Dvorah

Browse PDR's full list of drug information

Dvorah

Classes

Opioid Agonists and Other Drug Combinations

Adverse Reactions
Severe

respiratory arrest / Rapid / Incidence not known
hepatic necrosis / Delayed / Incidence not known
hepatotoxicity / Delayed / Incidence not known
renal tubular necrosis / Delayed / Incidence not known
renal failure (unspecified) / Delayed / Incidence not known
interstitial nephritis / Delayed / Incidence not known
renal papillary necrosis / Delayed / Incidence not known
methemoglobinemia / Early / Incidence not known
pancytopenia / Delayed / Incidence not known
agranulocytosis / Delayed / Incidence not known
hemolytic anemia / Delayed / Incidence not known
SIADH / Delayed / Incidence not known
anaphylactic shock / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
exfoliative dermatitis / Delayed / Incidence not known
laryngeal edema / Rapid / Incidence not known
acute generalized exanthematous pustulosis (AGEP) / Delayed / Incidence not known
toxic epidermal necrolysis / Delayed / Incidence not known
angioedema / Rapid / Incidence not known
neonatal opioid withdrawal syndrome / Delayed / Incidence not known
serotonin syndrome / Delayed / Incidence not known

Moderate

confusion / Early / Incidence not known
depression / Delayed / Incidence not known
orthostatic hypotension / Delayed / Incidence not known
respiratory depression / Rapid / Incidence not known
encephalopathy / Delayed / Incidence not known
jaundice / Delayed / Incidence not known
urinary retention / Early / Incidence not known
thrombocytosis / Delayed / Incidence not known
neutropenia / Delayed / Incidence not known
hemolysis / Early / Incidence not known
leukopenia / Delayed / Incidence not known
thrombocytopenia / Delayed / Incidence not known
edema / Delayed / Incidence not known
constipation / Delayed / Incidence not known
impotence (erectile dysfunction) / Delayed / Incidence not known
infertility / Delayed / Incidence not known
hyponatremia / Delayed / Incidence not known
adrenocortical insufficiency / Delayed / Incidence not known
erythema / Early / Incidence not known
contact dermatitis / Delayed / Incidence not known
scotomata / Delayed / Incidence not known
sinus tachycardia / Rapid / Incidence not known
palpitations / Early / Incidence not known
tolerance / Delayed / Incidence not known
physiological dependence / Delayed / Incidence not known
withdrawal / Early / Incidence not known
psychological dependence / Delayed / Incidence not known
hyperalgesia / Delayed / Incidence not known

Mild

fatigue / Early / Incidence not known
dizziness / Early / Incidence not known
drowsiness / Early / Incidence not known
diaphoresis / Early / Incidence not known
anorexia / Delayed / Incidence not known
malaise / Early / Incidence not known
weakness / Early / Incidence not known
purpura / Delayed / Incidence not known
vomiting / Early / Incidence not known
dyspepsia / Early / Incidence not known
diarrhea / Early / Incidence not known
abdominal pain / Early / Incidence not known
flatulence / Early / Incidence not known
nausea / Early / Incidence not known
xerostomia / Early / Incidence not known
libido decrease / Delayed / Incidence not known
amenorrhea / Delayed / Incidence not known
gonadal suppression / Delayed / Incidence not known
maculopapular rash / Early / Incidence not known
pruritus / Rapid / Incidence not known
rash / Early / Incidence not known
urticaria / Rapid / Incidence not known
fever / Early / Incidence not known
polyuria / Early / Incidence not known
insomnia / Early / Incidence not known
diuresis / Early / Incidence not known
tremor / Early / Incidence not known
restlessness / Early / Incidence not known
tinnitus / Delayed / Incidence not known
irritability / Delayed / Incidence not known
anxiety / Delayed / Incidence not known

Boxed Warning
Accidental exposure, alcoholism, depression, ethanol intoxication, hepatic disease, hepatitis, hepatotoxicity, hypovolemia, malnutrition, opioid overdose, opioid use disorder, potential for overdose or poisoning, requires an experienced clinician, substance abuse

Acetaminophen has the potential for overdose or poisoning causing hepatotoxicity and acute liver failure, at times resulting in liver transplantation and death. Most cases of liver injury are associated with the use of acetaminophen at doses exceeding 4 g/day and often involve the use of more than 1 acetaminophen-containing product. Use caution during the measurement of oral liquid dosage forms to minimize the risk of dosing errors that can result in accidental overdose. Advise patients receiving acetaminophen to carefully read OTC and prescription labels, to avoid excessive and/or duplicate medications, and to seek medical help immediately if more than 4 g/day of acetaminophen is ingested, even if they feel well. It is important to note that the risk of acetaminophen-induced hepatotoxicity is increased in patients with pre-existing hepatic disease (e.g., hepatitis), those who ingest alcohol (e.g., ethanol intoxication, alcoholism), those with chronic malnutrition, and those with severe hypovolemia. In patients with chronic hepatic disease, acetaminophen can be used safely in recommended doses and is often preferred to nonsteroidal anti-inflammatory drugs (NSAIDs) due to the absence of platelet impairment, gastrointestinal toxicity, and nephrotoxicity. Though the half-life of acetaminophen may be prolonged, repeated dosing does not result in drug or metabolite accumulation. In addition, cytochrome P450 activity is not increased and glutathione stores are not depleted in hepatically impaired patients taking therapeutic doses, therefore toxic metabolite formation and accumulation is not altered. Although it is always prudent to use the smallest dose of acetaminophen for the shortest duration necessary, courses less than 2 weeks in length have been administered safely to adult patients with stable chronic liver disease. Use acetaminophen; caffeine; dihydrocodeine with caution in persons with hepatic insufficiency or hepatic disease since dihydrocodeine is metabolized by the liver. Opioid use requires an experienced clinician who is knowledgeable about the use of opioids and how to mitigate the associated risks. Opioids expose users to the risks of addiction, abuse, and misuse, which can occur at any dosage or duration. Although the risk of addiction in any individual is unknown, it can occur in persons appropriately prescribed an opioid. Addiction can occur at recommended dosages and if the drug is misused or abused. Assess each individual's risk for opioid addiction, abuse, or misuse before prescribing an opioid, and monitor for the development of these behaviors or conditions. Risks are increased in persons with a personal or family history of substance abuse (including alcoholism) or mental illness (e.g., major depression). The potential for these risks should not prevent the proper management of pain in any given individual. Persons at increased risk may be prescribed opioids but use in such persons necessitates intensive counseling about the risks and proper use of the opioid along with intensive monitoring for signs of addiction, abuse, and misuse. Abuse and addiction are separate and distinct from physical dependence and tolerance; persons with addiction may not exhibit tolerance and symptoms of physical dependence. Opioids are sought by drug abusers and persons with addiction disorders and are subject to criminal diversion. Abuse of opioids has the potential for overdose or poisoning and death. Consider these risks when prescribing or dispensing opioids. Strategies to reduce these risks include prescribing the drug in the smallest appropriate quantity. Keep opioids out of the reach of pediatric patients, others for whom the drug was not prescribed, and pets as accidental exposure or improper use may cause respiratory failure and a fatal overdose. Accidental exposure of even a single dose of an opioid, especially by younger persons, can result in a fatal overdose. Because the risk of overdose increases as opioid doses increase, reserve titration to higher doses of an opioid for persons in whom lower doses are insufficiently effective and in whom the expected benefits of using a higher dose opioid clearly outweigh the substantial risks. Do not use immediate-release opioids for an extended period unless the pain remains severe enough to require an opioid and for which alternative treatment options continue to be inadequate. Many acute pain conditions (e.g., pain occurring with surgical procedures or acute musculoskeletal injuries) require no more than a few days of an opioid. Clinical guidelines on opioid prescribing for some acute pain conditions are available. Discuss the availability of naloxone with all patients and consider prescribing it in persons who are at increased risk of opioid overdose, such as those who are also using other CNS depressants, who have a history of opioid use disorder (OUD), who have experienced a previous opioid overdose, or who have household members or other close contacts at risk for accidental exposure or opioid overdose.

Asthma, chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, cor pulmonale, hypoxemia, pulmonary disease, respiratory depression, respiratory insufficiency, sleep apnea

Acetaminophen; caffeine; dihydrocodeine is contraindicated in patients with significant respiratory depression and those with acute or severe asthma in an unmonitored setting or in the absence of resuscitative equipment. Avoid coadministration with other CNS depressants when possible, as this significantly increases the risk for respiratory depression, low blood pressure, and death. Reserve concomitant prescribing of these drugs for use in patients for whom alternative treatment options are inadequate; if concurrent use is necessary, use the lowest effective dosages and minimum treatment durations needed and consider prescribing naloxone. Monitor patients closely for signs or symptoms of respiratory depression and sedation. Patients with chronic obstructive pulmonary disease (COPD), cor pulmonale, respiratory insufficiency, hypoxemia, hypercapnia, or preexisting respiratory depression are at increased risk of decreased respiratory drive even at recommended doses. Patients with advanced age, cachexia, or debilitation are also at an increased risk for opioid-induced respiratory depression. Monitor such patients closely, particularly when initiating and titrating the opioid; consider the use of non-opioid analgesics in these patients. Opioids increase the risk of central sleep apnea (CSA) and sleep-related hypoxemia in a dose-dependent fashion. Consider decreasing the opioid dosage in patients with CSA. Respiratory depression, if left untreated, may cause respiratory arrest and death. Carbon dioxide retention from respiratory depression may also worsen opioid sedating effects. Careful monitoring and dose titration is required, particularly when CYP3A4 and/or CYP2D6 inhibitors or inducers are used concomitantly; concurrent use of a CYP3A4 inhibitor or discontinuation of a concurrently used CYP3A4 inducer may increase plasma codeine concentrations with subsequent greater metabolism by CYP2D6, resulting in greater morphine concentrations that may potentiate the risk of fatal respiratory depression or discontinuation of a concomitantly used CYP2D6 inhibitor may decrease plasma codeine concentrations and increase morphine concentrations that may increase the risk for respiratory depression. Management of respiratory depression may include observation, necessary supportive measures, and opioid antagonist use when indicated.

Adenoidectomy, children, infants, neonates, neuromuscular disease, tonsillectomy

Acetaminophen; caffeine; dihydrocodeine is contraindicated in neonates, infants, and children younger than 12 years and for postoperative pain management in pediatric patients younger than 18 years after a tonsillectomy and/or adenoidectomy. Avoid use in patients 12 to 18 years of age who have other risk factors for respiratory depression unless the benefits outweigh the risks. Risk factors include conditions associated with hypoventilation such as postoperative status, obstructive sleep apnea, obesity, respiratory infection, asthma, severe pulmonary disease, neuromuscular disease, and concomitant use of other respiratory depressants. When prescribing dihydrocodeine for adolescents, choose the lowest effective dose for the shortest period of time and inform patients and caregivers of the risks and the signs of opioid overdose. Ultra-rapid metabolizers have a specific CYP2D6 genotype that allows for more rapid and complete conversion of dihydrocodeine into dihydromorphine and the higher than normal morphine blood concentrations that result increase the risk for overdose and fatal respiratory depression. Because some pediatric patients who are normal metabolizers can covert opioids at similar rates to ultra-rapid metabolizers, this concern extends to all pediatric patients.

Labor, neonatal opioid withdrawal syndrome, obstetric delivery, pregnancy

There are no adequate data on the developmental risk associated with acetaminophen; caffeine; dihydrocodeine use during human pregnancy.   Neonatal arrhythmias (e.g., tachycardia, premature atrial contractions) and tachypnea have been reported when caffeine was consumed during pregnancy in amounts more than 500 mg/day. Caffeine withdrawal in the neonate after birth may account for these symptoms. Caffeine containing medications should be limited to use only when absolutely necessary. Acetaminophen; caffeine; dihydrocodeine is not recommended for use in pregnant women during or immediately prior to labor or obstetric delivery when use of other analgesic techniques is more appropriate. Opioids can prolong labor through actions which temporarily reduce the strength, duration, and frequency of uterine contractions. However, this effect is not consistent and may be offset by an increased rate of cervical dilation, which tends to shorten labor. Monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression. Further, prolonged maternal use of opioid agonists during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). Severe symptoms may require pharmacologic therapy managed by clinicians familiar with neonatal opioid withdrawal. Monitor the neonate for withdrawal symptoms including rapid breathing, irritability, hyperactivity, abnormal sleep pattern, high-pitched crying, tremor, vomiting, diarrhea, and failure to gain weight. Onset, duration, and severity of opioid withdrawal may vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination by the newborn. In women undergoing uncomplicated normal spontaneous vaginal birth, consider opioid therapy only if expected benefits for both pain and function are anticipated to outweigh risks to the patient. If opioids are used, they should be combined with nonpharmacologic therapy and nonopioid pharmacologic therapy, as appropriate. Order the lowest effective dosage and prescribe no greater quantity of opioids than needed for the expected duration of such pain severe enough to require opioids. Prescribe immediate-release opioids instead of extended-release or long-acting opioids. Review the patient history of controlled substance use and prioritize treatment discussions in patients with opioid use disorder. Consider a prenatal consult to counsel the patient about the risk for neonatal opioid withdrawal syndrome. The American College of Obstetricians and Gynecologists recommends early universal screening of pregnant patients for opioid use and opioid use disorder at the first prenatal visit. Rely on validated screening tools, such as 4Ps, NIDA Quick Screen, and CRAFFT (for women 26 years or younger). Ensure opioids are appropriately indicated. For women using opioids for chronic pain, consider strategies to avoid or minimize the use of opioids, including alternative pain therapies (i.e., nonpharmacologic) and nonopioid pharmacologic treatments. Take a thorough history of substance use and review the Prescription Drug Monitoring Program to determine if patients have received prior prescriptions for opioids or other high-risk drugs such as benzodiazepines. Discuss the risks and benefits of opioid use during pregnancy, including the risk of becoming physiologically dependent on opioids, the possibility for neonatal opioid withdrawal syndrome, and how long-term opioid use may affect care during a future pregnancy. Opioid agonist pharmacotherapy (e.g., methadone or buprenorphine) is preferable to medically supervised withdrawal in pregnant women with opioid use disorder. Discuss contraceptive use among all women of reproductive age with a substance use disorder to minimize the risk of unplanned pregnancy. Published epidemiological studies have not reported a clear association with acetaminophen use during pregnancy and birth defects, miscarriage, or adverse maternal or fetal outcomes. Large observational studies of newborns exposed to oral acetaminophen during the first trimester have not shown an increased risk for congenital malformations or major birth defects; however, these studies cannot establish the absence of risk because of methodological limitations.[42289] Acetaminophen does cross the placenta and should be used during pregnancy only if the benefits to the mother outweigh the potential risks to the fetus or infant. No overall increase in fetal mortality, determined by pregnancy outcomes of mothers that overdosed on various amounts of oral acetaminophen, was apparent amongst 300 women. Treatment with acetylcysteine or methionine did not appear to affect fetal or neonatal toxicity. Of 235 infants exposed to an overdose of only acetaminophen, 168 were normal, 8 had malformations, 16 were spontaneously aborted, and 43 were electively terminated. None of the infants with malformations were exposed during the first trimester, but all of the spontaneous abortions were subsequent to first trimester exposure.[27731]

Common Brand Names

Dvorah, Panlor, Trezix

Dea Class

Rx, schedule III

Description

Multi-ingredient products of acetaminophen and caffeine combined with dihydrocodeine, an opioid analgesic
Used for acute moderate to severe pain; not for chronic, persistent pain
Tablets and capsules not directly interchangeable; as with all opioids, may cause sedation and respiratory depression

Dosage And Indications
For the treatment of severe pain where treatment with an opioid is appropriate and for which alternative treatments are inadequate. Oral dosage (capsules containing acetaminophen 320.5 mg; caffeine 30 mg; dihydrocodeine 16 mg; e.g., Trezix) Adults

641 mg acetaminophen/60 mg caffeine/32 mg codeine (2 capsules) PO every 4 hours as needed. Max: 3,205 mg acetaminophen/300 mg caffeine/160 mg codeine (10 capsules)/24 hours.

Oral dosage (tablets containing acetaminophen 325 mg; caffeine 30 mg; dihydrocodeine 16 mg; e.g., Dvorah) Adults

650 mg acetaminophen/60 mg caffeine/32 mg codeine (2 tablets) PO every 4 hours as needed. Max: 3,250 mg acetaminophen/300 mg caffeine/160 mg codeine (10 tablets)/24 hours.

Dosing Considerations
Hepatic Impairment

Use with caution and monitor effects closely.

Renal Impairment

Use with caution at a reduced dosage.

