PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Opioid Antitussive and Expectorant Combinations

    BOXED WARNING

    Asthma, bronchitis, chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, emphysema, ethanol ingestion, respiratory depression

    Guaifenesin; hydrocodone should not be used in patients with active respiratory depression. Coadministration with other CNS depressants may cause serious adverse effects. Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. Avoid use of opioid cough medications in patients taking benzodiazepines, other CNS depressants, or alcohol. Patients should be advised to avoid ethanol ingestion. Additionally, guaifenesin; hydrocodone combination products should not be used for persistent or chronic cough such as occurs with smoking, asthma, chronic obstructive pulmonary disease (COPD) (e.g., emphysema, chronic bronchitis), or any other condition where cough is associated with excessive secretions, unless under the supervision of a health care professional. Indiscriminate use in these patients may precipitate respiratory insufficiency from suppression of the cough reflex. A recurrent or persistent cough (lasting for more than 1 week), or a cough accompanied by fever, nausea or vomiting, rash, or persistent headache may be signs of a more serious condition and should be evaluated by a physician.

    DEA CLASS

    Rx, schedule II

    DESCRIPTION

    Hydrocodone is an opiate agonist antitussive agent; guaifenesin is an expectorant; used in combination to treat cough.

    COMMON BRAND NAMES

    Cleartuss DH, Codiclear DH, Cotuss-V, Fentuss Expectorant, Flowtuss, G-Tuss, Hycosin Expectorant, Hycotuss, OBREDON, Pneumotussin HC, VI-Q-Tuss, Vicodin Tuss, Vitussin

    HOW SUPPLIED

    Cleartuss DH/Codiclear DH/Cotuss-V/Fentuss Expectorant/G-Tuss/Hycosin Expectorant/Hycotuss/Hydrocodone Bitartrate, Guaifenesin/Pneumotussin HC/Vicodin Tuss/VI-Q-Tuss/Vitussin Oral Syrup: 5mL, 5-100mg
    Flowtuss Oral Sol: 5mL, 2.5-200mg
    OBREDON Oral Liq: 5mL, 2.5-200mg

    DOSAGE & INDICATIONS

    For the symptomatic treatment of cough and to loosen mucus associated with the common cold.
    Oral dosage (oral solutions or syrups with hydrocodone 2.5 mg and guaifenesin 200 mg per 5 mL, e.g., Flowtuss, Obredon)
    Adults

    10 mL (containing 5 mg hydrocodone with 400 mg guaifenesin per 10 mL) PO every 4 to 6 hours as needed, not to exceed 6 doses (60 mL) in 24 hours.

    Oral dosage (oral solutions or syrups of hydrocodone 5 mg with guaifenesin 100 mg per 5 mL)
    Adults

    Initially, 5 mL (containing hydrocodone 5 mg and guaifenesin 100 mg per 5 mL) PO 4 times daily after meals and at bedtime as needed. Do not give doses less than 4 hours apart. May increase to 10 mL/dose if needed; do not exceed 15 mL per any single dose. Max: Do not exceed 30 mL/24 hours PO.

    Adolescents

    Initially, 5 mL (containing hydrocodone 5 mg and guaifenesin 100 mg per 5 mL) PO 4 times daily after meals and at bedtime as needed. Do not give doses less than 4 hours apart. May increase to 10 mL/dose if needed. Max: Do not exceed 30 mL/24 hours PO.

    Children 6 to 12 years

    Initially, 2.5 mL (containing hydrocodone 2.5 mg and guaifenesin 50 mg per 2.5 mL) PO 4 times daily after meals and at bedtime as needed. Do not give doses less than 4 hours apart. May increase to 5 mL/dose if needed. Max: Do not exceed 15 mL/24 hours PO.

    Oral dosage (immediate-release tablet containing hydrocodone 2.5 mg with guaifenesin 300 mg; e.g. Endacof-Tab)
    Adults and Adolescents

    NOTE: These products are discontinued in the U.S. Dosage was 1 to 2 tablets (each tablet containing hydrocodone 2.5 mg and guaifenesin 300 mg) PO every 4 to 6 hours as needed. Max: 8 tablets per 24-hour period.

