, due to enhanced neuromuscular blocking effects. In such patients, a peripheral nerve stimulator may be of value in monitoring the response. Concurrent use may increase the risk of acute myopathy. This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years.
    Sulfonylureas: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Taxanes: (Moderate) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents. In addition, Cabazitaxel is a CYP3A4 substrate and concomitant use with strong CYP3A4 inducers such as dexamethasone may lead to reduced concentrations of cabazitaxel. Avoid concomitant use of cabazitaxel and strong CYP3A4 inducers. Consider alternative therapies with low enzyme induction potential.
    Telbivudine: (Moderate) The risk of myopathy may be increased if corticosteroids are coadministered with telbivudine. Monitor patients for any signs or symptoms of unexplained muscle pain, tenderness, or weakness, particularly during periods of upward dosage titration.
    Testosterone: (Moderate) Coadministration of corticosteroids and testosterone may increase the risk of edema, especially in patients with underlying cardiac or hepatic disease. Corticosteroids with greater mineralocorticoid activity, such as fludrocortisone, may be more likely to cause edema. Administer these drugs in combination with caution.
    Thiazide diuretics: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Thiazolidinediones: (Moderate) Drugs which may cause hyperglycemia, including corticosteroids, may cause temporary loss of glycemic control. Diabetic patients who are administered systemic corticosteroid therapy may require an adjustment in the dosing of the antidiabetic agent.
    Thyroid hormones: (Moderate) The metabolism of corticosteroids is increased in hyperthyroidism and decreased in hypothyroidism. Dosage adjustments may be necessary when initiating, changing or discontinuing thyroid hormones or antithyroid agents.
    Tobramycin: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Tolazamide: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Tolbutamide: (Moderate) Endogenous counter-regulatory hormones such as glucocorticoids are released in response to hypoglycemia. When released, blood glucose concentrations rise. When corticosteroids are administered exogenously, increases in blood glucose concentrations would be expected thereby decreasing the hypoglycemic effect of antidiabetic agents. Patients receiving antidiabetic agents should be closely monitored for signs indicating loss of diabetic control when corticosteroids are instituted.
    Tositumomab: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Trastuzumab: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Tretinoin, ATRA: (Minor) Because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with other immunosuppressives or antineoplastic agents.
    Tuberculin Purified Protein Derivative, PPD: (Moderate) Immunosuppressives may decrease the immunological response to tuberculin purified protein derivative, PPD. This suppressed reactivity can persist for up to 6 weeks after treatment discontinuation. Consider deferring the skin test until completion of the immunosuppressive therapy.
    Tubocurarine: (Moderate) Caution and close monitoring are advised if corticosteroids and neuromuscular blockers are used together, particularly for long periods, due to enhanced neuromuscular blocking effects. In such patients, a peripheral nerve stimulator may be of value in monitoring the response. Concurrent use may increase the risk of acute myopathy. This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years.
    Typhoid Vaccine: (Severe) Live virus vaccines should generally not be administered to an immunosuppressed patient. Live virus vaccines may induce the illness they are intended to prevent and are generally contraindicated for use during immunosuppressive treatment. The immune response of the immunocompromised patient to vaccines may be decreased, even despite alternate vaccination schedules or more frequent booster doses. If immunization is necessary, choose an alternative to live vaccination, or, consider a delay or change in the immunization schedule. Practitioners should refer to the most recent CDC guidelines regarding vaccination of patients who are receiving drugs that adversely affect the immune system. Children who are receiving high doses of systemic corticosteroids (i.e., greater than or equal to 2 mg/kg prednisone orally per day) for 2 weeks or more may be vaccinated after steroid therapy has been discontinued