Drug Interactions

Abacavir; Lamivudine, 3TC; Zidovudine, ZDV: (Minor) Both acetaminophen and zidovudine, ZDV undergo glucuronidation. Competition for the metabolic pathway is thought to have caused a case of acetaminophen-related hepatotoxicity. This interaction may be more clinically significant in patients with depleted glutathione stores, such as patients with acquired immunodeficiency syndrome, poor nutrition, or alcoholism.
Abiraterone: (Moderate) Concomitant use of dihydrocodeine with abiraterone may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of abiraterone could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If abiraterone is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Abiraterone is a moderate inhibitor of CYP2D6.
Acetaminophen; Aspirin, ASA; Caffeine: (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Acetaminophen; Aspirin: (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Acetaminophen; Aspirin; Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Dextromethorphan; Doxylamine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Acetaminophen; Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Acetaminophen; Oxycodone: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Acetaminophen; Pamabrom; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Acetaminophen; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aclidinium; Formoterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Acrivastine; Pseudoephedrine: (Major) Avoid coadministration of opioid agonists with acrivastine due to the risk of additive CNS depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acyclovir: (Moderate) Monitor for an increase in caffeine-related adverse reactions, including nervousness, irritability, insomnia, tachycardia, or tremor, if concomitant use of acyclovir is necessary; lower caffeine doses may be necessary. Concomitant use may increase caffeine exposure; caffeine is a CYP1A2 substrate and acyclovir is a CYP1A2 inhibitor.
Adagrasib: (Moderate) Concomitant use of dihydrocodeine with adagrasib may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of adagrasib could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If adagrasib is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A; adagrasib is a dual moderate 2D6 and strong 3A inhibitor. CYP3A inhibitors may increase codeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Adenosine: (Major) Larger doses of adenosine may be required or adenosine may not be effective in the presence of methylxanthines. The effects of adenosine are antagonized by methylxanthines. When used for diagnostic purposes, instruct patients to avoid consumption of methylxanthine-containing products, including caffeinated beverages, for at least 5 half-lives prior to the imaging study.
Albuterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Albuterol; Budesonide: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Aldesleukin, IL-2: (Moderate) Aldesleukin, IL-2 may affect CNS function significantly. Therefore, psychotropic pharmacodynamic interactions could occur following concomitant administration of drugs with significant CNS or psychotropic activity such as opiate agonists. In addition, aldesleukin, IL-2, is a CYP3A4 inhibitor and may increase oxycodone plasma concentrations and related toxicities including potentially fatal respiratory depression. If therapy with both agents is necessary, monitor patients for an extended period and adjust oxycodone dosage as necessary.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Almotriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Alosetron: (Major) Patients taking medications that decrease GI motility may be at greater risk for serious complications from alosetron, like constipation, via a pharmacodynamic interaction. Constipation is the most frequently reported adverse effect with alosetron. Alosetron, if used with drugs such as opiate agonists, may seriously worsen constipation, leading to events such as GI obstruction/impaction or paralytic ileus.
Alprazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Alvimopan: (Moderate) Patients should not take alvimopan if they have received therapeutic doses of opiate agonists for more than seven consecutive days immediately before initiation of alvimopan therapy. Patients recently exposed to opioids are expected to be more sensitive to the effects of mu-opioid receptor antagonists and may experience adverse effects localized to the gastrointestinal tract such as abdominal pain, nausea, vomiting, and diarrhea.
Amantadine: (Major) Amantadine used concomitantly with psychostimulants, such as caffeine, can result in increased stimulant effects, such as nervousness, irritability, or insomnia, and can lead to seizures or cardiac arrhythmias. Close monitoring of the patient is recommended.
Amide local anesthetics: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Amiodarone: (Moderate) Concomitant use of dihydrocodeine with amiodarone may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of amiodarone could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amiodarone is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Amiodarone is a moderate inhibitor of CYP3A4 and a weak inhibitor of CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy. (Minor) Amiodarone is an inhibitor of CYP1A2 isoenzymes, and could theoretically reduce CYP1A2-mediated caffeine metabolism. The clinical significance of this potential interaction is not known.
Amitriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Amlodipine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Amlodipine; Atorvastatin: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Amlodipine; Benazepril: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Amlodipine; Celecoxib: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of dihydrocodeine with celecoxib may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Celecoxib is an inhibitor of CYP2D6.
Amlodipine; Olmesartan: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Amlodipine; Valsartan: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Amobarbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Amoxapine: (Major) Concomitant use of opioid agonists with amoxapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking amoxapine. Limit the use of opioid pain medications with amoxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) Concomitant use of dihydrocodeine with clarithromycin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of clarithromycin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If clarithromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Clarithromycin is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Amphetamine: (Moderate) Avoid excessive caffeine intake during use of the amphetamine salts. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Amphetamine; Dextroamphetamine Salts: (Moderate) Avoid excessive caffeine intake during use of the amphetamine salts. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Amphetamine; Dextroamphetamine: (Moderate) Avoid excessive caffeine intake during use of the amphetamine salts. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Anagrelide: (Moderate) Anagrelide has been shown to inhibit CYP1A2. In theory, coadministration of anagrelide with substrates of CYP1A2, including caffeine, could lead to increases in the serum concentrations of caffeine and, thus, adverse effects.
Antacids: (Minor) Antacids can delay the oral absorption of acetaminophen, but the interactions are not likely to be clinically significant as the extent of acetaminophen absorption is not appreciably affected.
Anticholinergics: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Apalutamide: (Moderate) Concomitant use of dihydrocodeine with apalutamide can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If apalutamide is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Apalutamide is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Apomorphine: (Major) Concomitant use of opioid agonists with apomorphine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking apomorphine. Limit the use of opioid pain medications with apomorphine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like apomorphine have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Apraclonidine: (Minor) Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as opiate agonists. Although no specific drug interactions were identified with systemic agents and apraclonidine during clinical trials, apraclonidine can cause dizziness and somnolence.
Aprepitant, Fosaprepitant: (Moderate) Concomitant use of dihydrocodeine with oral, multi-day regimens of aprepitant, fosaprepitant may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased hydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of aprepitant, fosaprepitant could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If aprepitant, fosaprepitant is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Aprepitant, fosaprepitant, when administered as an oral, 3-day regimen, is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Use caution if acetaminophen and aprepitant are used concurrently and monitor for an increase in acetaminophen-related adverse effects for several days after administration of a multi-day aprepitant regimen. Acetaminophen is a minor (10 to 15%) substrate of CYP3A4. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of acetaminophen. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
Arformoterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Aripiprazole: (Moderate) Concomitant use of opioid agonists with aripiprazole may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking aripiprazole. Limit the use of opioid pain medications with aripiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Armodafinil: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with armodafinil. Caffeine should be used cautiously with armodafinil. Intake of caffeine should be limited. Excessive intake may cause nervousness, irritability, insomnia, or other side effects. (Moderate) Concomitant use of dihydrocodeine with armodafinil can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If armodafinil is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Armodafinil is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Artemether; Lumefantrine: (Moderate) Artemether; lumefantrine is an inhibitor and dihydrocodeine is a substrate of the CYP2D6 isoenzyme; therefore, coadministration with acetaminophen; caffeine; dihydrocodeine may lead to increased dihydrocodeine concentrations. Concomitant use warrants caution due to the potential for increased side effects. (Moderate) Concomitant use of dihydrocodeine with lumefantrine may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of lumefantrine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If lumefantrine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Lumefantrine is a moderate inhibitor of CYP2D6.
Articaine; Epinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) Coadministration of articaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue articaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Asciminib: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of asciminib is necessary. If asciminib is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with asciminib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If asciminib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Asciminib is a weak inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Asenapine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Aspirin, ASA: (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Aspirin, ASA; Butalbital; Caffeine: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Caffeine has been reported to increase the metabolism of aspirin. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Aspirin, ASA; Caffeine: (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Aspirin, ASA; Caffeine; Orphenadrine: (Major) Concomitant use of opioid agonists with orphenadrine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with orphenadrine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking orphenadrine. (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Aspirin, ASA; Carisoprodol: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking carisoprodol. (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking carisoprodol. (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Minor) Antacids can delay the oral absorption of acetaminophen, but the interactions are not likely to be clinically significant as the extent of acetaminophen absorption is not appreciably affected. (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Aspirin, ASA; Dipyridamole: (Major) Methylxanthines, through antagonism of adenosine and thus pharmacologic-induced coronary vasodilation, have been associated with false-negative results during dipyridamole-thallium 201 stress testing. It is recommended that methylxanthines (caffeine, caffeinated beverages and foods, theophylline, etc.) be discontinued for at least 24 hours prior to stress testing. An interaction is not expected when methylxanthines are used concomitantly with chronic dipyridamole therapy. (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Aspirin, ASA; Omeprazole: (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Aspirin, ASA; Oxycodone: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression. (Minor) Caffeine has been reported to increase the metabolism of aspirin.
Atazanavir: (Moderate) Concomitant use of dihydrocodeine with atazanavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of atazanavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If atazanavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Atazanavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Atazanavir; Cobicistat: (Moderate) Concomitant use of dihydrocodeine with atazanavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of atazanavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If atazanavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Atazanavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of dihydrocodeine with cobicistat may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cobicistat is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Atenolol; Chlorthalidone: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Atropine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Atropine; Difenoxin: (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Avacopan: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of avacopan is necessary. If avacopan is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with avacopan may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If avacopan is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Avacopan is a weak inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Azelastine: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Azelastine; Fluticasone: (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Azilsartan; Chlorthalidone: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Baclofen: (Major) Concomitant use of opioid agonists with baclofen may cause excessive sedation and somnolence. Limit the use of opioid pain medications with baclofen to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking baclofen.
Barbiturates: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Belladonna; Opium: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Belumosudil: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of belumosudil is necessary. If belumosudil is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with belumosudil may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If belumosudil is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Belumosudil is a weak inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Benzhydrocodone; Acetaminophen: (Major) Concomitant use of opioid agonists with benzhydrocodone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of benzhydrocodone with opioid agonists to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If benzhydrocodone is initiated in a patient taking dihydrocodeine, reduce initial dosage and titrate to clinical response. If dihydrocodeine is prescribed in a patient taking benzhydrocodone, use a lower initial dose of dihydrocodeine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking other opioid agonists. Careful monitoring, particularly during treatment initiat