    Children 6 to 12 years

    NOTE: These products are discontinued in the U.S. Dosage was 1 tablet (containing hydrocodone 2.5 mg and guaifenesin 300 mg) PO every 4 to 6 hours as needed. Max: Do not exceed 4 tablets per 24-hour period.

    MAXIMUM DOSAGE

    Adults

    30 mg/day hydrocodone PO; 2.4 grams/day guaifenesin PO.

    Geriatric

    30 mg/day hydrocodone PO; 2.4 grams/day guaifenesin PO.

    Adolescents

    30 mg/day hydrocodone PO; 2.4 grams/day guaifenesin PO are suggested maximum daily doses. However, specific products have specific maximum recommended doses per day; some products are not approved for pediatric use.

    Children

    6 to 12 years: 0.6 mg/kg/day PO hydrocodone; 1.2 grams/day PO guaifenesin have been suggested as maximum daily doses. However, specific products have specific maximum recommended doses per day; some products are not approved for pediatric use.
    Less than 6 years: Safety and efficacy have not been established.

    Infants

    Safety and efficacy have not been established.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    Dosage of the hydrocodone component should be modified depending upon the clinical response and degree of hepatic impairment; no quantitative recommendations are available. No recommendations are available for guaifenesin.

    Renal Impairment

    Dosage of the hydrocodone component should be modified depending upon the clinical response and degree of renal impairment; no recommendations are available for guaifenesin.
    CrCl > 50 mL/min: No dosage adjustment needed.
    CrCl 10—50 mL/min: Consider a reduction in hydrocodone dosage by 25%.
    CrCl < 10 mL/min: Consider a reduction in hydrocodone dosage by 50%.

    ADMINISTRATION

     
    NOTE: This monograph discusses the dosage of guaifenesin; hydrocodone combination products. Clinicians may wish to consult the individual monographs for more specific information.

    Oral Administration

    Administer with a full glass of water. May take with food or milk to minimize GI irritation.
    Hydrocodone-containing cough preparations should never be administered more frequently than every 4 hours. Parents should be warned not to administer hydrocodone antitussives to their children more frequently than recommended by their prescriber as severe, possibly fatal respiratory depression may occur.

    Oral Liquid Formulations

    Use a calibrated measuring device to give an accurate dose of oral syrups.

    STORAGE

    A-COF DH :
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
    Atuss HX:
    - Store at room temperature (between 59 to 86 degrees F)
    Canges-XP:
    - Store at room temperature (between 59 to 86 degrees F)
    Cleartuss DH:
    - Protect from freezing
    - Protect from light
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Codiclear DH:
    - Protect from light
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
    Condasin:
    - Protect from light
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
    Cotuss-V:
    - Protect from freezing
    - Protect from light
    - Store at controlled room temperature (between 68 and 77 degrees F)
    EndaCof-Tab:
    - Protect from light
    - Protect from moisture
    - Store at room temperature (between 59 to 86 degrees F)
    EndaCof-XP :
    - Store at room temperature (between 59 to 86 degrees F)
    ExeClear :
    - Protect from light
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
    ExeCof-XP:
    - Protect from light
    - Store at room temperature (between 59 to 86 degrees F)
    Extendryl HC:
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Fentuss Expectorant:
    - Protect from freezing
    - Protect from light
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Flowtuss:
    - Store at controlled room temperature (between 68 and 77 degrees F)
    FluTuss XP:
    - Store at room temperature (between 59 to 86 degrees F)
    G-Tuss :
    - Protect from freezing
    - Protect from light
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Hycosin Expectorant :
    - Protect from freezing
    - Protect from light
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Hycotuss:
    - Store at 77 degrees F; excursions permitted to 59-86 degrees F
    Hydro-Tuss:
    - Storage information not listed
    Hydro-Tussin HG:
    - Protect from light
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
    Kwelcof :
    - Storage information not listed
    M-Clear:
    - Storage information not listed
    Medcodin :
    - Storage information not listed
    Narcof:
    - Protect from light
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
    OBREDON:
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Pancof XP:
    - Protect from light
    - Store at room temperature (between 59 to 86 degrees F)
    Pneumotussin:
    - Protect from light
    - Protect from moisture
    - Store at room temperature (between 59 to 86 degrees F)
    Pneumotussin HC:
    - Protect from freezing
    - Protect from light
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Relasin-HCX:
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
    Touro HC:
    - Store at room temperature (between 59 to 86 degrees F)
    Tussiclear DH :
    - Protect from light
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
    Tusso-DF:
    - Protect from light
    - Store at room temperature (between 59 to 86 degrees F)
    Tusso-HC:
    - Store at room temperature (between 59 to 86 degrees F)
    Vicoclear DH :
    - Storage information not listed
    Vicodin Tuss:
    - Protect from freezing
    - Protect from light
    - Store at controlled room temperature (between 68 and 77 degrees F)
    VI-Q-Tuss :
    - Protect from freezing
    - Protect from light
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Vitussin :
    - Protect from freezing
    - Protect from light
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Xpect-HC:
    - Store at room temperature (between 59 to 86 degrees F)
    Z-Cof HCX:
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
    ZTuss ZT:
    - Protect from freezing
    - Store at room temperature (between 59 to 86 degrees F)