for at least 3 months in accordance with general recommendations for the use of live-virus vaccines. The CDC has stated that discontinuation of steroids for 1 month prior to varicella virus vaccine live administration may be sufficient. Budesonide may affect the immunogenicity of live vaccines. An open-label study examined the immune responsiveness to varicella vaccine in 243 pediatric asthma patients who were treated with budesonide inhalation suspension 0.251 mg daily (n = 151) or non-corticosteroid asthma therapy (n = 92). The percentage of patients developing a seroprotective antibody titer of at least 5 (gpELISA value) in response to the vaccination was slightly lower in patients treated with budesonide compared to patients treated with non-corticosteroid asthma therapy (85% vs. 90%). Even though no patient treated with budesonide inhalation suspension developed chicken pox because of vaccination, live-virus vaccines should not be given to individuals who are considered to be immunocompromised until more information is available.
    Vancomycin: (Moderate) Concomitant use of systemic sodium chloride, especially at high doses, and corticosteroids may result in sodium and fluid retention. Assess sodium chloride intake from all sources, including intake from sodium-containing intravenous fluids and antibiotic admixtures. Carefully monitor sodium concentrations and fluid status if sodium-containing drugs and corticosteroids must be used together.
    Varicella-Zoster Virus Vaccine, Live: (Severe) Live virus vaccines should generally not be administered to an immunosuppressed patient. Live virus vaccines may induce the illness they are intended to prevent and are generally contraindicated for use during immunosuppressive treatment. The immune response of the immunocompromised patient to vaccines may be decreased, even despite alternate vaccination schedules or more frequent booster doses. If immunization is necessary, choose an alternative to live vaccination, or, consider a delay or change in the immunization schedule. Practitioners should refer to the most recent CDC guidelines regarding vaccination of patients who are receiving drugs that adversely affect the immune system. Children who are receiving high doses of systemic corticosteroids (i.e., greater than or equal to 2 mg/kg prednisone orally per day) for 2 weeks or more may be vaccinated after steroid therapy has been discontinued for at least 3 months in accordance with general recommendations for the use of live-virus vaccines. The CDC has stated that discontinuation of steroids for 1 month prior to varicella virus vaccine live administration may be sufficient. Budesonide may affect the immunogenicity of live vaccines. An open-label study examined the immune responsiveness to varicella vaccine in 243 pediatric asthma patients who were treated with budesonide inhalation suspension 0.251 mg daily (n = 151) or non-corticosteroid asthma therapy (n = 92). The percentage of patients developing a seroprotective antibody titer of at least 5 (gpELISA value) in response to the vaccination was slightly lower in patients treated with budesonide compared to patients treated with non-corticosteroid asthma therapy (85% vs. 90%). Even though no patient treated with budesonide inhalation suspension developed chicken pox because of vaccination, live-virus vaccines should not be given to individuals who are considered to be immunocompromised until more information is available.
    Vecuronium: (Moderate) Caution and close monitoring are advised if corticosteroids and neuromuscular blockers are used together, particularly for long periods, due to enhanced neuromuscular blocking effects. In such patients, a peripheral nerve stimulator may be of value in monitoring the response. Concurrent use may increase the risk of acute myopathy. This acute myopathy is generalized, may involve ocular and respiratory muscles, and may result in quadriparesis. Elevation of creatine kinase may occur. Clinical improvement or recovery after stopping corticosteroids may require weeks to years.
    Vigabatrin: (Major) Vigabatrin should not be used with corticosteroids, which are associated with serious ophthalmic effects (e.g., retinopathy or glaucoma) unless the benefit of treatment clearly outweighs the risks.