ion and dose adjustment, is recommended during coadministration of benzhydrocodone and dihydrocodeine because of the potential risk of serotonin syndrome. Discontinue benzhydrocodone if serotonin syndrome is suspected. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Benzodiazepines: (Minor) Patients taking benzodiazepines for insomnia should not use caffeine-containing products prior to going to bed as these products may antagonize the sedative effects of the benzodiazepine.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Contraindicated) Dihydrocodeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Benzphetamine: (Moderate) Avoid excessive caffeine intake during use of benzphetamine. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Benztropine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Berotralstat: (Moderate) Concomitant use of dihydrocodeine with berotralstat may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of berotralstat could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If berotralstat is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4; berotralstat is a moderate inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Beta-agonists: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Bethanechol: (Moderate) Bethanechol facilitates intestinal and bladder function via parasympathomimetic actions. Opiate agonists impair the peristaltic activity of the intestine. Thus, these drugs can antagonize the beneficial actions of bethanechol on GI motility.
Bexarotene: (Moderate) Concomitant use of dihydrocodeine with bexarotene can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If bexarotene is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Bexarotene is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Bicalutamide: (Moderate) Concomitant use of dihydrocodeine with bicalutamide may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of bicalutamide could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If bicalutamide is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Bicalutamide is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bismuth Subsalicylate: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Bosentan: (Moderate) Concomitant use of dihydrocodeine with bosentan can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If bosentan is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Bosentan is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Brexanolone: (Moderate) Concomitant use of brexanolone with CNS depressants like the opiate agonists may increase the likelihood or severity of adverse reactions related to sedation and additive CNS depression. Monitor for excessive sedation, dizziness, and a potential for loss of consciousness during brexanolone use.
Brexpiprazole: (Major) Concomitant use of opioid agonists with brexpiprazole may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking brexpiprazole. Limit the use of opioid pain medications with brexpiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Brimonidine: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brimonidine; Brinzolamide: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brimonidine; Timolol: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
Brompheniramine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Budesonide; Formoterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Bupivacaine Liposomal: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Epinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Lidocaine: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) Coadministration of lidocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Bupivacaine; Meloxicam: (Moderate) Coadministration of bupivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue bupivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Buprenorphine: (Major) Buprenorphine is a mixed opiate agonist/antagonist with strong affinity for the mu-receptor that may partially block the effects of full mu-receptor opiate agonists and reduce analgesic effects. In some cases of acute pain, trauma, or during surgical management, opiate-dependent patients receiving buprenorphine maintenance therapy may require concurrent treatment with opiate agonists, such as dihydrocodeine. Dihydrocodeine is found in several combination cough products. In these cases, health care professionals must exercise caution in opiate agonist dose selection, as higher doses of an opiate agonist may be required to compete with buprenorphine at the mu-receptor. Management strategies may include adding a short-acting opiate agonist to achieve analgesia in the presence of buprenorphine, discontinuation of buprenorphine and use of an opiate agonist to avoid withdrawal and achieve analgesia, or conversion of buprenorphine to methadone while using additional opiate agonists if needed. Closely monitor patients for CNS or respiratory depression if buprenorphine is used with dihydrocodeine. When buprenorphine is used for analgesia, avoid co-use with opiate agonists. Buprenorphine may cause withdrawal symptoms in patients receiving chronic opiate agonists as well as possibly potentiate CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Buprenorphine; Naloxone: (Major) Buprenorphine is a mixed opiate agonist/antagonist with strong affinity for the mu-receptor that may partially block the effects of full mu-receptor opiate agonists and reduce analgesic effects. In some cases of acute pain, trauma, or during surgical management, opiate-dependent patients receiving buprenorphine maintenance therapy may require concurrent treatment with opiate agonists, such as dihydrocodeine. Dihydrocodeine is found in several combination cough products. In these cases, health care professionals must exercise caution in opiate agonist dose selection, as higher doses of an opiate agonist may be required to compete with buprenorphine at the mu-receptor. Management strategies may include adding a short-acting opiate agonist to achieve analgesia in the presence of buprenorphine, discontinuation of buprenorphine and use of an opiate agonist to avoid withdrawal and achieve analgesia, or conversion of buprenorphine to methadone while using additional opiate agonists if needed. Closely monitor patients for CNS or respiratory depression if buprenorphine is used with dihydrocodeine. When buprenorphine is used for analgesia, avoid co-use with opiate agonists. Buprenorphine may cause withdrawal symptoms in patients receiving chronic opiate agonists as well as possibly potentiate CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Bupropion: (Moderate) Bupropion is associated with a dose-related risk of seizures. Excessive use of psychostimulants, including caffeine, is associated with an increased seizure risk and may increase this risk during the concurrent use of bupropion. Carefully consider a patient's caffeine intake from all sources, including medicines. Monitor for irritability, tremor, increased blood pressure, insomnia and seizures. Many non-prescription medicines and weight loss aids may contain caffeine and patients should read labels carefully. Examples of foods and beverages containing caffeine include coffee, teas, colas, energy drinks, chocolate, and some herbal or dietary supplements. Patients should be advised to limit excessive caffeine intake during bupropion therapy. (Moderate) Concomitant use of dihydrocodeine with bupropion may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of bupropion could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If bupropion is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Bupropion is a strong inhibitor of CYP2D6.
Bupropion; Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur. (Moderate) Bupropion is associated with a dose-related risk of seizures. Excessive use of psychostimulants, including caffeine, is associated with an increased seizure risk and may increase this risk during the concurrent use of bupropion. Carefully consider a patient's caffeine intake from all sources, including medicines. Monitor for irritability, tremor, increased blood pressure, insomnia and seizures. Many non-prescription medicines and weight loss aids may contain caffeine and patients should read labels carefully. Examples of foods and beverages containing caffeine include coffee, teas, colas, energy drinks, chocolate, and some herbal or dietary supplements. Patients should be advised to limit excessive caffeine intake during bupropion therapy. (Moderate) Concomitant use of dihydrocodeine with bupropion may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of bupropion could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If bupropion is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Bupropion is a strong inhibitor of CYP2D6.
Buspirone: (Moderate) Concomitant use of CNS depressants, such as buspirone, can potentiate the effects of dihydrocodeine, which may potentially lead to respiratory depression, CNS depression, sedation, or hypotensive responses. If concurrent use of codeine and buspirone is imperative, reduce the dose of one or both drugs.
Busulfan: (Moderate) Use busulfan and acetaminophen together with caution; concomitant use may result in increased busulfan levels and increased busulfan toxicity. Separating the administration of these drugs may mitigate this interaction; avoid giving acetaminophen within 72 hours prior to or concurrently with busulfan. Busulfan is metabolized in the liver through conjugation with glutathione; acetaminophen decreases glutathione levels in the blood and tissues and may reduce the clearance of busulfan.
Butabarbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Acetaminophen: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Acetaminophen; Caffeine: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butalbital; Aspirin; Caffeine; Codeine: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Caffeine has been reported to increase the metabolism of aspirin. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Butorphanol: (Major) Avoid the concomitant use of butorphanol and opiate agonists, such as dihydrocodeine. Butorphanol is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce the analgesic effects of dihydrocodeine. Butorphanol may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of butorphanol with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Caffeine: (Moderate) Certain foods that contain high amounts of caffeine or theobromine should be limited during the therapeutic use of caffeine in order to limit additive methylxanthine effects. While taking Caffeine-containing medicines, limit the use of foods, beverages (examples: coffee, tea, colas), herbs (examples: guarana, green tea) and other products that contain additional caffeine, such as chocolate and some non-prescription medications or dietary supplements for headache, insomnia, or weight loss. Too much Caffeine can cause effects like nausea, nervousness, or sleeplessness. Some drug products for adults that contain caffeine have about as much caffeine as a cup of coffee.
Calcium, Magnesium, Potassium, Sodium Oxybates: (Major) Concomitant use of opioid agonists with sodium oxybate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with sodium oxybate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Caffeine should be avoided or used cautiously with oxybates. Monitor for potential side effects such as nervousness, irritability, insomnia, and/or cardiac arrhythmias.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Cannabidiol: (Moderate) Concomitant use of opioid agonists with cannabidiol may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking cannabidiol. Limit the use of opioid pain medications with cannabidiol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Consider a dose reduction of caffeine as clinically appropriate, if adverse reactions occur when administered with cannabidiol. Increased caffeine exposure is possible. Caffeine is a CYP1A2 substrate and cannabidiol is a weak CYP1A2 inhibitor.
Capmatinib: (Moderate) Monitor for an increase in caffeine-related adverse reactions, including nervousness, irritability, insomnia, tachycardia, or tremor, if concomitant use of capmatinib is necessary; lower caffeine doses may be necessary. Concomitant use may increase caffeine exposure; caffeine is a CYP1A2 substrate and capmatinib is a CYP1A2 inhibitor. Coadministration with capmatinib increased caffeine exposure by 134%.
Capsaicin; Metaxalone: (Major) Concomitant use of opioid agonists with metaxalone may cause respiratory depression, profound sedation, and death. Limit the use of opioid pain medication with metaxalone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking metaxalone. Educate patients about the risks and symptoms of respiratory depression and sedation. Consider prescribing naloxone for the emergency treatment of opioid overdose. Concomitant use of metaxalone and opioid agonists increases the risk for serotonin syndrome. Avoid concomitant use if possible and monitor for serotonin syndrome if use is necessary.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Carbamazepine: (Moderate) Concomitant use of dihydrocodeine with carbamazepine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If carbamazepine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Carbamazepine is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Carbamazepine may induce caffeine metabolism via induction of the hepatic CYP1A2 isoenzyme. (Minor) Carbamazepine may potentially accelerate the hepatic metabolism of acetaminophen. In addition, due to enzyme induction, carbamazepine may increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolite, NAPQI. Clinicians should be alert to decreased effect of acetaminophen. Dosage adjustments may be necessary, and closer monitoring of clinical and/or adverse effects is warranted.
Carbinoxamine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Cariprazine: (Moderate) Concomitant use of opioid agonists like dihydrocodeine with cariprazine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cariprazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking cariprazine.
Carisoprodol: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking carisoprodol.
Celecoxib: (Moderate) Concomitant use of dihydrocodeine with celecoxib may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Celecoxib is an inhibitor of CYP2D6.
Celecoxib; Tramadol: (Major) Concomitant use of tramadol increases the seizure risk in patients taking opiate agonists. Also, tramadol can cause additive CNS depression and respiratory depression when used with opiate agonists; avoid concurrent use whenever possible. If used together, extreme caution is needed, and a reduced tramadol dose is recommended. (Moderate) Concomitant use of dihydrocodeine with celecoxib may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Celecoxib is an inhibitor of CYP2D6.
Cenobamate: (Moderate) Concomitant use of dihydrocodeine with cenobamate may cause excessive sedation and somnolence. Limit the use of dihydrocodeine with cenobamate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Avoid prescribing dihydrocodeine cough medication in patients taking cenobamate. Additionally, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with cenobamate is necessary; consider increasing the dose of dihydrocodeine as needed. If cenobamate is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Cenobamate is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with cenobamate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Ceritinib: (Moderate) Concomitant use of dihydrocodeine with ceritinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ceritinib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ceritinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Dihydrocodeine is a CYP3A4 substrate and ceritinib is a strong CYP3A4 inhibitor.
Cetirizine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Cetirizine; Pseudoephedrine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Charcoal: (Minor) Activated charcoal binds many drugs within the gut. Administering charcoal dietary supplements at the same time as a routine acetaminophen dosage would be expected to interfere with the analgesic and antipyretic efficacy of acetaminophen. Charcoal is mostly used in the setting of acetaminophen overdose; however, patients should never try to treat an acetaminophen overdose with charcoal dietary supplements. Advise patients to get immediate medical attention for an acetaminophen overdose.
Chlophedianol; Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chloramphenicol: (Moderate) Concomitant use of dihydrocodeine with chloramphenicol may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of chloramphenicol could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If chloramphenicol is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Chloramphenicol is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Chlorcyclizine: (Moderate) Concomitant use of opioid agonists with chlorcyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorcyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlordiazepoxide: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Chlordiazepoxide; Amitriptyline: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Chlordiazepoxide; Clidinium: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Chloroprocaine: (Moderate) Coadministration of chloroprocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue chloroprocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Minor) Due to the CNS depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists.
Chlorothiazide: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Chlorpheniramine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Codeine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) CNS-stimula ting actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpheniramine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Chlorpromazine: (Major) Concomitant use of opioid agonists with chlorpromazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking chlorpromazine. Limit the use of opioid pain medications with chlorpromazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorthalidone: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Chlorthalidone; Clonidine: (Major) Concomitant use of opioid agonists with clonidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clonidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Chlorzoxazone: (Major) Concomitant use of opioid agonists with chlorzoxazone may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorzoxazone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking chlorzoxazone.
Cholestyramine: (Moderate) Cholestyramine has been shown to decrease the absorption of acetaminophen by roughly 60%. Experts have recommended that cholestyramine not be given within 1 hour of acetaminophen if analgesic or antipyretic effect is to be achieved.
Choline Salicylate; Magnesium Salicylate: (Moderate) Prolonged concurrent use of acetaminophen and salicylates is not recommended. Although salicylates are rarely associated with nephrotoxicity, high-dose, chronic administration of salicylates combined other analgesics, including acetaminophen, significantly increases the risk of analgesic nephropathy, renal papillary necrosis, and end-stage renal disease. Additive hepatic toxicity may occur, especially in combined overdose situations. Do not exceed the recommended individual maximum doses when these agents are given concurrently for short-term therapy.
Cimetidine: (Moderate) Concomitant use of dihydrocodeine with cimetidine may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of cimetidine could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cimetidine is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Cimetidine is a weak inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy. (Minor) Inhibitors of CYP1A2, such as cimetidine, may inhibit the hepatic oxidative metabolism of caffeine. In patients who complain of caffeine-related side effects caffeine dosage or intake may need to be reduced.
Cinacalcet: (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with cinacalcet is necessary; consider increasing the dose of dihydrocodeine as needed. If cinacalcet is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A. Cinacalcet is a moderate inhibitor of CYP2D6. Concomitant use of dihydrocodeine with cinacalcet can increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Ciprofloxacin: (Moderate) Concomitant use of dihydrocodeine with ciprofloxacin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ciprofloxacin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ciprofloxacin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ciprofloxacin is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Reduction or limitation of the caffeine dosage in medications and limitation of caffeine in beverages and food may be necessary during concurrent ciprofloxacin therapy. Ciprofloxacin can decrease the clearance of caffeine. Caffeine toxicity may occur and can manifest as nausea, vomiting, anxiety, tachycardia, or seizures. Ciprofloxacin is a CYP1A2 inhibitor and caffeine is a CYP1A2 substrate.
Citalopram: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like dihydrocodeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Clarithromycin: (Moderate) Concomitant use of dihydrocodeine with clarithromycin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of clarithromycin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If clarithromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Clarithromycin is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Clemastine: (Moderate) Concomitant use of opioid agonists with clemastine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clemastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Clobazam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Clomipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Clonazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Clonidine: (Major) Concomitant use of opioid agonists with clonidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clonidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Clopidogrel: (Moderate) Coadministration of opioid agonists, such as dihydrocodeine, delay and reduce the absorption of clopidogrel resulting in reduced exposure to active metabolites and diminished inhibition of platelet aggregation. Consider the use of a parenteral antiplatelet agent in acute coronary syndrome patients requiring an opioid agonist. Coadministration of intravenous morphine decreased the Cmax and AUC of clopidogrel's active metabolites by 34%. Time required for maximal inhibition of platelet aggregation (median 3 hours vs. 1.25 hours) was significantly delayed; times up to 5 hours were reported. Inhibition of platelet plug formation was delayed and residual platelet aggregation was significantly greater 1 to 4 hours after morphine administration.
Clorazepate: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Clozapine: (Major) Caffeine may inhibit clozapine metabolism via CYP1A2. Clozapine clearance has been decreased by roughly 14 percent during coadministration of caffeine, and a documented increase in clozapine serum concentrations has occurred in selected patients. In addition, a single case report associates the appearance of psychiatric symptoms with caffeine ingestion in one patient taking clozapine. Until more data are available, caffeine consumption should be minimized during clozapine treatment. (Moderate) Pain medications such as dihydrocodeine, should be combined cautiously with clozapine due to the potential for additive depressant effects and possible respiratory depression or hypotension. Concurrent use of clozapine and opiates may also lead to reduced intestinal motility or bladder function.
Cobicistat: (Moderate) Concomitant use of dihydrocodeine with cobicistat may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cobicistat is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Codeine; Phenylephrine; Promethazine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Codeine; Promethazine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
COMT inhibitors: (Major) Concomitant use of opioid agonists with COMT inhibitors may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking COMT inhibitors. Limit the use of opioid pain medications with COMT inhibitors to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Conivaptan: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of conivaptan is necessary. If conivaptan is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with conivaptan may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If conivaptan is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Conivaptan is a moderate inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Crizotinib: (Moderate) Concomitant use of dihydrocodeine with crizotinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of crizotinib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If crizotinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Crizotinib is a moderate inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Crofelemer: (Moderate) Pharmacodynamic interactions between crofelemer and opiate agonists are theoretically possible. Crofelemer does not affect GI motility mechanisms, but does have antidiarrheal effects. Patients taking medications that decrease GI motility, such as opiate agonists, may be at greater risk for serious complications from crofelemer, such as constipation with chronic use. Use caution and monitor GI symptoms during coadministration.
Cyclizine: (Moderate) Concomitant use of opioid agonists with cyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Cyclobenzaprine: (Major) Concomitant use of opioid agonists with cyclobenzaprine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with cyclobenzaprine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking cyclobenzaprine. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Cyclosporine: (Moderate) Concomitant use of dihydrocodeine with cyclosporine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cyclosporine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cyclosporine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cyclosporine is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Cyproheptadine: (Moderate) Concomitant use of opioid agonists with cyproheptadine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cyproheptadine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dabrafenib: (Moderate) Concomitant use of dihydrocodeine with dabrafenib can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If dabrafenib is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Dabrafenib is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Dacomitinib: (Moderate) Concomitant use of dihydrocodeine with dacomitinib may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of dacomitinib could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If dacomitinib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Dacomitinib is a strong inhibitor of CYP2D6.
Dalfopristin; Quinupristin: (Moderate) Concomitant use of dihydrocodeine with dalfopristin; quinupristin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of dalfopristin; quinupristin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If dalfopristin; quinupristin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Dalfopristin; quinupristin is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Danazol: (Moderate) Concomitant use of dihydrocodeine with danazol may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of danazol could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If danazol is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Danazol is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Dantrolene: (Major) Concomitant use of opioid agonists with dantrolene may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid agonists with dantrolene to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking dantrolene.
Dapsone: (Moderate) Coadministration of dapsone with acetaminophen may increase the risk of developing methemoglobinemia. Advise patients to discontinue treatment and seek immediate medical attention with any signs or symptoms of methemoglobinemia.
Daridorexant: (Major) Concomitant use of opiate agonists with daridorexant may cause excessive sedation and somnolence. Limit the use of opiates with daridorexant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Avoid prescribing cough medicines that contain opiates in patients taking daridorexant.
Darifenacin: (Moderate) Concomitant use of dihydrocodeine with darifenacin may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Consider alternative therapy to dihydrocodeine when the opioid is used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of darifenacin could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If darifenacin is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine has similar pharmacokinetics to codeine and is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Darifenacin is a moderate inhibitor of CYP2D6. In addition, the concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Darifenacin has anticholinergic actions that may produce additive effects. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known. (Minor) Consuming > 400 mg/day caffeine has been associated with the development of urinary incontinence. Caffeine may aggravate bladder symptoms, increase urination, and counteract the effectiveness of darifenacin to some degree. Patients may wish to limit their intake of caffeinated drugs, dietary supplements (e.g., guarana), or beverages (e.g., green tea, other teas, coffee, colas).
Darunavir: (Moderate) Concomitant use of dihydrocodeine with darunavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of darunavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If darunavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Darunavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Darunavir; Cobicistat: (Moderate) Concomitant use of dihydrocodeine with cobicistat may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cobicistat is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of dihydrocodeine with darunavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of darunavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If darunavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Darunavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Concomitant use of dihydrocodeine with cobicistat may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cobicistat is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of dihydrocodeine with darunavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of darunavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If darunavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Darunavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Deferasirox: (Moderate) Concomitant use of dihydrocodeine with deferasirox can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If deferasirox is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Deferasirox is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Delavirdine: (Moderate) Concomitant use of dihydrocodeine with delavirdine may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of delavirdine could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If delavirdine is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Delavirdine is a strong inhibitor of CYP3A4 and a moderate inhibitor of CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Desflurane: (Moderate) Concurrent use with opiate agonists can decrease the minimum alveolar concentration (MAC) of desflurane needed to produce anesthesia.
Desipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Desloratadine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Desmopressin: (Major) Additive hyponatremic effects may be seen in patients treated with desmopressin and drugs associated with water intoxication, hyponatremia, or SIADH including opiate agonists. Use combination with caution, and monitor patients for signs and symptoms of hyponatremia.
Desogestrel; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Desvenlafaxine: (Major) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and desvenlafaxine because of the potential risk of serotonin syndrome. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Discontinue dihydrocodeine if serotonin syndrome is suspected. Additionally, concomitant use of dihydrocodeine with desvenlafaxine may decrease dihydrocodeine plasma concentrations resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of desvenlafaxine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If desvenlafaxine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Desvenlafaxine is a weak inhibitor of CYP2D6.
Deutetrabenazine: (Major) Concomitant use of opiate agonists with deutetrabenazine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with deutetrabenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking deutetrabenazine, use a lower initial dose of the opiate and titrate to clinical response. If deutetrabenazine is prescribed for a patient taking an opiate agonist, use a lower initial dose of deutetrabenazine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking deutetrabenazine.
Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexbrompheniramine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexchlorpheniramine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dexmedetomidine: (Moderate) Concomitant use of opioid agonists with dexmedetomidine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with dexmedetomidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dextroamphetamine: (Moderate) Avoid excessive caffeine intake during use of the amphetamine salts. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine.
Dextromethorphan; Bupropion: (Moderate) Bupropion is associated with a dose-related risk of seizures. Excessive use of psychostimulants, including caffeine, is associated with an increased seizure risk and may increase this risk during the concurrent use of bupropion. Carefully consider a patient's caffeine intake from all sources, including medicines. Monitor for irritability, tremor, increased blood pressure, insomnia and seizures. Many non-prescription medicines and weight loss aids may contain caffeine and patients should read labels carefully. Examples of foods and beverages containing caffeine include coffee, teas, colas, energy drinks, chocolate, and some herbal or dietary supplements. Patients should be advised to limit excessive caffeine intake during bupropion therapy. (Moderate) Concomitant use of dihydrocodeine with bupropion may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of bupropion could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If bupropion is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Bupropion is a strong inhibitor of CYP2D6.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Dextromethorphan; Quinidine: (Moderate) Concomitant use of dihydrocodeine with quinidine may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of quinidine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If quinidine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Quinidine is a strong inhibitor of CYP2D6.
Diazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If parental diazepam is used with an opiate agonist, reduce the opiate agonist dosage by at least 1/3. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Dicyclomine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Diethylpropion: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Difelikefalin: (Major) Avoid concomitant use of opioids and other CNS depressants, such as difelikefalin. Concomitant use can increase the risk of respiratory depression, hypotension, profound sedation, and death. If alternate treatment options are inadequate and coadministration is necessary, limit dosages and durations to the minimum required, monitor patients closely for respiratory depression and sedation, and consider prescribing naloxone for the emergency treatment of opioid overdose.
Diflunisal: (Moderate) Acetaminophen plasma concentrations can increase by approximately 50% following administration of diflunisal. Acetaminophen has no effect on diflunisal concentrations. Acetaminophen in high doses has been associated with severe hepatotoxic reactions; therefore, caution should be exercised when using these agents concomitantly.
Diltiazem: (Moderate) Concomitant use of dihydrocodeine with diltiazem may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of diltiazem could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If diltiazem is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Diltiazem is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Dimenhydrinate: (Moderate) Concomitant use of opioid agonists with dimenhydrinate may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dimenhydrinate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Diphenhydramine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenhydramine; Ibuprofen: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenhydramine; Naproxen: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Diphenhydramine; Phenylephrine: (Major) Reserve concomitant use of opioids and diphenhydramine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Diphenoxylate; Atropine: (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Dipyridamole: (Major) Methylxanthines, through antagonism of adenosine and thus pharmacologic-induced coronary vasodilation, have been associated with false-negative results during dipyridamole-thallium 201 stress testing. It is recommended that methylxanthines (caffeine, caffeinated beverages and foods, theophylline, etc.) be discontinued for at least 24 hours prior to stress testing. An interaction is not expected when methylxanthines are used concomitantly with chronic dipyridamole therapy.
Disulfiram: (Moderate) Disulfiram has been shown to inhibit caffeine elimination. Caffeine elimination decreased by 30 percent in those patients that were not recovering alcoholics and by 24 percent in those patients that were recovering alcoholics. During disulfiram therapy, patients may need to limit their caffeine intake if nausea, nervousness, tremor, restlessness, palpitations, or insomnia complaints occur. Adverse events were not noted during this pharmacokinetic study, however, the decrease in caffeine clearance could be significant in some patients, including some patients with cardiovascular disease.
Dobutamine: ( Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Dolasetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dopamine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Doxapram: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants, like doxapram. CNS stimulants and sympathomimetics are associated with adverse effects such as nervousness, irritability, insomnia, and/or cardiac arrhythmias, and the concomitant use of these drugs increases the risk of developing such adverse reactions. Coadminsitration should be avoided or used cautiously.
Doxepin: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Doxylamine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Doxylamine; Pyridoxine: (Major) Reserve concomitant use of opioids and doxylamine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Dronabinol: (Moderate) Concomitant use of opioid agonists with dronabinol may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dronabinol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Dronedarone: (Moderate) Concomitant use of dihydrocodeine with dronedarone may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of dronedarone could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If dronedarone is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Dronedarone is a moderate inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Droperidol: (Major) Concomitant use of opioid agonists with droperidol may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking droperidol. Limit the use of opioid pain medications with droperidol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Drospirenone; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Duloxetine: (Major) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and duloxetine because of the potential risk of serotonin syndrome, reduced dihydrocodeine efficacy, and potential for opioid withdrawal symptoms. Discontinue dihydrocodeine if serotonin syndrome is suspected. Concomitant use may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of duloxetine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If duloxetine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Duloxetine is a moderate inhibitor of CYP2D6. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Duvelisib: (Moderate) Concomitant use of dihydrocodeine with duvelisib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of duvelisib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If duvelisib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Duvelisib is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Echinacea: (Moderate) Echinacea may inhibit the metabolism of caffeine. Echinacea reduces the oral clearance of caffeine by 27 percent and increases the mean AUC by 129 percent. Monitor patients for signs of increased caffeine serum concentrations if these drugs are coadministered until more data are available.
Efavirenz: (Moderate) Concomitant use of dihydrocodeine with efavirenz can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If efavirenz is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Efavirenz is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Drugs that induce the hepatic isoenzymes CYP2E1 and CYP1A2, such as efavirenz, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Concomitant use of dihydrocodeine with efavirenz can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If efavirenz is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Efavirenz is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Drugs that induce the hepatic isoenzymes CYP2E1 and CYP1A2, such as efavirenz, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Moderate) Concomitant use of dihydrocodeine with efavirenz can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If efavirenz is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Efavirenz is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Drugs that induce the hepatic isoenzymes CYP2E1 and CYP1A2, such as efavirenz, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced.