    CONTRAINDICATIONS / PRECAUTIONS

    General Information

    NOTE: This monograph discusses the use of the guaifenesin; hydrocodone combination products for the relief of cough. Clinicians may wish to consult the individual monographs for more information about the specific contraindications and precautions for each agent.

    Asthma, bronchitis, chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, emphysema, ethanol ingestion, respiratory depression

    Guaifenesin; hydrocodone should not be used in patients with active respiratory depression. Coadministration with other CNS depressants may cause serious adverse effects. Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. Avoid use of opioid cough medications in patients taking benzodiazepines, other CNS depressants, or alcohol. Patients should be advised to avoid ethanol ingestion. Additionally, guaifenesin; hydrocodone combination products should not be used for persistent or chronic cough such as occurs with smoking, asthma, chronic obstructive pulmonary disease (COPD) (e.g., emphysema, chronic bronchitis), or any other condition where cough is associated with excessive secretions, unless under the supervision of a health care professional. Indiscriminate use in these patients may precipitate respiratory insufficiency from suppression of the cough reflex. A recurrent or persistent cough (lasting for more than 1 week), or a cough accompanied by fever, nausea or vomiting, rash, or persistent headache may be signs of a more serious condition and should be evaluated by a physician.

    Pregnancy

    Guaifenesin; hydrocodone is classified in FDA pregnancy risk category C. No well-controlled studies in pregnant women have been performed. The pregnancy risk factor increases to FDA category D if guaifenesin; hydrocodone is used for prolonged periods during pregnancy or in high doses close to term. Hydrocodone readily crosses the placenta. Newborns whose mothers have been chronically taking guaifenesin; hydrocodone may show respiratory depression and/or withdrawal symptoms at birth or within a few days. Avoid product formulations that contain alcohol in pregnant women. Guaifenesin; hydrocodone should be given to a pregnant woman only if benefit clearly outweighs the risk.

    Breast-feeding

    Hydrocodone may be distributed into breast milk in varying degrees depending upon the dose. It is not known if guaifenesin is excreted into breast milk. Guaifenesin; hydrocodone should not be used chronically during breast-feeding as withdrawal symptoms may occur in the infant when the mother discontinues this drug.