    Vinblastine: (Minor) Use caution when administering vinblastine concurrently with a CYP3A4 inducer such as dexamethasone. Vinblastine is metabolized by CYP3A4 and dexamethasone may decrease vinblastine plasma concentrations. In addition, because systemically administered corticosteroids exhibit immunosuppressive effects when given in high doses and/or for extended periods, additive effects may be seen with antineoplastic agents. While therapy is designed to take advantage of this effect, patients may be predisposed to over-immunosuppression resulting in an increased risk for the development of severe infections. Close clinical monitoring is advised with concurrent use; in the presence of serious infections, continuation of the corticosteroid or immunosuppressive agent may be necessary but should be accompanied by appropriate antimicrobial therapies as indicated.
    Vincristine Liposomal: (Moderate) Use sodium phosphate cautiously with corticosteroids, especially mineralocorticoids or corticotropin, ACTH, as concurrent use can cause hypernatremia.
    Vorinostat: (Moderate) Use vorinostat and corticosteroids together with caution; the risk of QT prolongation and arrhythmias may be increased if electrolyte abnormalities occur. Corticosteroids may cause electrolyte imbalances; hypomagnesemia, hypokalemia, or hypocalcemia and may increase the risk of QT prolongation with vorinostat. Frequently monitor serum electrolytes if concomitant use of these drugs is necessary.
    Warfarin: (Moderate) The effect of corticosteroids on oral anticoagulants (e.g., warfarin) is variable. There are reports of enhanced as well as diminished effects of anticoagulants when given concurrently with corticosteroids; however, limited published data exist, and the mechanism of the interaction is not well described. High-dose corticosteroids appear to pose a greater risk for increased anticoagulant effect. In addition, corticosteroids have been associated with a risk of peptic ulcer and gastrointestinal bleeding. Thus corticosteroids should be used cautiously and with appropriate clinical monitoring in patients receiving oral anticoagulants; coagulation indices (e.g., INR, etc.) should be monitored to maintain the desired anticoagulant effect. During high-dose corticosteroid administration, daily laboratory monitoring may be desirable.
    Yellow Fever Vaccine, Live: (Severe) Live virus vaccines should generally not be administered to an immunosuppressed patient. Live virus vaccines may induce the illness they are intended to prevent and are generally contraindicated for use during immunosuppressive treatment. The immune response of the immunocompromised patient to vaccines may be decreased, even despite alternate vaccination schedules or more frequent booster doses. If immunization is necessary, choose an alternative to live vaccination, or, consider a delay or change in the immunization schedule. Practitioners should refer to the most recent CDC guidelines regarding vaccination of patients who are receiving drugs that adversely affect the immune system. Children who are receiving high doses of systemic corticosteroids (i.e., greater than or equal to 2 mg/kg prednisone orally per day) for 2 weeks or more may be vaccinated after steroid therapy has been discontinued for at least 3 months in accordance with general recommendations for the use of live-virus vaccines. The CDC has stated that discontinuation of steroids for 1 month prior to varicella virus vaccine live administration may be sufficient. Budesonide may affect the immunogenicity of live vaccines. An open-label study examined the immune responsiveness to varicella vaccine in 243 pediatric asthma patients who were treated with budesonide inhalation suspension 0.251 mg daily (n = 151) or non-corticosteroid asthma therapy (n = 92). The percentage of patients developing a seroprotective antibody titer of at least 5 (gpELISA value) in response to the vaccination was slightly lower in patients treated with budesonide compared to patients treated with non-corticosteroid asthma therapy (85% vs. 90%). Even though no patient treated with budesonide inhalation suspension developed chicken pox because of vaccination, live-virus vaccines should not be given to individuals who are considered to be immunocompromised until more information is available.
    Zafirlukast: (Minor) Zafirlukast inhibits the CYP3A4 isoenzymes and should be used cautiously in patients stabilized on drugs metabolized by CYP3A4, such as corticosteroids.
    Zileuton: (Minor) Zileuton is metabolized by the cytochrome P450 isoenzyme 3A4. Although administration of zileuton with other drugs metabolized by CYP3A4 has not been studied, zileuton may inhibit CYP3A4 isoenzymes. Zileuton could potentially compete with other CYP3A4 substrates.