Elagolix: (Moderate) Concomitant use of dihydrocodeine with elagolix can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If elagolix is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Elagolix is a weak to moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Elagolix; Estradiol; Norethindrone acetate: (Moderate) Concomitant use of dihydrocodeine with elagolix can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If elagolix is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Elagolix is a weak to moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Elbasvir; Grazoprevir: (Moderate) Concomitant use of dihydrocodeine with grazoprevir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of grazoprevir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If grazoprevir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Grazoprevir is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Eletriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Elexacaftor; tezacaftor; ivacaftor: (Moderate) Concomitant use of dihydrocodeine with ivacaftor may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ivacaftor could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ivacaftor is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ivacaftor is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Eliglustat: (Moderate) Concomitant use of dihydrocodeine with eliglustat may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of eliglustat could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If eliglustat is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Eliglustat is a moderate inhibitor of CYP2D6.
Eltrombopag: (Moderate) Eltrombopag is a UDP-glucuronyltransferase inhibitor. Acetaminophen is a substrate of UDP-glucuronyltransferases. The significance or effect of this interaction is not known; however, elevated concentrations of acetaminophen are possible. Monitor patients for adverse reactions if these drugs are coadministered.
Eluxadoline: (Major) Avoid use of eluxadoline with medications that may cause constipation, such as dihydrocodeine. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle within the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Closely monitor for increased side effects if these drugs are administered together. Additionally, concomitant use of dihydrocodeine with eluxadoline may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of eluxadoline could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If eluxadoline is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Eluxadoline is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Concomitant use of dihydrocodeine with cobicistat may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cobicistat is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Concomitant use of dihydrocodeine with cobicistat may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of cobicistat could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If cobicistat is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Cobicistat is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Encorafenib: (Moderate) Concomitant use of dihydrocodeine with encorafenib may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of encorafenib could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If encorafenib is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Encorafenib is a weak inhibitor and inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP3A4 inducers may reduce efficacy.
Enzalutamide: (Moderate) Concomitant use of dihydrocodeine with enzalutamide can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If enzalutamide is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Enzalutamide is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Ephedrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants like ephedrine. Adverse effects such as nervousness, irritability, insomnia, and/or cardiac arrhythmias are also possible when excessive dosages of caffeine are taken concurrently with ephedrine. Patients may also need to limit their intake of caffeine-containing beverages or foods (e.g., coffee, green tea, other teas, guarana, colas, or chocolate) to avoid caffeine-like side effects.
Ephedrine; Guaifenesin: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants like ephedrine. Adverse effects such as nervousness, irritability, insomnia, and/or cardiac arrhythmias are also possible when excessive dosages of caffeine are taken concurrently with ephedrine. Patients may also need to limit their intake of caffeine-containing beverages or foods (e.g., coffee, green tea, other teas, guarana, colas, or chocolate) to avoid caffeine-like side effects.
Epinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Erythromycin: (Moderate) Concomitant use of dihydrocodeine with erythromycin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of erythromycin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If erythromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Erythromycin is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Inhibitors of the hepatic CYP4501A2, such as erythromycin, may inhibit the hepatic oxidative metabolism of caffeine. No specific management is recommended except in patients who complain of caffeine related side effects. In such patients, the dosage of caffeine containing medications or the ingestion of caffeine containing products may need to be reduced.
Escitalopram: (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and escitalopram because of the potential risk of serotonin syndrome. Discontinue dihydrocodeine if serotonin syndrome is suspected. Additionally, concomitant use of dihydrocodeine with escitalopram may decrease dihydrocodeine plasma concentrations resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of escitalopram could decrease dihydrocodeine plasma concentrations and increase diydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If escitalopram is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to diydromorphine, and by CYP3A4. Escitalopram is a weak inhibitor of CYP2D6.
Esketamine: (Major) Closely monitor blood pressure during concomitant use of esketamine and caffeine. Coadministration of psychostimulants, such as caffeine, with esketamine may increase blood pressure. (Major) Concomitant use of opioid agonists with esketamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with esketamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Patients who have received a dose of esketamine should be instructed not to drive or engage in other activities requiring complete mental alertness until the next day after a restful sleep. Educate patients about the risks and symptoms of excessive CNS depression.
Eslicarbazepine: (Moderate) Concomitant use of dihydrocodeine with eslicarbazepine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If eslicarbazepine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Eslicarbazepine is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Estazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Eszopiclone: (Major) Concomitant use of opioid agonists with eszopiclone may cause excessive sedation, somnolence, and complex sleep-related behaviors (e.g., driving, talking, eating, or performing other activities while not fully awake). Avoid prescribing opioid cough medications in patients taking eszopiclone. Limit the use of opioid pain medications with eszopiclone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Instruct patients to contact their provider immediately if sleep-related symptoms or behaviors occur. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Patients taking eszopiclone for sleep should avoid caffeine-containing medications, dietary supplements, foods, and beverages close to bedtime, as well as excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep. Limit use of caffeine-containing products including medications, dietary supplements (e.g., guarana), and beverages (e.g., coffee, green tea, other teas, or colas).
Ethanol: (Major) Advise patients to avoid alcohol consumption while taking opioids. Alcohol consumption may result in additive CNS depression and may increase the risk for opioid overdose. Consider the patient's use of alcohol when prescribing opioid medications. If the patient is unlikely to be compliant with avoiding alcohol, consider prescribing naloxone especially if additional risk factors for opioid overdose are present. (Major) The risk of developing hepatotoxicity from acetaminophen appears to be increased in patients who regularly consume alcohol. Patients who drink more than 3 alcohol-containing drinks a day and take acetaminophen are at increased risk of developing hepatotoxicity. Acute or chronic alcohol use increases acetaminophen-induced hepatotoxicity by inducing CYP2E1 leading to increased formation of the hepatotoxic metabolite of acetaminophen. Also, chronic alcohol use can deplete liver glutathione stores. Administration of acetaminophen should be limited or avoided altogether in patients with alcoholism or patients who consume alcohol regularly.
Ethinyl Estradiol; Norelgestromin: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Norethindrone Acetate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethinyl Estradiol; Norgestrel: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Ethynodiol Diacetate; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Etomidate: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Etonogestrel; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Etravirine: (Moderate) Concomitant use of dihydrocodeine with etravirine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If etravirine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Etravirine is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Everolimus: (Moderate) Concomitant use of dihydrocodeine with everolimus may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of everolimus could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If everolimus is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Everolimus is a weak inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Exenatide: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
Fedratinib: (Moderate) Concomitant use of dihydrocodeine with fedratinib may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. If fedratinib is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Fedratinib is a moderate inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Fenfluramine: (Moderate) Concomitant use of opioid agonists with fenfluramine may cause excessive sedation and somnolence. Limit the use of opioid agonists with fenfluramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking fenfluramine. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Fesoterodine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when fesoterodine, an anticholinergic drug for overactive bladder is used with opiate agonists. The concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known. (Minor) Beverages containing caffeine or ethanol may aggravate bladder symptoms and counteract the effectiveness of fesoterodine to some degree. Patients may wish to limit their intake of caffeinated drugs, dietary supplements (e.g., guarana), or beverages (e.g., green tea, other teas, coffee, colas) and alcoholic beverages.
Fexofenadine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Flavoxate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Flibanserin: (Moderate) Concomitant use of opioid agonists with flibanserin may cause excessive sedation and somnolence. Limit the use of opioid pain medication with flibanserin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Fluconazole: (Moderate) Concomitant use of dihydrocodeine with fluconazole may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of fluconazole could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If fluconazole is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Fluconazole is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Fluconazole has been shown to inhibit the clearance of caffeine by 25 percent. The clinical significance of these interactions has not been determined.
Fluoxetine: (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and fluoxetine because of the potential risk of serotonin syndrome, reduced dihydrocodeine efficacy, and potential for opioid withdrawal symptoms. Discontinue dihydrocodeine if serotonin syndrome is suspected. Concomitant use may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of fluoxetine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If fluoxetine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Fluoxetine is a strong inhibitor of CYP2D6.
Fluphenazine: (Moderate) Concomitant use of opioid agonists with fluphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking fluphenazine. Limit the use of opioid pain medications with fluphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Flurazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Fluticasone; Salmeterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Fluticasone; Vilanterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Fluvoxamine: (Major) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and fluvoxamine because of the potential risk of serotonin syndrome and prolonged opioid adverse reactions. Discontinue dihydrocodeine if serotonin syndrome is suspected. Concomitant use of dihydrocodeine with fluvoxamine may increase dihydrocodeine plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. Monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of fluvoxamine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If fluvoxamine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Fluvoxamine is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. (Moderate) Strong inhibitors of CYP1A2, such as fluvoxamine, may inhibit the metabolism of caffeine. No specific management is recommended except in patients with caffeine-related side effects after initiating fluvoxamine. In such patients, the dosage of caffeine containing medications or the ingestion of caffeine containing products may need to be reduced.
Food: (Major) Advise patients to avoid cannabis use while taking CNS depressants due to the risk for additive CNS depression and potential for other cognitive adverse reactions.
Formoterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Formoterol; Mometasone: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Fosamprenavir: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of fosamprenavir is necessary. If fosamprenavir is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with fosamprenavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If fosamprenavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Fosamprenavir is a moderate inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Fosphenytoin: (Moderate) Concomitant use of dihydrocodeine with fosphenytoin can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If fosphenytoin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Fosphenytoin is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Fostamatinib: (Moderate) Concomitant use of dihydrocodeine with fostamatinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of fostamatinib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If fostamatinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Fostamatinib is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Frovatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Gabapentin: (Major) Concomitant use of opioid agonists with gabapentin may cause excessive sedation, somnolence, and respiratory depression. Avoid prescribing opioid cough medications in patients taking gabapentin. Limit the use of opioid pain medications with gabapentin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, initiate gabapentin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression.
General anesthetics: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Givosiran: (Major) Avoid concomitant use of givosiran and caffeine due to the risk of increased caffeine-related adverse reactions. If use is necessary, consider decreasing the caffeine dose. Caffeine is a sensitive CYP1A2 substrate. Givosiran may moderately reduce hepatic CYP1A2 enzyme activity because of its pharmacological effects on the hepatic heme biosynthesis pathway.
Glycopyrrolate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Glycopyrrolate; Formoterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Granisetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Grapefruit juice: (Moderate) Patients should not significantly alter their intake of grapefruit or grapefruit juice during therapy with dihydrocodeine. Grapefruit juice, a CYP3A4 inhibitor, may increase plasma concentrations of dihydrocodeine, a CYP3A4 substrate. This may increase or prolong dihydrocodeine-related toxicities including respiratory depression. Advise patients accordingly; patient monitoring and dosage adjustments may be necessary if grapefruit is consumed regularly. (Minor) Data are limited and conflicting as to whether grapefruit juice significantly alters the serum concentrations and/or AUC of caffeine. Caffeine is primarily a CYP1A2 substrate, and grapefruit juice appears to have but a small effect on this enzyme in vivo. One report suggests that grapefruit juice decreases caffeine elimination by inhibition of flavin-containing monooxygenase, a P450 independent system. This interaction might increase caffeine levels and mildly potentiate the clinical effects and common side effects of caffeine. If side effects appear, patients may need to limit either caffeine or grapefruit juice intake.
Green Tea: (Moderate) Many green tea products contain caffeine. Due to the risk for adverse effects, avoid the concurrent administration of caffeine and green tea products that contain caffeine when possible. Concurrent administration can produce excessive caffeine-related adverse events such as nausea, irritability, nervousness, and insomnia.
Guaifenesin; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Guaifenesin; Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Guaifenesin; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Guanfacine: (Moderate) Concomitant use of opioid agonists with guanfacine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with guanfacine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Haloperidol: (Moderate) Concomitant use of dihydrocodeine with haloperidol may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of haloperidol could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If haloperidol is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Haloperidol is a moderate inhibitor of CYP2D6.
Homatropine; Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Hydantoins: (Moderate) Higher caffeine doses may be needed after hydantoin administration; hydantoins increase caffeine elimination. (Minor) Hydantoin anticonvulsants induce hepatic microsomal enzymes and may increase the metabolism of other drugs, leading to reduced efficacy of medications like acetaminophen. In addition, the risk of hepatotoxicity from acetaminophen may be increased with the chronic dosing of acetaminophen along with phenytoin. Adhere to recommended acetaminophen dosage limits. Acetaminophen-related hepatotoxicity has occurred clinically with the concurrent use of acetaminophen 1300 mg to 6200 mg daily and phenytoin. Acetaminophen cessation led to serum transaminase normalization within 2 weeks.
Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Concomitant use of opioid agonists with methyldopa may cause excessive sedation and somnolence. Limit the use of opioid pain medication with methyldopa to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Hydrocodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Hydrocodone; Ibuprofen: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Hydrocodone; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Hydromorphone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Hydroxyzine: (Major) Concomitant use of opioid agonists with hydroxyzine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with hydroxyzine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hyoscyamine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Contraindicated) Dihydrocodeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Ibuprofen; Oxycodone: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Ibuprofen; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Idelalisib: (Moderate) Concomitant use of dihydrocodeine with idelalisib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of idelalisib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If idelalisib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Idelalisib is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Imatinib: (Major) Imatinib, STI-571 may affect the metabolism of acetaminophen. In vitro, imatinib was found to inhibit acetaminophen O-glucuronidation at therapeutic levels. Therefore, systemic exposure to acetaminophen is expected to be increased with coadministration of imatinib. Chronic acetaminophen therapy should be avoided in patients receiving imatinib. (Moderate) Concomitant use of dihydrocodeine with imatinib may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of imatinib could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If imatinib is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Imatinib is a moderate inhibitor of CYP3A4 and a weak inhibitor of CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Imipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Indacaterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Indacaterol; Glycopyrrolate: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Indinavir: (Moderate) Concomitant use of dihydrocodeine with indinavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of indinavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If indinavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Indinavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Insulin Glargine; Lixisenatide: (Minor) When 1,000 mg acetaminophen was given 1 or 4 hours after 10 mcg lixisenatide, the AUC was not significantly changed, but the acetaminophen Cmax was decreased by 29% and 31%, respectively and median Tmax was delayed by 2 and 1.75 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before lixisenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying) and the clinical impact has not been assessed. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least one hour prior to lixisenatide subcutaneous injection.
Ipratropium; Albuterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Isavuconazonium: (Moderate) Concomitant use of dihydrocodeine with isavuconazonium may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of isavuconazonium could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If isavuconazonium is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Isavuconazonium is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of isavuconazonium with acetaminophen may result in increased serum concentrations of acetaminophen. Acetaminophen is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are used together.
Isocarboxazid: (Contraindicated) Dihydrocodeine use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days due to a risk for serotonin syndrome or opioid toxicity, including respiratory depression. Concomitant use of dihydrocodeine with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as dihydrocodeine. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of alternate opioids to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Major) Excessive use of caffeine in any form should be avoided in patients receiving Monoamine oxidase inhibitors (MAOIs). Limit caffeine intake during MAOI use and for 1 to 2 weeks after discontinuation of any MAOI. The use of non-prescription medicines or dietary supplements containing caffeine should be avoided. Patients should try to avoid or limit the intake of all items containing caffeine such as tea, coffee, chocolate, and cola. Cardiac arrhythmias or severe hypertension may occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs if caffeine intake is excessive.
Isoflurane: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Isoniazid, INH: (Major) Agents which induce the hepatic isoenzyme CYP2E1, such as isoniazid, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolites. The combination of isoniazid and acetaminophen has caused severe hepatotoxicity in at least one patient; studies in rats have demonstrated that pre-treatment with isoniazid potentiates acetaminophen hepatotoxicity. (Moderate) Although isoniazid does not inhibit mitochondrial MAO, it does appear to inhibit plasma MAO. Dangerous cardiac arrhythmias or severe hypertension can occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs. Caffeine use should be minimized or avoided during and for 1 to 2 weeks after discontinuation of any MAOI. (Moderate) Concomitant use of dihydrocodeine with isoniazid may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of isoniazid could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If isoniazid is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Isoniazid is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) Agents which induce the hepatic isoenzyme CYP2E1, such as isoniazid, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolites. The combination of isoniazid and acetaminophen has caused severe hepatotoxicity in at least one patient; studies in rats have demonstrated that pre-treatment with isoniazid potentiates acetaminophen hepatotoxicity. (Moderate) Although isoniazid does not inhibit mitochondrial MAO, it does appear to inhibit plasma MAO. Dangerous cardiac arrhythmias or severe hypertension can occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs. Caffeine use should be minimized or avoided during and for 1 to 2 weeks after discontinuation of any MAOI. (Moderate) Concomitant use of acetaminophen with rifampin may increase the known risk of hepatotoxicity in relation to each drug. Severe hepatic dysfunction including fatalities were reported in patients taking rifampin with other hepatotoxic agents. (Moderate) Concomitant use of dihydrocodeine with isoniazid may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of isoniazid could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If isoniazid is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Isoniazid is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with rifamycins is necessary; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. (Minor) Rifampin is a potent inducer of the cytochrome P450 hepatic enzyme system and can reduce the plasma concentrations and possibly the efficacy of caffeine, including caffeine found in green tea products.
Isoniazid, INH; Rifampin: (Major) Agents which induce the hepatic isoenzyme CYP2E1, such as isoniazid, may potentially increase the risk for acetaminophen-induced hepatotoxicity via generation of a greater percentage of acetaminophen's hepatotoxic metabolites. The combination of isoniazid and acetaminophen has caused severe hepatotoxicity in at least one patient; studies in rats have demonstrated that pre-treatment with isoniazid potentiates acetaminophen hepatotoxicity. (Moderate) Although isoniazid does not inhibit mitochondrial MAO, it does appear to inhibit plasma MAO. Dangerous cardiac arrhythmias or severe hypertension can occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs. Caffeine use should be minimized or avoided during and for 1 to 2 weeks after discontinuation of any MAOI. (Moderate) Concomitant use of acetaminophen with rifampin may increase the known risk of hepatotoxicity in relation to each drug. Severe hepatic dysfunction including fatalities were reported in patients taking rifampin with other hepatotoxic agents. (Moderate) Concomitant use of dihydrocodeine with isoniazid may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of isoniazid could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If isoniazid is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Isoniazid is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with rifamycins is necessary; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. (Minor) Rifampin is a potent inducer of the cytochrome P450 hepatic enzyme system and can reduce the plasma concentrations and possibly the efficacy of caffeine, including caffeine found in green tea products.
Isoproterenol: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Istradefylline: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of istradefylline 40 mg daily is necessary. If istradefylline is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with istradefylline may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If istradefylline is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Istradefylline administered as 40 mg daily is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. There was no effect on drug exposure when istradefylline 20 mg daily was coadministered with a sensitive CYP3A4 substrate.
Itraconazole: (Moderate) Concomitant use of dihydrocodeine with itraconazole may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of itraconazole could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If itraconazole is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Itraconazole is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Ivacaftor: (Moderate) Concomitant use of dihydrocodeine with ivacaftor may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ivacaftor could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ivacaftor is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ivacaftor is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Ketamine: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Ketoconazole: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of ketoconazole is necessary. If ketoconazole is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Ketoconazole is a strong CYP3A inhibitor, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with ketoconazole may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. (Moderate) Ketoconazole has been shown to inhibit the clearance of caffeine by 11 percent. The clinical significance of these interactions has not been determined.
Ketoprofen: (Minor) Caffeine administered concurrently with ketoprofen reduced the urine volume in 4 healthy volunteers. The clinical significance of the interaction in preterm neonates is not known.
Lamivudine, 3TC; Zidovudine, ZDV: (Minor) Both acetaminophen and zidovudine, ZDV undergo glucuronidation. Competition for the metabolic pathway is thought to have caused a case of acetaminophen-related hepatotoxicity. This interaction may be more clinically significant in patients with depleted glutathione stores, such as patients with acquired immunodeficiency syndrome, poor nutrition, or alcoholism.
Lamotrigine: (Moderate) Monitor patients for possible loss of lamotrigine efficacy and seizure activity during coadministration with acetaminophen. Acetaminophen may induce glucuronidation pathways involved in lamotrigine metabolism. During a study among 12 healthy volunteers, concomitant administration of acetaminophen 4 g/day with lamotrigine at steady-state increased the formation clearance of lamotrigine glucuronide conjugates by 45%, decreased lamotrigine AUC by 20%, and reduced lamotrigine trough concentrations by 25%.
Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) Concomitant use of dihydrocodeine with clarithromycin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of clarithromycin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If clarithromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Clarithromycin is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Lapatinib: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of lapatinib is necessary. If lapatinib is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with lapatinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If lapatinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Lapatinib is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Larotrectinib: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of larotrectinib is necessary. If larotrectinib is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with larotrectinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If larotrectinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Larotrectinib is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Lasmiditan: (Moderate) Concomitant use of dihydrocodeine with lasmiditan may cause excessive sedation, somnolence, and serotonin syndrome. Limit the use of dihydrocodeine with lasmiditan to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome. Avoid prescribing dihydrocodeine cough medications in patients taking lasmiditan.
Lefamulin: (Moderate) Concomitant use of dihydrocodeine with oral lefamulin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of oral lefamulin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If oral lefamulin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Oral lefamulin is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine; an interaction is not expected with intravenous lefamulin.
Lemborexant: (Moderate) Concomitant use of dihydrocodeine with lemborexant may cause excessive sedation and somnolence. Limit the use of dihydrocodeine with lemborexant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Avoid prescribing dihydrocodeine cough medicine in patients taking lemborexant.
Lenacapavir: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of lenacapavir is necessary. If lenacapavir is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with lenacapavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If lenacapavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Lenacapavir is a moderate inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Leniolisib: (Moderate) Monitor for an increase in caffeine-related adverse reactions, including nervousness, irritability, insomnia, tachycardia, or tremor, if concomitant use of leniolisib is necessary; lower caffeine doses may be necessary. Concomitant use may increase caffeine exposure; caffeine is a CYP1A2 substrate and leniolisib is a CYP1A2 inhibitor.
Lesinurad: (Moderate) Concomitant use of dihydrocodeine with lesinurad can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If lesinurad is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Lesinurad is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Lesinurad; Allopurinol: (Moderate) Concomitant use of dihydrocodeine with lesinurad can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If lesinurad is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Lesinurad is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Letermovir: (Moderate) Concomitant use of dihydrocodeine with letermovir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of letermovir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If letermovir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Letermovir is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Levalbuterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Levamlodipine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Levocetirizine: (Major) Reserve concomitant use of opioids and cetirizine for patients in whom alternate treatment options are inadequate. Limit dosages and durations to the minimum required and monitor patients closely for respiratory depression and sedation. If concomitant use is necessary, consider prescribing naloxone for the emergency treatment of opioid overdose and monitor for signs of urinary retention or reduced gastric motility. Concomitant use can increase the risk of hypotension, respiratory depression, profound sedation, coma, and death as well as urinary retention and/or severe constipation, which may lead to paralytic ileus.
Levoketoconazole: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of ketoconazole is necessary. If ketoconazole is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Ketoconazole is a strong CYP3A inhibitor, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with ketoconazole may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. (Moderate) Ketoconazole has been shown to inhibit the clearance of caffeine by 11 percent. The clinical significance of these interactions has not been determined.
Levomilnacipran: (Moderate) If concomitant use of dihydrocodeine and levomilnacipran is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Levonorgestrel; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Lidocaine: (Moderate) Coadministration of lidocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lidocaine; Epinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) Coadministration of lidocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Lidocaine; Prilocaine: (Moderate) Coadministration of lidocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue lidocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) Coadministration of prilocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue prilocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Linezolid: (Contraindicated) Dihydrocodeine use in patients taking linezolid or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Caffeine use should be minimized or avoided during and for 1 to 2 weeks after discontinuation of linezolid. Linezolid is an antibiotic that is also a weak, reversible nonselective inhibitor of monoamine oxidase (MAO). Dangerous cardiac arrhythmias or severe hypertension can occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs.
Lisdexamfetamine: (Moderate) Avoid excessive caffeine intake during use of lisdexamfetamine. Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine. (Moderate) If concomitant use of dihydrocodeine and lisdexamfetamine is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Lithium: (Major) Caffeine appears to reduce serum lithium concentrations. Adverse reactions to lithium have also been noted to increase simultaneously with a reduction in caffeine intake. Patients taking lithium should be counseled regarding their intake of caffeine. (Moderate) If concomitant use of dihydrocodeine and lithium is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Lixisenatide: (Minor) When 1,000 mg acetaminophen was given 1 or 4 hours after 10 mcg lixisenatide, the AUC was not significantly changed, but the acetaminophen Cmax was decreased by 29% and 31%, respectively and median Tmax was delayed by 2 and 1.75 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before lixisenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying) and the clinical impact has not been assessed. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least one hour prior to lixisenatide subcutaneous injection.
Lofexidine: (Moderate) Monitor for excessive hypotension and sedation during coadministration of lofexidine and dihydrocodeine. Lofexidine can potentiate the effects of CNS depressants.
Lomitapide: (Moderate) Caution should be exercised when lomitapide is used with other medications known to have potential for hepatotoxicity, such as acetaminophen (> 4 g/day PO for >= 3 days/week). The effect of concomitant administration of lomitapide with other hepatotoxic medications is unknown. More frequent monitoring of liver-related tests may be warranted.
Lonafarnib: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of lonafarnib is necessary. If lonafarnib is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved; monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with lonafarnib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If lonafarnib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Dihydrocodeine is partially metabolized by CYP3A4 and lonafarnib is a strong CYP3A4 inhibitor.
Lopinavir; Ritonavir: (Moderate) Concomitant use of dihydrocodeine with ritonavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ritonavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ritonavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ritonavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concurrent administration of acetaminophen with ritonavir may result in elevated acetaminophen plasma concentrations and subsequent adverse events. Acetaminophen is metabolized by the hepatic isoenzyme CYP3A4; ritonavir is an inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Loratadine; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Lorazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Lorcaserin: (Moderate) Concomitant use of dihydrocodeine with lorcaserin may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of lorcaserin could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If lorcaserin is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Lorcaserin is a weak inhibitor of CYP2D6.
Lorlatinib: (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with lorlatinib is necessary; consider increasing the dose of dihydrocodeine as needed. If lorlatinib is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Lorlatinib is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with lorlatinib can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Loxapine: (Moderate) Concomitant use of opioid agonists like dihydrocodeine with loxapine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with loxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking loxapine.
Lumacaftor; Ivacaftor: (Moderate) Concomitant use of dihydrocodeine with ivacaftor may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ivacaftor could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ivacaftor is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ivacaftor is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concomitant use of dihydrocodeine with lumacaftor; ivacaftor can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If lumacaftor; ivacaftor is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Lumacaftor; ivacaftor is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Lumacaftor; Ivacaftor: (Moderate) Concomitant use of dihydrocodeine with lumacaftor; ivacaftor can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If lumacaftor; ivacaftor is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Lumacaftor; ivacaftor is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Lumateperone: (Moderate) Concomitant use of opioid agonists like dihydrocodeine with lumateperone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with lumateperone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking lumateperone.
Lurasidone: (Moderate) Concomitant use of opioid agonists like dihydrocodeine with lurasidone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with lurasidone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking lurasidone.