    Children, infants, neonates

    Guaifenesin; hydrocodone cough/cold products should not be used in children, infants, or neonates less than 6 years of age; some products are only labeled for use in adult populations. Neonates, infants, and young children are at great risk for dangerous respiratory depression and apnea from hydrocodone use. Hydrocodone is rarely indicated in the treatment of cough due to upper respiratory infection (URI), and some experts do not recommend its routine use. Pediatric patients weighing less than 50 kg may be more sensitive to the effects of opiate agonists and require dosing based on body weight. An accidental lethal overdose in a 3 year old (26 kg) with a respiratory infection has been reported; hydrocodone was administered at a dose of 0.6 mg/kg/day orally but the child received 15 mg within a 9-hour period, with the last two doses within 3 hours of each other. Paradoxical excitement may also occur in children as a side effect of hydrocodone. In January 2007, the CDC warned caregivers and health care providers of the risk for serious injury or fatal overdose from the administration of cough and cold products to children and infants less than 2 years of age; some cases occurred as a result of inadvertent inappropriate use. The FDA recommends that product labels should be read carefully, caution should be used when administering multiple products, and only measuring devices specifically designed for use with medications should be used. While some combination cough/cold products containing these ingredients are available by prescription only, clinicians should thoroughly assess each patient's use of similar products, both prescription and nonprescription, to avoid duplication of therapy and the potential for inadvertent overdose.

    Bladder obstruction, prostatic hypertrophy, urethral stricture, urinary retention

    Hydrocodone can cause urinary retention and oliguria, due to increasing the tension of the detrusor muscle. Patients with bladder obstruction, pelvic tumors, urethral stricture, or prostatic hypertrophy may be affected.

    Driving or operating machinery

    Guaifenesin; hydrocodone combinations may cause dizziness, confusion or drowsiness, particularly if other CNS depressants are being used. Patients should be cautioned regarding performing any hazardous task, driving or operating machinery until they know how this product will affect them.

    Hepatic disease

    Since hydrocodone is metabolized in the liver, the combination of guaifenesin; hydrocodone should be used cautiously in patients with hepatic disease. Hydrocodone may accumulate leading to a prolonged duration of action and increased risk of toxicity in these patients. It may be appropriate to use a lower dose of hydrocodone, but specific recommendations are not available.

    Renal failure, renal impairment

    The elimination of hydrocodone may be reduced in the presence of renal impairment or renal failure. Dose adjustments should be considered in patients with CrCl < 50 ml/min. Patients may be at risk of drug accumulation and associated toxicity if dose reductions are not implemented.

    Abrupt discontinuation

    Short courses of guaifenesin; hydrocodone for antitussive effects do not usually require tapering at the end of therapy. Abrupt discontinuation of prolonged, high dose therapy can result in withdrawal symptoms. These patients should be gradually tapered off guaifenesin; hydrocodone to avoid a withdrawal reaction. Generally, a 50% decrease every 1—2 days of the daily guaifenesin; hydrocodone dose will prevent withdrawal symptoms in patients who have been receiving large daily doses of codeine.

    Opiate agonist hypersensitivity

    Although true opiate agonist hypersensitivity is rare, patients who have demonstrated a prior hypersensitivity reaction to hydrocodone should not receive guaifenesin; hydrocodone or other opioid agonists of the phenanthrene subclass including codeine, morphine, oxycodone and hydromorphone.

    Cardiac arrhythmias, cardiac disease, heart failure, hypotension, hypovolemia, orthostatic hypotension

    At regular antitussive doses, hydrocodone rarely causes cardiovascular side effects. However, opiate agonists can produce cholinergic side effects causing bradycardia and vasovagal syncope. Histamine is released, causing peripheral vasodilatation and orthostatic hypotension. These effects can cause problems in patients with cardiac disease. Guaifenesin; hydrocodone should be used with caution in patients with cardiac arrhythmias, hypotension, or hypovolemia. Guaifenesin; hydrocodone should not be used for a cough that is specifically associated with heart failure or ACE inhibitor therapy.

    Constipation, diarrhea, GI disease, GI obstruction, ileus, inflammatory bowel disease, ulcerative colitis

    Guaifenesin; hydrocodone should be used cautiously in patients with GI disease including GI obstruction, ulcerative colitis, or preexisting constipation due to the effects of codeine on the gastrointestinal tract. Hydrocodone should not be used in patients who have or are suspected of having paralytic ileus. Opiate agonists may obscure the diagnosis or clinical course in patients with acute abdominal conditions. Patients with acute ulcerative colitis or other inflammatory bowel disease may be more sensitive to the constipating effects of opiate agonists. Opiate agonists are contraindicated for use in patients with diarrhea secondary to poisoning or infectious diarrhea. If possible, opiate agonists should not be given until the toxic substance has been eliminated.