    PREGNANCY AND LACTATION

    Pregnancy

    Corticosteroids distribute into breast-milk in low concentrations; according to FDA-approved product labels of beclomethasone, caution should be exercised when administering beclomethasone to women who are breast-feeding. Beclomethasone via inhaled administration typically results in low systemic concentrations; therefore, the amount excreted into breast-milk after inhalation is expected to be very low. Reviewers and an expert panel consider inhaled and oral corticosteroids acceptable to use during breast-feeding. Low-dose inhaled corticosteroids are considered first line therapy for control of mild persistent asthma during pregnancy and lactation according to the National Asthma Education and Prevention Program (NAEPP) Asthma and Pregnancy Working Group. Due to greater availability of data in pregnancy, budesonide is the preferred agent in this population. However, there are no data to indicate safety concerns with other inhaled corticosteroids and maintaining a previously established treatment regimen may be more beneficial to the patient. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to a maternally administered drug, healthcare providers are encouraged to report the adverse effect to the FDA.

    MECHANISM OF ACTION

    Glucocorticoids are naturally occurring hormones that prevent or suppress inflammation and immune responses when administered at pharmacological doses. At the molecular level, unbound glucocorticoids readily cross cell membranes and bind with high affinity to specific cytoplasmic receptors. Subsequent to binding, transcription and, ultimately, protein synthesis are affected. The result can include: inhibition of leukocyte infiltration at the site of inflammation, interference in the function of mediators of inflammatory response, and suppression of humoral immune responses. Some of the net effects include reduction in edema or scar tissue as well as a general suppression in immune response. The degree of clinical effect is normally related to the dose administered. The antiinflammatory actions of corticosteroids are thought to involve phospholipase A2 inhibitory proteins, collectively called lipocortins. Lipocortins, in turn, control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of the precursor molecule arachidonic acid. Likewise, the numerous adverse effects related to corticosteroid use usually depend on the dose administered and the duration of therapy.
     
    Orally inhaled corticosteroid hormones are believed to reduce the immediate and late-phase allergic responses associated with chronic bronchial asthma. Proposed mechanisms of action include decreased IgE synthesis, increased number of beta-adrenergic receptors on leukocytes, and decreased arachidonic acid metabolism (which decreases the amount of prostaglandins and leukotrienes released). Chronic bronchial asthma is associated with increased peribronchial edema and mucus secretions, which can be decreased with corticosteroid therapy. During an immediate allergic reaction, allergens bridge the IgE antibodies on the surface of mast cells, triggering these cells to release chemotactic substances. Mast cell influx and activation, therefore, is partially responsible for the inflammation and hyperirritability of the oral mucosa in asthmatic patients. This inflammation can be retarded by administration of adrenocorticoids.

    PHARMACOKINETICS

    Beclomethasone is administered by oral or nasal inhalation.
     
    The major route of elimination of inhaled beclomethasone appears to be via metabolism. Three major metabolites of beclomethasone are formed via hepatic cytochrome P450 3A-family catalyzed biotransformation: beclomethasone-17-monopropionate (17-BMP, the most active metabolite), beclomethasone-21-monopropionate (21-BMP) and beclomethasone (BOH). More than 90% of inhaled beclomethasone is found as 17-BMP in the systemic circulation. For the oral inhalation route, some metabolism occurs in the lungs before entering the systemic circulation; the lung tissues metabolize beclomethasone rapidly to 17-BMP and more slowly to BOH. The mean elimination half-life of 17-BMP is 2.8 hours; the biological half-life of beclomethasone is roughly 15 hours. Irrespective of the route of administration (injection, oral, or inhalation), beclomethasone and its metabolites are excreted predominantly in the feces. Less than 10% of the drug and its metabolites are excreted in the urine.

    Inhalation Route

    Nasal inhalation absorption: After nasal inhalation, beclomethasone is absorbed through the nasal mucosa, with minimal amounts absorbed systemically. Approximately 10% to 25% of a nasally administered dose enters the respiratory tract, while a portion of the dose that is deposited into the mouth and oropharynx and is swallowed.
    Oral inhalation absorption (Qvar): After oral inhalation, roughly 50% to 60% of the administered dose reaches the respiratory tract. The onset of action of the drug typically occurs within 24 hours, but full effects can take as long as 1 to 4 weeks to be apparent. The mean peak plasma concentration (Cmax) was 88 pg/mL and occurred 30 minutes after inhalation of 320 mcg (4 puffs of the 80 mcg/actuation strength). The mean Cmax of the major and most active metabolite, 17-BMP, occurs roughly 0.7 hour after inhalation of the same dosage. When the same nominal dose is provided by the two strengths (40 and 80 mcg/actuation), equivalent systemic pharmacokinetics can be expected. The Cmax of 17-BMP increases proportionally with dose in the normal dosage range.
    Oral inhalation absorption (Qvar Redihaler): After oral inhalation, the onset of action of the drug typically occurs within 24 hours, but full effects can take as long as 3 to 4 weeks to be apparent. The mean peak plasma concentration (Cmax) was 6,635 pg/mL at 2 minutes after inhalation of 320 mcg (4 inhalations of the 80 mcg/inhalation strength). The mean Cmax of the major and most active metabolite, 17-BMP, was 1,464 pg/mL at 10 minutes after inhalation of 320 mcg.