Maprotiline: (Major) Concomitant use of opioid agonists with maprotiline may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking maprotiline. Limit the use of opioid pain medications with maprotiline to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Maribavir: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of maribavir is necessary. If maribavir is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with maribavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If maribavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Maribavir is a weak inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Mavacamten: (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with mavacamten is necessary; consider increasing the dose of dihydrocodeine as needed. If mavacamten is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Mavacamten is a moderate inducer of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with mavacamten can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patien ts who have developed physical dependence.
Melatonin: (Moderate) Concomitant use of opioid agonists with melatonin may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking melatonin. Limit the use of opioid pain medications with melatonin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Caffeine is a central nervous system (CNS) stimulant. Patients taking melatonin for sleep should avoid caffeine-containing medications, dietary supplements, foods, and beverages close to bedtime, as well as excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep.
Mepivacaine: (Moderate) Coadministration of mepivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue mepivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Meprobamate: (Moderate) Concomitant use of meprobamate and dihydrocodeine can potentiate the effects of dihydrocodeine, which may potentially lead to respiratory depression, CNS depression, sedation, or hypotensive responses. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of dihydrocodeine and/or meprobamate may be recommended. Monitor patients for sedation and respiratory depression.
Metaproterenol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Metaxalone: (Major) Concomitant use of opioid agonists with metaxalone may cause respiratory depression, profound sedation, and death. Limit the use of opioid pain medication with metaxalone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking metaxalone. Educate patients about the risks and symptoms of respiratory depression and sedation. Consider prescribing naloxone for the emergency treatment of opioid overdose. Concomitant use of metaxalone and opioid agonists increases the risk for serotonin syndrome. Avoid concomitant use if possible and monitor for serotonin syndrome if use is necessary.
Methadone: (Major) Concomitant use of methadone with another CNS depressant like dihydrocodeine can lead to additive respiratory depression, hypotension, profound sedation, or coma. Prior to concurrent use of methadone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Methadone should be used with caution and in reduced dosages if used concurrently with a CNS depressant; also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
Methamphetamine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Avoid excessive caffeine intake during use of methamphetamine. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine. (Moderate) If concomitant use of dihydrocodeine and methamphetamine is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Contraindicated) Dihydrocodeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Methocarbamol: (Major) Concomitant use of opioid agonists with methocarbamol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with methocarbamol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking methocarbamol.
Methohexital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Methscopolamine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Methyclothiazide: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Methyldopa: (Moderate) Concomitant use of opioid agonists with methyldopa may cause excessive sedation and somnolence. Limit the use of opioid pain medication with methyldopa to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Methylene Blue: (Contraindicated) Dihydrocodeine use in patients taking methylene blue or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Methylphenidate Derivatives: (Moderate) Caffeine is a CNS stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Avoid excessive caffeine intake during use of methylphenidate or its derivatives. Excessive caffeine ingestion (via medicines, foods like chocolate, dietary supplements, or beverages including coffee, green tea, other teas, colas) may contribute to side effects like nervousness, irritability, nausea, insomnia, or tremor. Patients should avoid medications and dietary supplements which contain high amounts of caffeine. (Moderate) If concomitant use of dihydrocodeine and methylphenidate derivatives is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Metoclopramide: (Moderate) The effects of metoclopramide on gastrointestinal motility are antagonized by narcotic analgesics. Concomitant use of opioid agonists with metoclopramide may also cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking metoclopramide. Limit the use of opioid pain medications with metoclopramide to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Metolazone: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Metyrapone: (Major) Coadministration of metyrapone and acetaminophen may result in acetaminophen toxicity. Acetaminophen glucuronidation is inhibited by metyrapone. It may be advisable for patients to avoid acetaminophen while taking metyrapone.
Metyrosine: (Moderate) The concomitant administration of metyrosine with opiate agonists can result in additive sedative effects.
Mexiletine: (Moderate) Mexiletine is an inhibitor of CYP1A2 isoenzymes, and may reduce CYP1A2-mediated caffeine metabolism. Mexiletine has been shown to increase caffeine concentrations by as much as 23 percent after a single 200 mg dose of mexiletine (nonsignificant increase, p<0.1). Another study has reported that the elimination of caffeine is decreased by 50 percent. While the clinical significance of this interaction is not known, elevated plasma caffeine levels may be of concern in patients with arrhythmias. Patients with cardiac arrhythmias on mexiletine should be cautioned to limit their intake of caffeine.
Midazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Midodrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Mifepristone: (Moderate) Concomitant use of dihydrocodeine with chronic mifepristone therapy may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of mifepristone could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If mifepristone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Mifepristone is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. The clinical significance of this interaction with the short-term use of mifepristone for termination of pregnancy is unknown.
Migalastat: (Moderate) Separate the administration of oral caffeine and migalastat by at least 2 hours if concomitant use is necessary. Simultaneous coadministration may decrease migalastat exposure and efficacy. Coadministration of 190 mg caffeine reduced the mean migalastat AUC by 55%.
Milnacipran: (Moderate) If concomitant use of dihydrocodeine and milnacipran is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Minocycline: (Minor) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as opiate agonists. Caution should be exercised when using these agents concurrently.
Mipomersen: (Moderate) Caution should be exercised when mipomersen is used with other medications known to have potential for hepatotoxicity, such as acetaminophen (> 4 g/day for >= 3 days/week). The effect of concomitant administration of mipomersen with other hepatotoxic medications is unknown. More frequent monitoring of liver-related tests may be warranted.
Mirabegron: (Moderate) Concomitant use of dihydrocodeine with mirabegron may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of mirabegron could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If mirabegron is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Mirabegron is a moderate inhibitor of CYP2D6.
Mirtazapine: (Major) Concomitant use of opioid agonists with mirtazapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with mirtazapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking mirtazapine. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Mitotane: (Moderate) Concomitant use of dihydrocodeine with mitotane can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If mitotane is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Mitotane is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Use caution if mitotane and acetaminophen are used concomitantly, and monitor for decreased efficacy of acetaminophen. Mitotane is a strong CYP3A4 inducer and acetaminophen is a minor (10% to 15%) CYP3A4 substrate; coadministration may result in decreased plasma concentrations of acetaminophen.
Modafinil: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. Caffeine should be used cautiously with modafinil. Excessive intake should be limited. Excessive intake may cause nervousness, irritability, insomnia or other side effects. (Moderate) Concomitant use of dihydrocodeine with modafinil can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If modafinil is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Modafinil is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Molindone: (Moderate) Concomitant use of opioid agonists like dihydrocodeine with molindone may cause excessive sedation and somnolence. Limit the use of opioid pain medication with molindone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking molindone.
Monoamine oxidase inhibitors: (Contraindicated) Dihydrocodeine use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days due to a risk for serotonin syndrome or opioid toxicity, including respiratory depression. Concomitant use of dihydrocodeine with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as dihydrocodeine. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of alternate opioids to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Major) Excessive use of caffeine in any form should be avoided in patients receiving Monoamine oxidase inhibitors (MAOIs). Limit caffeine intake during MAOI use and for 1 to 2 weeks after discontinuation of any MAOI. The use of non-prescription medicines or dietary supplements containing caffeine should be avoided. Patients should try to avoid or limit the intake of all items containing caffeine such as tea, coffee, chocolate, and cola. Cardiac arrhythmias or severe hypertension may occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs if caffeine intake is excessive.
Morphine: (Major) Concomitant use of morphine with dihydrocodeine can potentiate the effects of morphine on respiration, blood pressure, and alertness. Profound sedation and coma may also occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of morphine and/or dihydrocodeine is recommended; for extended-release products, start with the lowest possible dose of morphine (i.e., 15 mg PO every 12 hours, extended-release tablets; 30 mg or less PO every 24 hours; extended-release capsules). Monitor patients for sedation and respiratory depression.
Morphine; Naltrexone: (Major) Concomitant use of morphine with dihydrocodeine can potentiate the effects of morphine on respiration, blood pressure, and alertness. Profound sedation and coma may also occur. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. A reduced dosage of morphine and/or dihydrocodeine is recommended; for extended-release products, start with the lowest possible dose of morphine (i.e., 15 mg PO every 12 hours, extended-release tablets; 30 mg or less PO every 24 hours; extended-release capsules). Monitor patients for sedation and respiratory depression.
Nabilone: (Major) Avoid coadministration of opioid agonists with nabilone due to the risk of additive CNS depression.
Nafcillin: (Moderate) Concomitant use of dihydrocodeine with nafcillin can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If nafcillin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Nafcillin is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Nalbuphine: (Major) Avoid the concomitant use of nalbuphine and opiate agonists, such as dihydrocodeine. Nalbuphine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce the analgesic effects of dihydrocodeine. Nalbuphine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of nalbuphine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Naltrexone: (Major) When naltrexone is used as adjuvant treatment of opiate or alcohol dependence, use is contraindicated in patients currently receiving opiate agonists. Naltrexone will antagonize the therapeutic benefits of opiate agonists and will induce a withdrawal reaction in patients with physical dependence to opioids. Also, patients should be opiate-free for at least 7-10 days prior to initiating naltrexone therapy. If there is any question of opioid use in the past 7-10 days and the patient is not experiencing opioid withdrawal symptoms and/or the urine is negative for opioids, a naloxone challenge test needs to be performed. If a patient receives naltrexone, and an opiate agonist is needed for an emergency situation, large doses of opiate agonists may ultimately overwhelm naltrexone antagonism of opiate receptors. Immediately following administration of exogenous opiate agonists, the opiate plasma concentration may be sufficient to overcome naltrexone competitive blockade, but the patient may experience deeper and more prolonged respiratory depression and thus, may be in danger of respiratory arrest and circulatory collapse. Non-receptor mediated actions like facial swelling, itching, generalized erythema, or bronchoconstriction may occur presumably due to histamine release. A rapidly acting opiate agonist is preferred as the duration of respiratory depression will be shorter. Patients receiving naltrexone may also experience opiate side effects with low doses of opiate agonists. If the opiate agonist is taken in such a way that high concentrations remain in the body beyond the time naltrexone exerts its therapeutic effects, serious side effects may occur.
Naproxen; Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Naratriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Nefazodone: (Major) Concomitant use of dihydrocodeine with nefazodone may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. Additionally, the concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinue dihydrocodeine if serotonin syndrome occurs. Discontinuation of nefazodone could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If nefazodone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Nefazodone is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Nelfinavir: (Moderate) Concomitant use of dihydrocodeine with nelfinavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of nelfinavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If nelfinavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Nelfinavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Neostigmine; Glycopyrrolate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Nesiritide, BNP: (Major) The potential for hypotension may be increased when coadministering nesiritide with opiate agonists.
Netupitant, Fosnetupitant; Palonosetron: (Moderate) Concomitant use of dihydrocodeine with netupitant may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of netupitant could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If netupitant is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Netupitant is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Nicardipine: (Moderate) Concomitant use of dihydrocodeine with nicardipine may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of nicardipine could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If nicardipine is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Nicardipine is a weak inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Nilotinib: (Moderate) Concomitant use of dihydrocodeine with nilotinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of nilotinib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If nilotinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Nilotinib is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Niraparib; Abiraterone: (Moderate) Concomitant use of dihydrocodeine with abiraterone may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of abiraterone could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If abiraterone is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Abiraterone is a moderate inhibitor of CYP2D6.
Nirmatrelvir; Ritonavir: (Moderate) Concomitant use of dihydrocodeine with ritonavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ritonavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ritonavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ritonavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concurrent administration of acetaminophen with ritonavir may result in elevated acetaminophen plasma concentrations and subsequent adverse events. Acetaminophen is metabolized by the hepatic isoenzyme CYP3A4; ritonavir is an inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Nitroglycerin: (Minor) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as opiate agonists. Patients should be monitored more closely for hypotension if nitroglycerin is used concurrently with opiate agonists.
Non-Ionic Contrast Media: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering intrathecal radiopaque contrast agents. Caffeine and caffeine containing products should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours post-procedure.
Norepinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Norethindrone; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Norgestimate; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Nortriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Obeticholic Acid: (Moderate) Monitor for an increase in caffeine-related adverse reactions, including nervousness, irritability, insomnia, tachycardia, or tremor, if concomitant use of obeticholic acid is necessary; lower caffeine doses may be necessary. Concomitant use has been observed to increase caffeine overall exposure by 42%; caffeine is a CYP1A2 substrate and obeticholic acid is a CYP1A2 inhibitor.
Olanzapine: (Major) Concomitant use of opioid agonists with olanzapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with olanzapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking olanzapine.
Olanzapine; Fluoxetine: (Major) Concomitant use of opioid agonists with olanzapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with olanzapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking olanzapine. (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and fluoxetine because of the potential risk of serotonin syndrome, reduced dihydrocodeine efficacy, and potential for opioid withdrawal symptoms. Discontinue dihydrocodeine if serotonin syndrome is suspected. Concomitant use may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of fluoxetine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If fluoxetine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Fluoxetine is a strong inhibitor of CYP2D6.
Olanzapine; Samidorphan: (Contraindicated) Salmidorphan is contraindicated in patients who are using opiate agonists or undergoing acute opioid withdrawal. Salmidorphan increases the risk of precipitating acute opioid withdrawal in patients dependent on opioids. Before initiating salmidorphan, there should be at least a 7-day opioid-free interval from the last use of short-acting opioids, and at least a 14-day opioid-free interval from the last use of long-acting opioids. In emergency situations, if a salmidorphan-treated patient requires opiates for anesthesia or analgesia, discontinue salmidorphan. The opiate agonist should be administered by properly trained individual(s), and the patient properly monitored in a setting equipped and staffed for cardiopulmonary resuscitation. In non-emergency situations, if a salmidorphan-treated patient requires opiate agonist treatment (e.g., for analgesia) discontinue salmidorphan at least 5 days before opioid treatment. Salmidorphan, as an opioid antagonist, may cause opioid treatment to be less effective or ineffective shortly after salmidorphan discontinuation. (Major) Concomitant use of opioid agonists with olanzapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with olanzapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking olanzapine.
Oliceridine: (Major) Concomitant use of oliceridine with dihydrocodeine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of oliceridine with dihydrocodeine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medications in patients taking other opioid agonists. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Olodaterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Omeprazole; Amoxicillin; Rifabutin: (Moderate) As a cytochrome P450 isoenzyme inducers, rifabutin could induce the metabolism of acetaminophen. An increase in acetaminophen-induced hepatotoxicity may be seen by increasing the metabolism of acetaminophen to its toxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced. (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with rifamycins is necessary; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Omeprazole; Sodium Bicarbonate: (Minor) Antacids can delay the oral absorption of acetaminophen, but the interactions are not likely to be clinically significant as the extent of acetaminophen absorption is not appreciably affected.
Ondansetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Oritavancin: (Moderate) Concomitant use of dihydrocodeine with oritavancin can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If oritavancin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Oritavancin is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Orphenadrine: (Major) Concomitant use of opioid agonists with orphenadrine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with orphenadrine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking orphenadrine.
Osilodrostat: (Moderate) Concomitant use of dihydrocodeine with osilodrostat may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of osilodrostat could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to codeine. If osilodrostat is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A; osilodrostat is a dual weak 2D6 and weak 3A inhibitor. CYP3A inhibitors may increase codeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Oxazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Oxcarbazepine: (Moderate) Concomitant use of dihydrocodeine with oxcarbazepine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If oxcarbazepine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Oxcarbazepine is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Oxybutynin: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Minor) Consuming greater than 400 mg/day caffeine has been associated with the development of urinary incontinence. Caffeine may aggravate bladder symptoms, increase urine output, and counteract the effectiveness of drugs used to treat overactive bladder such as oxybutynin. Patients may wish to limit their intake of caffeinated drugs, dietary supplements (e.g., guarana), or beverages (e.g., green tea, other teas, coffee, colas).
Oxycodone: (Major) Concomitant use of oxycodone with other opiate agonists may lead to additive respiratory and/or CNS depression. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of oxycodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If a CNS depressant is used concurrently with oxycodone, a reduced dosage of oxycodone and/or the CNS depressant is recommended; use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor for sedation and respiratory depression.
Oxymorphone: (Major) Concomitant use of oxymorphone with other CNS depressants may produce additive CNS depressant effects. Respiratory depression, hypotension, profound sedation, or coma may result from combination therapy. Prior to concurrent use of oxymorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Oxymorphone should be used in reduced dosages if used concurrently with a CNS depressant; initiate oxymorphone at one-third to one-half the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Slowly titrate the dose as necessary for adequate pain relief and monitor for sedation or respiratory depression.
Ozanimod: (Major) If possible, do not use dihydrocodeine in patients taking MAO inhibitors or within 14 days of stopping them. Dihydrocodeine, like all opioid analgesics, interacts with MAO inhibitors causing central nervous system excitation, and an increased risk for serotonin syndrom and hypertension. An active metabolite of ozanimod inhibits MAO-B. MAO inhibitor interactions with dihydrocodeine may manifest as serotonin syndrome, hypertensive crisis, or opioid toxicity (e.g., respiratory depression, coma). Although a small number of patients treated with ozanimod were concomitantly exposed to opioids, this exposure was not adequate to rule out the possibility of an adverse reaction from coadministration.
Pacritinib: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of pacritinib is necessary. If pacritinib is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with pacritinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If pacritinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Pacritinib is a weak inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Monitor for an increase in caffeine-related adverse reactions, including nervousness, irritability, insomnia, tachycardia, or tremor, if concomitant use of pacritinib is necessary; lower caffeine doses may be necessary. Concomitant use may increase caffeine exposure; caffeine is a CYP1A2 substrate and pacritinib is a CYP1A2 inhibitor.
Palbociclib: (Moderate) Concomitant use of dihydrocodeine with palbociclib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of palbociclib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If palbociclib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Palbociclib is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Paliperidone: (Moderate) Drugs that can cause CNS depression such as opiate agonists, if used concomitantly with paliperidone, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Monitor for signs and symptoms of CNS depression during coadministration of paliperidone and dihydrocodeine and advise patients to avoid driving or engaging in other activities requiring mental alertness until they know how this combination affects them.
Palonosetron: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Panobinostat: (Moderate) Concomitant use of dihydrocodeine with panobinostat may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of panobinostat could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If panobinostat is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Panobinostat is a moderate inhibitor of CYP2D6.
Paroxetine: (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and paroxetine because of the potential risk of serotonin syndrome, reduced dihydrocodeine efficacy, and potential for opioid withdrawal symptoms. Discontinue dihydrocodeine if serotonin syndrome is suspected. It is recommended to avoid this combination when dihydrocodeine is being used for cough. Concomitant use may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. Monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of paroxetine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If paroxetine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Paroxetine is a strong inhibitor of CYP2D6. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Pazopanib: (Moderate) Concomitant use of dihydrocodeine with pazopanib may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of pazopanib could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If pazopanib is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Pazopanib is a weak inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Peginterferon Alfa-2b: (Moderate) Concomitant use of dihydrocodeine with peginterferon alfa-2b may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of peginterferon alfa-2b could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If peginterferon alfa-2b is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Peginterferon alfa-2b is a weak inhibitor of CYP2D6. (Moderate) The effects of peginterferon alfa-2b on CYP1A2 were evaluated in drug interaction studies. Administration of peginterferon alfa-2b with caffeine, a CYP1A2 substrate, resulted in an 18% to 39% increase in the geographic mean exposure for caffeine, suggesting inhibition of CYP1A2. Monitor for adverse effects associated with increased exposure to caffeine if peginterferon alfa-2b is coadministered with caffeine.
Pegvisomant: (Moderate) In clinical trials, patients taking opiate agonists often required higher serum pegvisomant concentrations to achieve appropriate IGF-I suppression compared with patients not receiving opiate agonists. The mechanism of this interaction is unknown.
Penicillin G Benzathine; Penicillin G Procaine: (Moderate) Coadministration of penicillin G procaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue penicillin G procaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Penicillin G Procaine: (Moderate) Coadministration of penicillin G procaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue penicillin G procaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Pentazocine: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as dihydrocodeine. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce the analgesic effects of dihydrocodeine. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Pentazocine; Naloxone: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as dihydrocodeine. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce the analgesic effects of dihydrocodeine. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
Pentobarbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Perampanel: (Moderate) Concomitant use of opioid agonists with perampanel may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perampanel. Limit the use of opioid pain medications with perampanel to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Perindopril; Amlodipine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Perphenazine: (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Perphenazine; Amitriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Pexidartinib: (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with pexidartinib is necessary; consider increasing the dose of dihydrocodeine as needed. If pexidartinib is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Pexidartinib is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with pexidartinib can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Phendimetrazine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Phenelzine: (Contraindicated) Dihydrocodeine use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days due to a risk for serotonin syndrome or opioid toxicity, including respiratory depression. Concomitant use of dihydrocodeine with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as dihydrocodeine. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of alternate opioids to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Major) Excessive use of caffeine in any form should be avoided in patients receiving Monoamine oxidase inhibitors (MAOIs). Limit caffeine intake during MAOI use and for 1 to 2 weeks after discontinuation of any MAOI. The use of non-prescription medicines or dietary supplements containing caffeine should be avoided. Patients should try to avoid or limit the intake of all items containing caffeine such as tea, coffee, chocolate, and cola. Cardiac arrhythmias or severe hypertension may occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs if caffeine intake is excessive.
Phenobarbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Phentermine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants.
Phentermine; Topiramate: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) Concomitant use of dihydrocodeine with topiramate can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If topiramate is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Topiramate is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Phenylephrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Phenytoin: (Moderate) Concomitant use of dihydrocodeine with phenytoin can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If phenytoin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Phenytoin is a strong inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Pimozide: (Moderate) Concomitant use of other central nervous system (CNS) depressants, such as pimozide, can potentiate the effects of dihydrocodeine and may lead to additive CNS or respiratory depression, or profound sedation. If these agents are used together, a reduced initial dosage of dihydrocodeine is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Pirtobrutinib: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of pirtobrutinib is necessary. If pirtobrutinib is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with pirtobrutinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If pirtobrutinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Pirtobrutinib is a weak inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Pneumococcal Vaccine, Polyvalent: (Moderate) Concomitant administration of antipyretics, such as acetaminophen, may decrease an individual's immunological response to the pneumococcal vaccine. A post-marketing study conducted in Poland using a non-US vaccination schedule (2, 3, 4, and 12 months of age) evaluated the impact of prophylactic oral acetaminophen on antibody responses to Prevnar 13. Data show that acetaminophen, given at the time of vaccination and then dosed at 6 to 8 hour intervals for 3 doses on a scheduled basis, reduced the antibody response to some serotypes after the third dose of Prevnar 13 when compared to the antibody responses of infants who only received antipyretics 'as needed' for treatment. However, reduced antibody responses were not observed after the fourth dose of Prevnar 13 with prophylactic acetaminophen.
Posaconazole: (Moderate) Concomitant use of dihydrocodeine with posaconazole may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of posaconazole could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If posaconazole is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Posaconazole is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Posaconazole and acetaminophen should be coadministered with caution due to an increased potential for acetaminophen-related adverse events. Posaconazole is a potent inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of acetaminophen. These drugs used in combination may result in elevated acetaminophen plasma concentrations, causing an increased risk for acetaminophen-related adverse events.
Pramipexole: (Major) Concomitant use of opioid agonists with pramipexole may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking pramipexole. Limit the use of opioid pain medications with pramipexole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like pramipexole have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Pramlintide: (Major) Pramlintide slows gastric emptying and the rate of nutrient delivery to the small intestine. Medications with the potential to slow GI motility, such as opiate agonists, should be used with caution, if at all, with pramlintide until more data are available from the manufacturer. Monitor blood glucose. (Minor) Because pramlintide has the potential to delay the absorption of concomitantly administered medications, medications should be administered at least 1 hour before or 2 hours after pramlintide injection when the rapid onset of a concomitantly administered oral medication is a critical determinant of effectiveness (i.e., analgesics).
Prasugrel: (Moderate) Consider the use of a parenteral anti-platelet agent for patients with acute coronary syndrome who require concomitant opioid agonists. Coadministration of opioid agonists with prasugrel delays and reduces the absorption of prasugrel's active metabolite due to slowed gastric emptying.
Pregabalin: (Major) Concomitant use of opioid agonists with pregabalin may cause excessive sedation, somnolence, and respiratory depression. Avoid prescribing opioid cough medications in patients taking pregabalin. Limit the use of opioid pain medications with pregabalin to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, initiate pregabalin at the lowest recommended dose and monitor patients for symptoms of respiratory depression and sedation. Use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and respiratory depression.
Prilocaine: (Moderate) Coadministration of prilocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue prilocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Prilocaine; Epinephrine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) Coadministration of prilocaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue prilocaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Primidone: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Procarbazine: (Major) Ingestion of certain products should be minimized while receiving procarbazine therapy, as the drug has some MAO inhibiting actions. Caffeine may produce hypertension or hypertensive crisis or induce cardiac arrhythmias if administered to patients taking drugs with strong MAOI properties. All preparations containing caffeine should be used sparingly such as teas, coffee, chocolate, cola, guarana, or 'stay awake' products. Some non-prescription medicines also contain caffeine and should not be taken without health care professional advice. Following discontinuation of procarbazine, dietary restrictions should continue for at least 2 weeks due to the slow recovery from the enzyme-inhibiting effects. (Moderate) Opiate agonists may cause additive sedation or other CNS effects when given in combination with procarbazine.
Prochlorperazine: (Major) Concomitant use of opioid agonists with prochlorperazine may cause excessive sedation and somnolence. Concurrent administration of prochlorperazine is contraindicated in patients receiving large doses of opiate agonists. Avoid prescribing opioid cough medications in patients taking prochlorperazine. Limit the use of opioid pain medications with prochlorperazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Promethazine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Promethazine; Dextromethorphan: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Promethazine; Phenylephrine: (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Propafenone: (Moderate) Concomitant use of dihydrocodeine with propafenone may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of propafenone could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If propafenone is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Propafenone is a moderate inhibitor of CYP2D6.
Propantheline: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Propofol: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Protriptyline: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Pseudoephedrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Pseudoephedrine; Triprolidine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor. (Moderate) Concomitant use of opioid agonists with triprolidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with triprolidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Quazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Quetiapine: (Major) Concomitant use of opioid agonists with quetiapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with quetiapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking quetiapine.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Quinidine: (Moderate) Concomitant use of dihydrocodeine with quinidine may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of quinidine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If quinidine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Quinidine is a strong inhibitor of CYP2D6.
Quinine: (Moderate) Concomitant use of dihydrocodeine with quinine may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of quinine could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If quinine is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Quinine is a moderate inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Racepinephrine: (Moderate) Patients who are using racepinephrine inhalation are advised to avoid foods and beverages that contain caffeine. They should also avoid dietary supplements containing ingredients, such as caffeine, that are reported or claimed to have a stimulant effect. If a patient is taking prescribed medications containing caffeine, then they should seek health care professional advice prior to the use of racepinephrine. Additive adverse effects on the cardiovascular and nervous system are possible, some which may be undesirable. Side effects such as nausea, tremor, nervousness, difficulty with sleep, and increased heart rate may be additive. Consider alternatives to racepinephrine for the treatment of asthma.
Ramelteon: (Moderate) Concomitant use of opioid agonists with ramelteon may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking ramelteon. Limit the use of opioid pain medications with ramelteon to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Caffeine is a central nervous system (CNS) stimulant. Patients taking melatonin or the melatonin analogs (ramelteon, tasimelteon) for sleep should avoid caffeine-containing medications, dietary supplements, foods, and beverages close to bedtime. Patients should be encouraged to avoid excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep.
Ranolazine: (Moderate) Concomitant use of dihydrocodeine with ranolazine may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of ranolazine could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ranolazine is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Ranolazine is a moderate inhibitor of CYP2D6 and a weak inhibitor of CYP3A4. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Rasagiline: (Contraindicated) Rasagiline is contraindicated for use with dihydrocodeine due to the risk of serotonin syndrome. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. At least 14 days should elapse between the discontinuation of rasagiline and the initiation of dihydrocodeine. (Moderate) Although sympathomimetics and psychostimulants are contraindicated for use with other monoamine oxidase inhibitors (MAOIs), hypertensive reactions generally are not expected to occur during concurrent use with rasagiline because of the selective monoamine oxidase-B (MAO-B) inhibition of rasagiline at manufacturer recommended doses.