    Biliary tract disease, surgery

    Morphine is well recognized to increase the tone of the biliary tract causing spasms (especially in the sphincter of Oddi) increasing biliary tract pressure. Biliary effects due to opiate agonists have resulted in plasma amylase and lipase concentrations up to 2—15 times the normal values. The clinical significance of these effects during guaifenesin; hydrocodone therapy specifically is not known. Nevertheless, guaifenesin; hydrocodone should be used with caution in patients with biliary tract disease or undergoing biliary tract surgery.

    Substance abuse

    Hydrocodone is an opiate agonist. Hydrocodone and guaifenesin combination products are subject to substance abuse and psychologic dependence (i.e., drug addiction) or criminal diversion. Drug addiction is characterized by compulsive use, use for non-medical purposes, and continued use despite harm or risk for harm. Patients with a previous history of substance abuse may be at increased risk of relapse if treated with hydrocodone. Abuse and addiction are separate and distinct from physiologic dependence and tolerance. Physicians should be aware that psychologic dependence may not be accompanied by concurrent tolerance and symptoms of physiologic dependence. In addition, abuse of opiate agonists can occur in the absence of true psychologic dependence and is characterized by misuse for non-medical purposes, often in combination with other psychoactive substances. Guaifenesin; hydrocodone is not approved for the management of substance abuse.

    Head trauma, increased intracranial pressure

    Patients with head trauma or with increased intracranial pressure should not be given this drug combination due to the hydrocodone component, unless the benefits outweigh the risks. Hydrocodone can compromise the evaluation of neurologic parameters and drug-induced hypoventilation can produce cerebral hypoxia and raise CSF pressure, exaggerating the injury.

    Adrenal insufficiency, diabetes mellitus, hypothyroidism, myxedema

    Guaifenesin; hydrocodone should be used carefully in patients with diabetes mellitus, thyroid disease (i.e., hypothyroidism), myxedema, and adrenal insufficiency (i.e., Addison's disease). Such patients may be at increased risk for adverse events. Opioids inhibit the secretion of adrenocorticotropic hormone (ACTH), cortisol, and luteinizing hormone (LH); however, the thyroid stimulating hormone may be either stimulated or inhibited by opioids.

    MAOI therapy

    Guaifenesin; hydrocodone is contraindicated for use in patients receiving MAOI therapy or within 14 days of stopping such therapy. Concomitant use may increase the effect of either the MAOI or hydrocodone, creating a higher risk of adverse events.

    Geriatric

    The geriatric or debilitated patient is more likely to be sensitive to the CNS and respiratory depressant effects of hydrocodone. Dose selection for elderly patients should be made with caution, usually starting at the low end of the dosing range, taking into account the greater frequency of decreased hepatic, renal, or cardiac function, and of co-morbidities or other drug therapies. According to the Beers Criteria, opiate agonists are considered potentially inappropriate medications (PIMs) in geriatric patients with a history of falls or fractures and should be avoided in these populations, with the exception of pain management due to recent fractures or joint replacement, since opiates can produce ataxia, impaired psychomotor function, syncope, and additional falls. If an opiate must be used, consider reducing use of other CNS-active medications that increase the risk of falls and fractures and implement other strategies to reduce fall risk. The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities. According to the OBRA guidelines, cough, cold, and allergy medications should be used only for a limited duration (less than 14 days) unless there is documented evidence of enduring symptoms that cannot otherwise be alleviated and for which a cause cannot be identified and corrected.