Regadenoson: (Major) Caffeine is a non-specific adenosine receptor antagonist and can interfere with the efficacy of regadenoson. Patients should avoid consumption of any products containing caffeine (including caffeine from foods and beverages such as coffee, green tea, other teas, colas, and chocolate) for at least 12 hours before regadenoson administration.
Remimazolam: (Major) Concomitant use of opioid agonists with remimazolam may cause respiratory depression, hypotension, profound sedation, and death. Titrate the dose of remimazolam to the desired clinical response and continuously monitor sedated patients for hypotension, airway obstruction, hypoventilation, apnea, and oxygen desaturation.
Ribociclib: (Moderate) Concomitant use of dihydrocodeine with ribociclib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ribociclib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ribociclib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ribociclib is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Ribociclib; Letrozole: (Moderate) Concomitant use of dihydrocodeine with ribociclib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ribociclib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ribociclib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ribociclib is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Rifabutin: (Moderate) As a cytochrome P450 isoenzyme inducers, rifabutin could induce the metabolism of acetaminophen. An increase in acetaminophen-induced hepatotoxicity may be seen by increasing the metabolism of acetaminophen to its toxic metabolite, NAPQI. Also, the analgesic activity of acetaminophen may be reduced. (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with rifamycins is necessary; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Rifampin: (Moderate) Concomitant use of acetaminophen with rifampin may increase the known risk of hepatotoxicity in relation to each drug. Severe hepatic dysfunction including fatalities were reported in patients taking rifampin with other hepatotoxic agents. (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with rifamycins is necessary; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. (Minor) Rifampin is a potent inducer of the cytochrome P450 hepatic enzyme system and can reduce the plasma concentrations and possibly the efficacy of caffeine, including caffeine found in green tea products.
Rifamycins: (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with rifamycins is necessary; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Rifapentine: (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with rifamycins is necessary; consider increasing the dose of dihydrocodeine as needed. If the rifamycin is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Rifamycins are inducers of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with rifamycins can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Risperidone: (Moderate) Concomitant use of dihydrocodeine with other central nervous system (CNS) depressants, such as risperidone, can potentiate the effects of dihydrocodeine and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of dihydrocodeine in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of dihydrocodeine and/or the CNS depressant is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
Ritlecitinib: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of ritlecitinib is necessary. If ritlecitinib is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with ritlecitinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If ritlecitinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ritlecitinib is a moderate inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Monitor for an increase in caffeine-related adverse reactions, including nervousness, irritability, insomnia, tachycardia, or tremor, if concomitant use of ritlecitinib is necessary; lower caffeine doses may be necessary. Concomitant use has been observed to increase caffeine overall exposure by 2.65-fold; caffeine is a CYP1A2 substrate and ritlecitinib is a CYP1A2 inhibitor.
Ritonavir: (Moderate) Concomitant use of dihydrocodeine with ritonavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ritonavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ritonavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ritonavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concurrent administration of acetaminophen with ritonavir may result in elevated acetaminophen plasma concentrations and subsequent adverse events. Acetaminophen is metabolized by the hepatic isoenzyme CYP3A4; ritonavir is an inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Rizatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Rolapitant: (Moderate) Concomitant use of dihydrocodeine with rolapitant may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of rolapitant could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If rolapitant is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Rolapitant is a moderate inhibitor of CYP2D6.
Ropinirole: (Major) Concomitant use of opioid agonists with ropinirole may cause excessive sedation and somnolence. Limit the use of opioid pain medication with ropinirole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Dopaminergic agents have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Reassess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Ropivacaine: (Moderate) Coadministration of ropivacaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue ropivacaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic may allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Rotigotine: (Major) Concomitant use of opioid agonists with rotigotine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking rotigotine. Limit the use of opioid pain medications with rotigotine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like rotigotine have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment.
Rucaparib: (Moderate) Concomitant use of dihydrocodeine with rucaparib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of rucaparib could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If rucaparib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Rucaparib is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Monitor for an increase in caffeine-related adverse reactions if coadministration with rucaparib is necessary. Some patients may need to reduce or limit their caffeine intake. Caffeine is a sensitive CYP1A2 substrate and rucaparib is a weak CYP1A2 inhibitor. Concomitant use increased the AUC of caffeine by 2.6-fold.
Safinamide: (Contraindicated) Concomitant use of safinamide with opioids is contraindicated due to the risk of serotonin syndrome. Allow at least 14 days between discontinuation of safinamide and initiation of treatment with opioids.
Salmeterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Saquinavir: (Moderate) Concomitant use of dihydrocodeine with saquinavir may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of saquinavir could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If saquinavir is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Saquinavir is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Scopolamine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Secobarbital: (Major) Concomitant use of dihydrocodeine with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educa te patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of dihydrocodeine with a barbiturate can decrease dihydrocodeine concentrations, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Caffeine has been reported to increase the metabolism of barbiturates, and barbiturates increase caffeine elimination. Higher caffeine doses may be needed after barbiturate administration. (Minor) Chronic therapy with barbiturates can increase the metabolism and decrease the effectiveness of acetaminophen. During acute overdoses, barbiturates can enhance the formation of toxic acetaminophen metabolites.
Segesterone Acetate; Ethinyl Estradiol: (Moderate) Monitor for estrogen-related adverse effects during concomitant acetaminophen and ethinyl estradiol use. Acetaminophen may increase plasma ethinyl estradiol concentrations, possibly by inhibition of conjugation. (Minor) Serum concentrations of caffeine may be increased during concurrent administration with ethinyl estradiol. Patients may desire to limit products that contain high amounts of caffeine to minimize caffeine-related side effects such as nausea or tremors.
Selegiline: (Major) Avoid use if possible. Dihydrocodeine is closely related to codeine and is usually considered contraindicated for use with selegiline, a selective monoamine oxidase type B inhibitor (MAO-B inhibitor), due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. At least 14 days should elapse between discontinuation of selegiline and initiation of treatment with dihydrocodeine. After stopping treatment with dihydrocodeine, a time period equal to 4 to 5 half-lives of the drug or any active metabolite should elapse before starting therapy with selegiline. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of alternate opioids to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Moderate) Although psychostimulants are contraindicated for use with other monoamine oxidase inhibitors (MAOIs), hypertensive reactions generally are not expected to occur during concurrent use with selegiline because of the selective monoamine oxidase-B (MAO-B) inhibition of selegiline at manufacturer recommended doses. However, cardiac arrhythmias or severe hypertension is possible if doses are exceeded or caffeine intake is excessive.
Selpercatinib: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of selpercatinib is necessary. If selpercatinib is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with selpercatinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If selpercatinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Selpercatinib is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Serotonin-Receptor Agonists: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Serotonin-Receptor Antagonists: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor antagonists. The development of serotonin syndrome has been reported with 5-HT3 receptor antagonists, mostly when used in combination with other serotonergic medications. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Sertraline: (Moderate) Because of the potential risk and severity of serotonin syndrome and a potential for additive CNS effects, caution should be observed when coadministering drugs that have additive properties such as sertraline and dihydrocodeine. In addition, sertraline has the potential for clinically relevant CYP2D6 inhibition and may decrease the metabolism of dihydrocodeine to dihydromorphine, increasing the risk of dihydrocodeine-related adverse effects such as CNS or respiratory depression. Inhibition of CYP2D6 by sertraline may also result in reduced effectiveness of dihydrocodeine by inhibiting the conversion of dihydrocodeine to dihydromorphine. If serotonin syndrome occurs, discontinue the serotonergic agents, and institute appropriate treatment.
Sevoflurane: (Major) Concomitant use of dihydrocodeine with a general anesthetic may cause respiratory depression, hypotension, profound sedation, and death. Avoid prescribing opioid cough medications in patients receiving a general anesthetic. Limit the use of opioid pain medications with a general anesthetic to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation.
Sodium Bicarbonate: (Minor) Antacids can delay the oral absorption of acetaminophen, but the interactions are not likely to be clinically significant as the extent of acetaminophen absorption is not appreciably affected.
Sodium Oxybate: (Major) Concomitant use of opioid agonists with sodium oxybate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with sodium oxybate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Caffeine should be avoided or used cautiously with oxybates. Monitor for potential side effects such as nervousness, irritability, insomnia, and/or cardiac arrhythmias.
Solifenacin: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug, such as solifenacin. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Minor) Consuming > 400 mg/day caffeine has been associated with the development of urinary incontinence. Beverages containing caffeine may aggravate bladder symptoms, increase urine output, and counteract the effectiveness of solifenacin to some degree. Patients may wish to limit their intake of caffeinated drugs, dietary supplements, or beverages.
Solriamfetol: (Moderate) Monitor blood pressure and heart rate during coadministration of solriamfetol, a norepinephrine and dopamine reuptake inhibitor, and caffeine. Concurrent use of solriamfetol and other medications that increase blood pressure and/or heart rate may increase the risk of such effects. Coadministration of solriamfetol with other drugs that increase blood pressure or heart rate has not been evaluated.
Sotorasib: (Moderate) Monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal if coadministration with sotorasib is necessary; consider increasing the dose of dihydrocodeine as needed. If sotorasib is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Sotorasib is a moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Concomitant use of dihydrocodeine with sotorasib can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Spironolactone: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with spironolactone may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If spironolactone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Spironolactone is a weak inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with dihydrocodeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of spironolactone is necessary. If spironolactone is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with spironolactone may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If spironolactone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Spironolactone is a weak inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine. Additionally, monitor for decreased diuretic efficacy and additive orthostatic hypotension when spironolactone is administered with dihydrocodeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
St. John's Wort, Hypericum perforatum: (Moderate) Concomitant use of dihydrocodeine with St. John's Wort can result in lower dihydrocodeine concentrations, greater dihydronorcodeine concentrations, and less metabolism by CYP2D6 with resulting lower dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If St. John's Wort is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs of respiratory depression and sedation. Dihydrocodeine is a CYP3A4 substrate and St. John's Wort is a strong CYP3A4 inducer. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Inducers of CYP1A2, such as St. John's wort, Hypericum perforatum, may induce the hepatic oxidative metabolism of caffeine. (Minor) St. John's wort, Hypericum perforatum induces cytochrome P450 1A2. About 10 to 15% of the acetaminophen dose undergoes oxidative metabolism via cytochrome P450 isoenzymes CYP2E1, 3A4 and 1A2, which produces the hepatotoxic metabolite, N-acetyl-p-benzoquinonimine. Thus, theoretically St. John's wort might increase the risk of acetaminophen-induced hepatotoxicity by increasing the metabolism of acetaminophen to NAPQI.
Stiripentol: (Moderate) Concomitant use of opioid agonists with stiripentol may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking stiripentol. Limit the use of opioid pain medications with stiripentol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Consider a dose adjustment of caffeine when coadministered with stiripentol. Coadministration may alter plasma concentrations of caffeine resulting in an increased risk of adverse reactions and/or decreased efficacy. Caffeine is a sensitive CYP1A2 substrate. In vitro data predicts inhibition or induction of CYP1A2 by stiripentol potentially resulting in clinically significant interactions.
Streptogramins: (Moderate) Concomitant use of dihydrocodeine with dalfopristin; quinupristin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when dihydrocodeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of dalfopristin; quinupristin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If dalfopristin; quinupristin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Dalfopristin; quinupristin is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Sumatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Sumatriptan; Naproxen: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Suvorexant: (Moderate) Concomitant use of opioid agonists with suvorexant may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking suvorexant. Limit the use of opioid pain medications with suvorexant to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Caffeine is a central nervous system (CNS) stimulant. Patients taking medications for sleep, such as suvorexant, eszopiclone, zaleplon, or zolpidem should avoid caffeine-containing medications, dietary supplements, foods, and beverages close to bedtime. Patients should be encouraged to avoid excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep.
Tapentadol: (Major) Concomitant use of tapentadol with dihydrocodeine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of tapentadol with dihydrocodeine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking tapentadol. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Tasimelteon: (Moderate) Concomitant use of opioid agonists with tasimelteon may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking tasimelteon. Limit the use of opioid pain medications with tasimelteon to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Caffeine is a central nervous system (CNS) stimulant. Patients taking melatonin or the melatonin analogs (ramelteon, tasimelteon) for sleep should avoid caffeine-containing medications, dietary supplements, foods, and beverages close to bedtime. Patients should be encouraged to avoid excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep.
Tecovirimat: (Moderate) Concomitant use of dihydrocodeine with tecovirimat can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If tecovirimat is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Tecovirimat is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Tedizolid: (Contraindicated) Dihydrocodeine use in patients taking tedizolid or within 14 days of stopping such treatment is contraindicated due to the risk of serotonin syndrome or opioid toxicity. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of another opioid to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression.
Telmisartan; Amlodipine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Temazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Terbinafine: (Moderate) Concomitant use of dihydrocodeine with terbinafine may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of terbinafine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If terbinafine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Terbinafine is a strong inhibitor of CYP2D6. (Minor) Terbinafine has been shown to inhibit the clearance of caffeine. The clinical significance of this interaction has not been determined.
Terbutaline: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Teriflunomide: (Minor) Monitor for decreased efficacy of caffeine during coadministration of teriflunomide. Teriflunomide may be a weak inducer of CYP1A2. When teriflunomide was given concurrently with caffeine in vivo, a CYP1A2 substrate, the Cmax and AUC of caffeine decreased by 18% and 55%, respectively.
Tetrabenazine: (Moderate) Additive effects are possible when tetrabenazine is combined with other drugs that cause CNS depression. Concurrent use of tetrabenazine and drugs that can cause CNS depression, such as opiate agonists, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, dizziness, and orthostatic hypotension.
Tetracaine: (Major) Due to the central nervous system depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists. Excitation or depression of the CNS may be the first manifestation of CNS toxicity. Restlessness, anxiety, tinnitus, dizziness, blurred vision, tremors, depression, or drowsiness may be early warning signs of CNS toxicity. After each local anesthetic injection, careful and constant monitoring of ventilation adequacy, cardiovascular vital signs, and the patient's state of consciousness is advised. (Moderate) Coadministration of tetracaine with oxidizing agents, such as acetaminophen, may increase the risk of developing methemoglobinemia. Monitor patients closely for signs and symptoms of methemoglobinemia if coadministration is necessary. If methemoglobinemia occurs or is suspected, discontinue tetracaine and any other oxidizing agents. Depending on the severity of symptoms, patients may respond to supportive care; more severe symptoms may require treatment with methylene blue, exchange transfusion, or hyperbaric oxygen.
Tezacaftor; Ivacaftor: (Moderate) Concomitant use of dihydrocodeine with ivacaftor may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of ivacaftor could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If ivacaftor is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Ivacaftor is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Thalidomide: (Major) Avoid coadministration of opioid agonists with thalidomide due to the risk of additive CNS depression.
Theophylline, Aminophylline: (Major) Caffeine is a CNS stimulant. The concurrent administration of caffeine to patients taking aminophylline may produce excessive caffeine-like side effects, such as nausea, irritability or nervousness. Adverse effects such as tremors, insomnia, seizures, or cardiac arrhythmias are also possible when excessive dosages of caffeine are taken concurrently. Patients should avoid medications containing caffeine when possible. Patients may also need to limit their intake of caffeine-containing beverages or foods (e.g., coffee, green tea, other teas, colas, or chocolate) to avoid caffeine-like side effects. (Major) Caffeine is a CNS stimulant. The concurrent administration of caffeine to patients taking theophylline may produce excessive caffeine-like side effects, such as nausea, irritability or nervousness. Adverse effects such as tremors, insomnia, seizures, or cardiac arrhythmias are also possible when excessive dosages of caffeine are taken concurrently with theophylline. Patients taking theophylline should avoid medications containing caffeine when possible. Patients may also need to limit their intake of caffeine-containing beverages or foods (e.g., coffee, green tea, other teas, colas, or chocolate) to avoid caffeine-like side effects. In neonates, theophylline is metabolized to caffeine; initiating caffeine after theophylline therapy is halted may result in caffeine toxicity in neonates if serum caffeine levels are not monitored prior to the initiation of caffeine therapy. Concurrent use of theophylline with caffeine in neonates is not recommended due to the potential for additive toxicity.
Thiazide diuretics: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Thioridazine: (Major) Concomitant use of opioid agonists with thioridazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking thioridazine. Limit the use of opioid pain medications with thioridazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Thiothixene: (Moderate) Concomitant use of opioid agonists like dihydrocodeine with thiothixene may cause excessive sedation and somnolence. Limit the use of opioid pain medication with thiothixene to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking thiothixene.
Ticagrelor: (Moderate) Coadministration of opioid agonists, such as dihydrocodeine, may delay and reduce the absorption of ticagrelor resulting in reduced exposure and diminished inhibition of platelet aggregation. Consider the use of a parenteral antiplatelet agent in acute coronary syndrome patients requiring an opioid agonist. Mean ticagrelor exposure decreased up to 36% in ACS patients undergoing PCI when intravenous morphine was administered with a loading dose of ticagrelor; mean platelet aggregation was higher up to 3 hours post loading dose. Similar effects on ticagrelor exposure and platelet inhibition were observed when fentanyl was administered with a ticagrelor loading dose in ACS patients undergoing PCI. Although exposure to ticagrelor was decreased up to 25% in healthy adults administered intravenous morphine with a loading dose of ticagrelor, platelet inhibition was not delayed or decreased in this population.
Tiotropium; Olodaterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Tipranavir: (Moderate) Concomitant use of dihydrocodeine with tipranavir may alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as reduced efficacy or symptoms of opioid withdrawal or prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage adjustment of dihydrocodeine until stable drug effects are achieved. Discontinuation of tipranavir could alter dihydrocodeine plasma concentrations, resulting in an unpredictable effect such as prolonged opioid adverse reactions or decreased opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If tipranavir is discontinued, monitor the patient carefully and consider adjusting the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Tipranavir is a strong inhibitor of CYP3A4 and CYP2D6. CYP3A4 inhibitors may increase dihydrocodeine-related adverse effects while CYP2D6 inhibitors may reduce efficacy.
Tizanidine: (Major) Concomitant use of opioid agonists with tizanidine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tizanidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking tizanidine. (Minor) Tizanidine delays the time to attain peak concentrations of acetaminophen by about 16 minutes. The clinical significance of this interaction is unknown.
Tobacco: (Major) Advise patients who are taking caffeine to avoid smoking tobacco. Smoking tobacco has been observed to increase caffeine clearance by 50% to 70%. Caffeine is a CYP1A2 substrate and smoking tobacco induces CYP1A2.
Tolterodine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug, such as tolterodine. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Minor) Beverages containing caffeine may aggravate bladder symptoms and counteract the effectiveness of tolterodine to some degree. Patients may wish to limit their intake of caffeinated drugs, dietary supplements, or beverages.
Topiramate: (Moderate) Concomitant use of dihydrocodeine with topiramate can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If topiramate is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Topiramate is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Tramadol: (Major) Concomitant use of tramadol increases the seizure risk in patients taking opiate agonists. Also, tramadol can cause additive CNS depression and respiratory depression when used with opiate agonists; avoid concurrent use whenever possible. If used together, extreme caution is needed, and a reduced tramadol dose is recommended.
Tramadol; Acetaminophen: (Major) Concomitant use of tramadol increases the seizure risk in patients taking opiate agonists. Also, tramadol can cause additive CNS depression and respiratory depression when used with opiate agonists; avoid concurrent use whenever possible. If used together, extreme caution is needed, and a reduced tramadol dose is recommended.
Trandolapril; Verapamil: (Moderate) Concomitant use of dihydrocodeine with verapamil may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of verapamil could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If verapamil is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Verapamil is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Verapamil reduces the clearance of caffeine and increases serum caffeine concentrations, presumably via inhibition of hepatic metabolism. During concomitant therapy with verapamil, it may be prudent to advise patients to limit or minimize the intake of caffeinated products to minimize caffeine-related side effects.
Tranylcypromine: (Contraindicated) Dihydrocodeine use is contraindicated in patients who are receiving or who have received monoamine oxidase inhibitors (MAOIs) within the previous 14 days due to a risk for serotonin syndrome or opioid toxicity, including respiratory depression. Concomitant use of dihydrocodeine with other serotonergic drugs such as MAOIs may result in serious adverse effects including serotonin syndrome. MAOIs may cause additive CNS depression, respiratory depression, drowsiness, dizziness, or hypotension when used with opiate agonists such as dihydrocodeine. If urgent use of an opioid is necessary, use test doses and frequent titration of small doses of alternate opioids to treat pain while closely monitoring blood pressure and signs and symptoms of CNS and respiratory depression. (Major) Excessive use of caffeine in any form should be avoided in patients receiving Monoamine oxidase inhibitors (MAOIs). Limit caffeine intake during MAOI use and for 1 to 2 weeks after discontinuation of any MAOI. The use of non-prescription medicines or dietary supplements containing caffeine should be avoided. Patients should try to avoid or limit the intake of all items containing caffeine such as tea, coffee, chocolate, and cola. Cardiac arrhythmias or severe hypertension may occur because of the potentiation of caffeine's sympathomimetic effects by MAOIs if caffeine intake is excessive.
Trazodone: (Moderate) Using trazodone and dihydrocodeine together may increase the risk for drowsiness, sedation, and CNS depression. There may be an increased risk for serotonin syndrome. Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with trazadone. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Triazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If an opiate agonist is initiated in a patient taking a benzodiazepine, use a lower initial dose of the opiate and titrate to clinical response. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking benzodiazepines.
Tricyclic antidepressants: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Trifluoperazine: (Moderate) Concomitant use of opioid agonists with trifluoperazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking trifluoperazine. Limit the use of opioid pain medications with trifluoperazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Trihexyphenidyl: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
Trimethobenzamide: (Moderate) The concurrent use of trimethobenzamide with other medications that cause CNS depression, like opiate agonists, may potentiate the effects of either trimethobenzamide or the opiate agonist.
Trimipramine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants.
Triprolidine: (Moderate) Concomitant use of opioid agonists with triprolidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with triprolidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Trofinetide: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of trofinetide is necessary. If trofinetide is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with trofinetide may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If trofinetide is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Trofinetide is a weak inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Trospium: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when trospium, an anticholinergic drug for overactive bladder, is used with opiate agonists. The concomitant use of these drugs together may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Both agents may also cause drowsiness or blurred vision, and patients should use care in driving or performing other hazardous tasks until the effects of the drugs are known.
Tucatinib: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of tucatinib is necessary. If tucatinib is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with tucatinib may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If tucatinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Tucatinib is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Umeclidinium; Vilanterol: (Moderate) Caffeine may enhance the cardiac inotropic effects of beta-agonists.
Valerian, Valeriana officinalis: (Moderate) Concomitant use of opioid agonists with valerian may cause excessive sedation and somnolence. Limit the use of opioid pain medication with valerian to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Valproic Acid, Divalproex Sodium: (Moderate) Concomitant use of opioid agonists with valproic acid may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking valproic acid. Limit the use of opioid pain medications with valproic acid to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
Vemurafenib: (Moderate) Concomitant use of vemurafenib and acetaminophen may result in altered concentrations of acetaminophen. Vemurafenib is an inhibitor of CYP1A2 and CYP2A6, and an inducer of CYP3A4. Acetaminophen is a substrate of CYP1A2, CYP2A6, and CYP3A4. Use caution and monitor patients for toxicity and efficacy.
Venlafaxine: (Major) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of dihydrocodeine and venlafaxine because of the potential risk of serotonin syndrome. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Discontinue dihydrocodeine if serotonin syndrome is suspected. Additionally, concomitant use of dihydrocodeine with venlafaxine may decrease dihydrocodeine plasma concentrations resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of venlafaxine could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If venlafaxine is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Venlafaxine is a weak inhibitor of CYP2D6.
Verapamil: (Moderate) Concomitant use of dihydrocodeine with verapamil may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of verapamil could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If verapamil is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Verapamil is a moderate inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Minor) Verapamil reduces the clearance of caffeine and increases serum caffeine concentrations, presumably via inhibition of hepatic metabolism. During concomitant therapy with verapamil, it may be prudent to advise patients to limit or minimize the intake of caffeinated products to minimize caffeine-related side effects.
Vigabatrin: (Moderate) Vigabatrin may cause somnolence and fatigue. Drugs that can cause CNS depression, if used concomitantly with vigabatrin, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when vigabatrin is given with opiate agonists.
Vilazodone: (Moderate) Because of the potential risk and severity of excessive sedation, respiratory depression, and serotonin syndrome, caution should be observed when administering dihydrocodeine with vilazodone. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Use a lower initial dose of the opiate and titrate to clinical response. Inform patients taking this combination of the possible increased risks and monitor for the emergence of excessive CNS depression and serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Viloxazine: (Moderate) Monitor for an increase in caffeine-related adverse reactions, including nervousness, irritability, insomnia, tachycardia, or tremor, if concomitant use of viloxazine is necessary; lower caffeine doses may be necessary. Concomitant use may increase caffeine exposure; caffeine is a CYP1A2 substrate and viloxazine is a CYP1A2 inhibitor.
Vonoprazan; Amoxicillin: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of vonoprazan is necessary. If vonoprazan is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with vonoprazan may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If vonoprazan is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Vonoprazan is a weak inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Vonoprazan; Amoxicillin; Clarithromycin: (Moderate) Concomitant use of dihydrocodeine with clarithromycin may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of clarithromycin could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If clarithromycin is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Clarithromycin is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of vonoprazan is necessary. If vonoprazan is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with vonoprazan may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If vonoprazan is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Vonoprazan is a weak inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Voriconazole: (Moderate) Concomitant use of dihydrocodeine with voriconazole may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of voriconazole could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If voriconazole is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Voriconazole is a strong inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Vortioxetine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with vortioxetine. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Voxelotor: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of voxelotor is necessary. If voxelotor is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with voxelotor may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If voxelotor is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Voxelotor is a moderate inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Warfarin: (Minor) Although acetaminophen is routinely considered safer than aspirin and agent of choice when a mild analgesic/antipyretic is necessary for a patient receiving therapy with warfarin, acetaminophen has also been shown to augment the hypoprothrombinemic response to warfarin. Concomitant acetaminophen ingestion may result in increases in the INR in a dose-related fashion. Clinical bleeding has been reported. Single doses or short (i.e., several days) courses of treatment with acetaminophen are probably safe in most patients taking warfarin. Clinicians should be alert for an increased INR if acetaminophen is administered in large daily doses for longer than 10 to 14 days.
Zafirlukast: (Moderate) Concomitant use of dihydrocodeine with zafirlukast may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of zafirlukast could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If zafirlukast is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Zafirlukast is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Zaleplon: (Major) Concomitant use of opioid agonists with zaleplon may cause excessive sedation, somnolence, and complex sleep-related behaviors (e.g., driving, talking, eating, or performing other activities while not fully awake). Avoid prescribing opioid cough medications in patients taking zaleplon. Limit the use of opioid pain medications with zaleplon to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Instruct patients to contact their provider immediately if sleep-related symptoms or behaviors occur. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Caffeine is a central nervous system (CNS) stimulant. Patients taking medications for sleep, such as zaleplon should avoid caffeine-containing medications, dietary supplements, foods, and beverages close to bedtime. Patients should be encouraged to avoid excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep.
Ziconotide: (Moderate) Concurrent use of ziconotide and opiate agonists may result in an increased incidence of dizziness and confusion. Ziconotide neither interacts with opiate receptors nor potentiates opiate-induced respiratory depression. However, in animal models, ziconotide did potentiate gastrointestinal motility reduction by opioid agonists.
Zidovudine, ZDV: (Minor) Both acetaminophen and zidovudine, ZDV undergo glucuronidation. Competition for the metabolic pathway is thought to have caused a case of acetaminophen-related hepatotoxicity. This interaction may be more clinically significant in patients with depleted glutathione stores, such as patients with acquired immunodeficiency syndrome, poor nutrition, or alcoholism.
Zileuton: (Moderate) Monitor for an increase in caffeine-related adverse reactions, including nervousness, irritability, insomnia, tachycardia, or tremor, if concomitant use of zileuton is necessary; lower caffeine doses may be necessary. Concomitant use may increase caffeine exposure; caffeine is a CYP1A2 substrate and zileuton is a CYP1A2 inhibitor.
Ziprasidone: (Moderate) Because of the potential for additive sedation and CNS depression, caution should be observed when administering dihydrocodeine with ziprasidone. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. There are case reports of serotonin syndrome with use of ziprasidone postmarketing but causality is not established. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Zolmitriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Minor) Zolmitriptan can delay the Tmax of acetaminophen by one hour. A single 1 g dose of acetaminophen does not alter the pharmacokinetics of zolmitriptan and its active metabolite. The interaction between zolmitriptan and acetaminophen is not likely to be clinically significant.
Zolpidem: (Major) Concomitant use of opioid agonists with zolpidem may cause excessive sedation, somnolence, and complex sleep-related behaviors (e.g., driving, talking, eating, or performing other activities while not fully awake). Avoid prescribing opioid cough medications in patients taking zolpidem. Limit the use of opioid pain medications with zolpidem to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Instruct patients to contact their provider immediately if sleep-related symptoms or behaviors occur. Educate patients about the risks and symptoms of excessive CNS depression. For Intermezzo brand of sublingual zolpidem tablets, reduce the dose to 1.75 mg/night. (Minor) Caffeine is a central nervous system (CNS) stimulant. Patients taking medications for sleep, such as zolpidem should avoid caffeine-containing medications, dietary supplements, foods, and beverages within the hours close to bedtime. Patients should be encouraged to avoid excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep. However, in healthy subjects (without insomnia) in a pharmacokinetic study, coadministration of caffeine at a dosage of 150 to 300 mg with zolpidem did not counteract the sedative effects of a single 10 mg dose of zolpidem.

ng dihydrocodeine with vortioxetine. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Voxelotor: (Moderate) Consider a reduced dose of dihydrocodeine with frequent monitoring for respiratory depression and sedation if concurrent use of voxelotor is necessary. If voxelotor is discontinued, consider increasing the dihydrocodeine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Concomitant use of dihydrocodeine with voxelotor may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If voxelotor is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Voxelotor is a moderate inhibitor of CYP3A, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Warfarin: (Minor) Although acetaminophen is routinely considered safer than aspirin and agent of choice when a mild analgesic/antipyretic is necessary for a patient receiving therapy with warfarin, acetaminophen has also been shown to augment the hypoprothrombinemic response to warfarin. Concomitant acetaminophen ingestion may result in increases in the INR in a dose-related fashion. Clinical bleeding has been reported. Single doses or short (i.e., several days) courses of treatment with acetaminophen are probably safe in most patients taking warfarin. Clinicians should be alert for an increased INR if acetaminophen is administered in large daily doses for longer than 10 to 14 days.
Zafirlukast: (Moderate) Concomitant use of dihydrocodeine with zafirlukast may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of zafirlukast could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If zafirlukast is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Zafirlukast is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Zaleplon: (Major) Concomitant use of opioid agonists with zaleplon may cause excessive sedation, somnolence, and complex sleep-related behaviors (e.g., driving, talking, eating, or performing other activities while not fully awake). Avoid prescribing opioid cough medications in patients taking zaleplon. Limit the use of opioid pain medications with zaleplon to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Instruct patients to contact their provider immediately if sleep-related symptoms or behaviors occur. Educate patients about the risks and symptoms of excessive CNS depression. (Minor) Caffeine is a central nervous system (CNS) stimulant. Patients taking medications for sleep, such as zaleplon should avoid caffeine-containing medications, dietary supplements, foods, and beverages close to bedtime. Patients should be encouraged to avoid excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep.
Ziconotide: (Moderate) Concurrent use of ziconotide and opiate agonists may result in an increased incidence of dizziness and confusion. Ziconotide neither interacts with opiate receptors nor potentiates opiate-induced respiratory depression. However, in animal models, ziconotide did potentiate gastrointestinal motility reduction by opioid agonists.
Zidovudine, ZDV: (Minor) Both acetaminophen and zidovudine, ZDV undergo glucuronidation. Competition for the metabolic pathway is thought to have caused a case of acetaminophen-related hepatotoxicity. This interaction may be more clinically significant in patients with depleted glutathione stores, such as patients with acquired immunodeficiency syndrome, poor nutrition, or alcoholism.
Zileuton: (Moderate) Monitor for an increase in caffeine-related adverse reactions, including nervousness, irritability, insomnia, tachycardia, or tremor, if concomitant use of zileuton is necessary; lower caffeine doses may be necessary. Concomitant use may increase caffeine exposure; caffeine is a CYP1A2 substrate and zileuton is a CYP1A2 inhibitor.
Ziprasidone: (Moderate) Because of the potential for additive sedation and CNS depression, caution should be observed when administering dihydrocodeine with ziprasidone. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. There are case reports of serotonin syndrome with use of ziprasidone postmarketing but causality is not established. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Zolmitriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dihydrocodeine with serotonin-receptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Minor) Zolmitriptan can delay the Tmax of acetaminophen by one hour. A single 1 g dose of acetaminophen does not alter the pharmacokinetics of zolmitriptan and its active metabolite. The interaction between zolmitriptan and acetaminophen is not likely to be clinically significant.
Zolpidem: (Major) Concomitant use of opioid agonists with zolpidem may cause excessive sedation, somnolence, and complex sleep-related behaviors (e.g., driving, talking, eating, or performing other activities while not fully awake). Avoid prescribing opioid cough medications in patients taking zolpidem. Limit the use of opioid pain medications with zolpidem to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Instruct patients to contact their provider immediately if sleep-related symptoms or behaviors occur. Educate patients about the risks and symptoms of excessive CNS depression. For Intermezzo brand of sublingual zolpidem tablets, reduce the dose to 1.75 mg/night. (Minor) Caffeine is a central nervous system (CNS) stimulant. Patients taking medications for sleep, such as zolpidem should avoid caffeine-containing medications, dietary supplements, foods, and beverages within the hours close to bedtime. Patients should be encouraged to avoid excessive total daily caffeine intake, as part of proper sleep hygiene, since caffeine intake can interfere with proper sleep. However, in healthy subjects (without insomnia) in a pharmacokinetic study, coadministration of caffeine at a dosage of 150 to 300 mg with zolpidem did not counteract the sedative effects of a single 10 mg dose of zolpidem.