    DRUG INTERACTIONS

    Acetaminophen; Butalbital; Caffeine; Codeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Acetaminophen; Caffeine; Dihydrocodeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Acetaminophen; Caffeine; Magnesium Salicylate; Phenyltoloxamine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Acetaminophen; Caffeine; Phenyltoloxamine; Salicylamide: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Acetaminophen; Chlorpheniramine; Phenylephrine; Phenyltoloxamine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Acetaminophen; Codeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Acetaminophen; Dextromethorphan; Doxylamine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Concomitant use of hydrocodone with other central nervous system depressants can potentiate the effects of hydrocodone and may lead to additive CNS or respiratory depression. If hydrocodone is used with a CNS depressant, the dose of one or both drugs should be reduced.
    Acetaminophen; Diphenhydramine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Acetaminophen; Oxycodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
    Acetaminophen; Pentazocine: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as hydrocodone. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of hydrocodone. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
    Acetaminophen; Propoxyphene: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Acetaminophen; Tramadol: (Major) Concomitant use of tramadol increases the seizure risk in patients taking opiate agonists. Also, tramadol can cause additive CNS depression and respiratory depression when used with opiate agonists; avoid concurrent use whenever possible. If used together, extreme caution is needed, and a reduced tramadol dose is recommended.
    Acrivastine; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Aldesleukin, IL-2: (Moderate) Aldesleukin, IL-2 may affect CNS function significantly. Therefore, psychotropic pharmacodynamic interactions could occur following concomitant administration of drugs with significant CNS or psychotropic activity such as opiate agonists. In addition, aldesleukin, IL-2, is a CYP3A4 inhibitor and may increase oxycodone plasma concentrations and related toxicities including potentially fatal respiratory depression. If therapy with both agents is necessary, monitor patients for an extended period and adjust oxycodone dosage as necessary.
    Alfentanil: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Alosetron: (Major) Patients taking medications that decrease GI motility may be at greater risk for serious complications from alosetron, like constipation, via a pharmacodynamic interaction. Constipation is the most frequently reported adverse effect with alosetron. Alosetron, if used with drugs such as opiate agonists, may seriously worsen constipation, leading to events such as GI obstruction/impaction or paralytic ileus.
    Alprazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Aluminum Hydroxide; Magnesium Hydroxide: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as magnesium hydroxide, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Aluminum Hydroxide; Magnesium Hydroxide; Simethicone: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as magnesium hydroxide, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Alvimopan: (Moderate) Patients should not take alvimopan if they have received therapeutic doses of opiate agonists for more than seven consecutive days immediately before initiation of alvimopan therapy. Patients recently exposed to opioids are expected to be more sensitive to the effects of mu-opioid receptor antagonists and may experience adverse effects localized to the gastrointestinal tract such as abdominal pain, nausea, vomiting, and diarrhea.
    Amide local anesthetics: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Amiodarone: (Major) Monitor for respiratory depression, sedation and decreased analgesic effect if hydrocodone and amiodarone are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as amiodarone, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as amiodarone, may result in a reduction in the analgesic effect of hydrocodone.
    Amitriptyline; Chlordiazepoxide: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Amlodipine; Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Amlodipine; Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Amoxapine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include amoxapine,
    Amoxicillin; Clarithromycin; Lansoprazole: (Major) Monitor for respiratory depression and sedation if hydrocodone and clarithromycin are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as clarithromycin, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Amoxicillin; Clarithromycin; Omeprazole: (Major) Monitor for respiratory depression and sedation if hydrocodone and clarithromycin are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as clarithromycin, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Amyl Nitrite: (Moderate) Administration of nitrates such as amyl nitrite to patients receiving other hypotension-producing agents, such as opiate agonists, can cause additive hypotensive or orthostatic effects.
    Anticholinergics: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Apomorphine: (Moderate) Apomorphine causes significant somnolence. Concomitant administration of apomorphine and hydrocodone could result in additive depressant effects.
    Apraclonidine: (Minor) Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as opiate agonists. Although no specific drug interactions were identified with systemic agents and apraclonidine during clinical trials, apraclonidine can cause dizziness and somnolence.