How Supplied

Acetaminophen, Caffeine, Dihydrocodeine Bitartrate/Dvorah/Panlor Oral Tab: 325-30-16mg
Acetaminophen, Caffeine, Dihydrocodeine Bitartrate/Trezix Oral Cap: 320.5-30-16mg

Maximum Dosage
Adults

Capsules containing acetaminophen 320.5 mg: acetaminophen 3,205 mg/24 hours PO; caffeine 300 mg/24 hours PO; dihydrocodeine 160 mg/24 hours PO. Do not exceed a total daily dose of 4 grams of acetaminophen from ALL sources.
Tablets containing acetaminophen 325 mg: acetaminophen 3,250 mg/24 hours PO; caffeine 300 mg/24 hours PO; dihydrocodeine 160 mg/24 hours PO. Do not exceed a total daily dose of 4 grams of acetaminophen from ALL sources.

Geriatric

Capsules containing acetaminophen 320.5 mg: acetaminophen 3,205 mg/24 hours PO; caffeine 300 mg/24 hours PO; dihydrocodeine 160 mg/24 hours PO. Do not exceed a total daily dose of 4 grams of acetaminophen from ALL sources.
Tablets containing acetaminophen 325 mg: acetaminophen 3,250 mg/24 hours PO; caffeine 300 mg/24 hours PO; dihydrocodeine 160 mg/24 hours PO. Do not exceed a total daily dose of 4 grams of acetaminophen from ALL sources.

Adolescents

Safety and efficacy have not been established.

Children

12 years: Safety and efficacy have not been established.
1 to 11 years: Use is contraindicated.

Infants

Use is contraindicated.

Mechanism Of Action

Mechanism of Action: The roles and interactions of acetaminophen, caffeine, and dihydrocodeine in the treatment of moderate to severe pain are not well understood.•Acetaminophen: Acetaminophen acts primarily in the CNS and increases the pain threshold by inhibiting cyclooxygenase, an enzyme involved in prostaglandin (PG) synthesis. Acetaminophen inhibits both isoforms of central cyclooxygenase, COX-1 and COX-2. Acetaminophen does not inhibit PG synthesis in peripheral tissues, which is the reason for its lack of peripheral anti-inflammatory effects. The antipyretic activity of acetaminophen is exerted by blocking the effects of endogenous pyrogen on the hypothalamic heat-regulating center by inhibiting PG synthesis. Heat is dissipated by vasodilatation, increased peripheral blood flow, and sweating.•Caffeine: Caffeine is a central nervous system and cardiovascular stimulant. Caffeine causes cerebral vasoconstriction, which decreases blood flow and oxygen tension. In combination with acetaminophen, caffeine may provide a quicker onset of action and enhance pain relief allowing for lower doses of analgesics.•Dihydrocodeine: Dihydrocodeine and its active metabolite dihydromorphine are µ-opiate receptor agonists. Dihydrocodeine is considered equipotent to codeine. However, it is still unclear which chemical compound (parent versus metabolite) is primarily responsible for the analgesic effects. Opiate analgesia is mediated through changes in the transmission and perception of pain at µ receptors in the peripheral nerves, spinal cord, brainstem, and midbrain. Opiate analgesics alter the emotional response to pain by producing euphoria, tranquility, and rewarding properties. Evidence suggests that the mood altering effects are due to interactions between opioids and dopaminergic pathways in the dorsal striatum. The stimulatory effects of opiates are the result of inhibitory neurotransmitter 'disinhibition' (e.g., blocking the release of GABA or acetylcholine).

Pharmacokinetics

Acetaminophen; caffeine; dihydrocodeine products are administered orally. Time to onset of analgesia is about 1 to 2 hours. All three agents undergo hepatic metabolism.
Acetaminophen: Acetaminophen is metabolized in the liver via glucuronidation. Roughly 10% to 15% of the acetaminophen dose undergoes oxidative metabolism via cytochrome P450 isoenzymes (CYP) 2E1 and 1A2, which produces the hepatotoxic metabolite, N-acetyl-p-benzoquinoneimine (NAPQI). The P450 isoenzyme 3A4 appears to have a minor role in the metabolism of acetaminophen. Glutathione is necessary for inactivation of NAPQI to thioether metabolites, which are excreted in the urine. Fasting shifts the metabolic pathway away from glucuronidation towards oxidation, which results in greater NAPQI amounts that need to be inactivated by conjugation with glutathione. The plasma half-life of acetaminophen in patients with normal hepatic function is 1.25 to 3 hours. Acetaminophen is renally eliminated mainly as the glucuronide conjugate.
Caffeine: Caffeine undergoes hepatic metabolism to paraxanthine, theobromine, and theophylline. Elimination of caffeine is renal as inactive metabolites. The elimination half-life of caffeine in adults is 3 to 7 hours.
Dihydrocodeine: Dihydrocodeine is hepatically metabolized to 3 metabolites: nordihydrocodeine, dihydromorphine, and dihydrocodeine-6-glucuronide. The metabolism of dihydrocodeine to dihydromorphine (43% of dose) is mediated by CYP2D6. In CYP2D6 poor metabolizers, dihydrocodeine O-demethylation to dihydromorphine is impaired. Although the systemic exposure of dihydrocodeine is unaltered in CYP2D6 poor metabolizers as compared with extensive metabolizers, the systemic exposure of dihydromorphine is increased in extensive metabolizers. For example, regardless of CYP2D6 activity, approximately 30% of dihydrocodeine is excreted unchanged, 30% as conjugated dihydrocodeine, 6% as conjugated nordihydrocodeine, and 16% to 20% as unconjugated nordihydrocodeine in the urine of patients with normal renal function. In contrast, in CYP2D6 poor metabolizers, the area under the serum concentration-time curve (AUC), partial metabolic clearance, and total urinary recovery of dihydromorphine were all significantly lower (10.3 +/- 6.1 nmol x hour/L, 7 +/- 4.1 mL/minute, and 1.3% +/- 0.9%, respectively) as compared with CYP2D6 extensive metabolizers (75.5 +/- 42.9 nmol x hour/L, 49.7 +/- 29.9 mL/minute, and 8.9% +/- 6.2%, respectively). The half-life in patients with normal liver function is 3.3 to 4.5 hours.

Oral Route

Acetaminophen: Acetaminophen is relatively well absorbed form the GI tract. About 85% of a dose appears in the urine within 24 hours of oral administration.
Caffeine: Caffeine is relatively well absorbed form the GI tract.
Dihydrocodeine: Dihydrocodeine is relatively well absorbed form the GI tract. The bioavailability of dihydrocodeine is 12% to 34% due to significant first pass effect.

Pregnancy And Lactation
Pregnancy

Acetaminophen; caffeine; dihydrocodeine is not recommended for use during breast-feeding because of the potential for serious adverse events, including excessive sedation and respiratory depression in the breastfed infant. If an infant is exposed to dihydrocodeine through breast milk, monitor for excessive sedation and respiratory depression. Withdrawal symptoms may still occur in breastfed infants when use of an opioid is stopped or when breast-feeding is stopped in the lactating individual. Dihydrocodeine and its active metabolite (dihydromorphine) are present in human milk. An infant nursing from an ultra-rapid metabolizer taking dihydrocodeine could potentially be exposed to higher than expected serum concentrations of morphine and experience life-threatening respiratory depression. In lactating patients with normal dihydrocodeine metabolism (normal CYP2D6 activity), the amount of dihydrocodeine secreted into human milk is low and dose-dependent. There is no information on the effects of dihydrocodeine on milk production. Caffeine may also accumulate in the neonate, leading to insomnia, irritability, or poor feeding.