    Aprepitant, Fosaprepitant: (Major) Use caution if hydrocodone and aprepitant, fosaprepitant are used concurrently and monitor for an increase in hydrocodone-related adverse effects, including excess sedation, for several days after administration of a multi-day aprepitant regimen. Hydrocodone is a CYP3A4 substrate. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of hydrocodone. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 15, and 22) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
    Artemether; Lumefantrine: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as artemether; lumefantrine, may result in a reduction in the analgesic effect of hydrocodone.
    Articaine; Epinephrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Asenapine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with asenapine, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when asenapine is given in combination with other centrally-acting medications including opiate agonists.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Aspirin, ASA; Caffeine; Dihydrocodeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Aspirin, ASA; Carisoprodol: (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen is initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tablets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking skeletal muscle relaxants.
    Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen is initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tablets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking skeletal muscle relaxants.
    Aspirin, ASA; Oxycodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
    Atazanavir: (Major) Monitor for respiratory depression and sedation if hydrocodone and atazanavir are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as atazanavir, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Atazanavir; Cobicistat: (Major) Monitor for respiratory depression and sedation if hydrocodone and atazanavir are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as atazanavir, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects. (Moderate) Concomitant use of a CYP2D6 inhibitor, like cobicistat, will decrease the metabolism of hydrocodone to hydromorphone. Although theoretical, patients may experience varying degrees of cough or pain relief if they take hydrocodone and cobicistat together. Enhanced sedation, respiratory depression, or other effects that would be seen with excessive doses of opioids are also possible during concurrent administration.
    Atenolol; Chlorthalidone: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Atracurium: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as neuromuscular blockers, can potentiate CNS and respiratory depression. A dose reduction of one or both drugs may be warranted.
    Atropine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Atropine; Difenoxin: (Major) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Atropine; Diphenoxylate: (Major) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Atropine; Edrophonium: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Atropine; Hyoscyamine; Phenobarbital; Scopolamine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Azelastine: (Moderate) An enhanced CNS depressant effect may occur when azelastine is combined with other CNS depressants including opiate agonists. A dose reduction of one or both drugs may be warranted.
    Azelastine; Fluticasone: (Moderate) An enhanced CNS depressant effect may occur when azelastine is combined with other CNS depressants including opiate agonists. A dose reduction of one or both drugs may be warranted.
    Azilsartan; Chlorthalidone: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Baclofen: (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen is initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tablets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking skeletal muscle relaxants.
    Belladonna Alkaloids; Ergotamine; Phenobarbital: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Belladonna; Opium: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Bendroflumethiazide; Nadolol: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Benzonatate: (Moderate) The vagal effects and respiratory depression induced by hydrocodone may be increased by the use of benzonatate.
    Benztropine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Bethanechol: (Moderate) Bethanechol facilitates intestinal and bladder function via parasympathomimetic actions. Opiate agonists impair the peristaltic activity of the intestine. Thus, these drugs can antagonize the beneficial actions of bethanechol on GI motility.
    Bexarotene: (Moderate) Hydrocodone is metabolized by CYP3A4. Bexarotene, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with bexarotene.
    Bisacodyl: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as bisacodyl, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Bismuth Subsalicylate: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Boceprevir: (Major) Monitor for respiratory depression and sedation if hydrocodone and boceprevir are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as boceprevir, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Bosentan: (Moderate) Hydrocodone is metabolized by CYP3A4. Bosentan, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with bosentan.
    Brexpiprazole: (Moderate) Due to the CNS effects of brexpiprazole, caution is advisable when brexpiprazole is given in combination with other centrally-acting medications including opiate agonists.
    Brigatinib: (Moderate) Monitor for decreased efficacy of hydrocodone, including signs and symptoms of opioid withdrawal in patients who are physically dependent on hydrocodone, if coadministration with brigatinib is necessary. Hydrocodone is a CYP3A substrate and brigatinib induces CYP3A in vitro; plasma concentrations of hydrocodone may decrease.
    Brimonidine: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
    Brimonidine; Brinzolamide: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
    Brimonidine; Timolol: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
    Brompheniramine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Brompheniramine; Carbetapentane; Phenylephrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Brompheniramine; Dextromethorphan; Guaifenesin: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Brompheniramine; Guaifenesin; Hydrocodone: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Brompheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Brompheniramine; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Bupivacaine Liposomal: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Bupivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Bupivacaine; Lidocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Buprenorphine: (Major) Buprenorphine is a mixed opiate agonist/antagonist with strong affinity for the mu-receptor that may partially block the effects of full mu-receptor opiate agonists and reduce analgesic effects. In some cases of acute pain, trauma, or during surgical management, opiate-dependent patients receiving buprenorphine maintenance therapy may require concurrent treatment with opiate agonists, such as hydrocodone. In these cases, health care professionals must exercise caution in opiate agonist dose selection, as higher doses of an opiate agonist may be required to compete with buprenorphine at the mu-receptor. Management strategies may include adding a short-acting opiate agonist to achieve analgesia in the presence of buprenorphine, discontinuation of buprenorphine and use of an opiate agonist to avoid withdrawal and achieve analgesia, or conversion of buprenorphine to methadone while using additional opiate agonists if needed. Closely monitor patients for CNS or respiratory depression. When buprenorphine is used for analgesia, avoid co-use with opiate agonists. Buprenorphine may cause withdrawal symptoms in patients receiving chronic opiate agonists as well as possibly potentiate CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
    Buprenorphine; Naloxone: (Major) Buprenorphine is a mixed opiate agonist/antagonist with strong affinity for the mu-receptor that may partially block the effects of full mu-receptor opiate agonists and reduce analgesic effects. In some cases of acute pain, trauma, or during surgical management, opiate-dependent patients receiving buprenorphine maintenance therapy may require concurrent treatment with opiate agonists, such as hydrocodone. In these cases, health care professionals must exercise caution in opiate agonist dose selection, as higher doses of an opiate agonist may be required to compete with buprenorphine at the mu-receptor. Management strategies may include adding a short-acting opiate agonist to achieve analgesia in the presence of buprenorphine, discontinuation of buprenorphine and use of an opiate agonist to avoid withdrawal and achieve analgesia, or conversion of buprenorphine to methadone while using additional opiate agonists if needed. Closely monitor patients for CNS or respiratory depression. When buprenorphine is used for analgesia, avoid co-use with opiate agonists. Buprenorphine may cause withdrawal symptoms in patients receiving chronic opiate agonists as well as possibly potentiate CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist. (Major) The opiate antagonists naloxone and naltrexone are pharmacologic opposites of hydrocodone. These drugs can block the actions of hydrocodone and, if administered to patients who have received chronic hydrocodone, can produce acute withdrawal and/or reduce the analgesic effect of hydrocodone.
    Bupropion; Naltrexone: (Major) The opiate antagonists naloxone and naltrexone are pharmacologic opposites of hydrocodone. These drugs can block the actions of hydrocodone and, if administered to patients who have received chronic hydrocodone, can produce acute withdrawal and/or reduce the analgesic effect of hydrocodone.
    Buspirone: (Moderate) Concomitant use of hydrocodone with other central nervous system depressants, such as buspirone, can potentiate the effects of hydrocodone and may lead to additive CNS or respiratory depression. If hydrocodone is used with buspirone, the dose of one or both drugs should be reduced.
    Butorphanol: (Major) Avoid the concomitant use of butorphanol and opiate agonists, such as hydrocodone. Butorphanol is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of hydrocodone. Butorphanol may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of butorphanol with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
    Calcium Carbonate; Magnesium Hydroxide: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as magnesium hydroxide, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Capsaicin; Metaxalone: (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen is initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tablets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking skeletal muscle relaxants.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Carbamazepine: (Moderate) Inducers of CYP3A4 such as carbamazepine may induce the hepatic metabolism of opiate agonists, which may lead to opiate withdrawal or inadequate pain control. This interaction is most significant if the enzyme-inducing agent is added after opiate therapy has begun in patients who are opiate tolerant. Clinicians should be alert to changes in the effect of the opioid agonist. Opiate doses may need to be increased if carbamazepine is added. Conversely, doses may need to be decreased if carbamazepine is discontinued.
    Carbetapentane; Chlorpheniramine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Chlorpheniramine; Phenylephrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Diphenhydramine; Phenylephrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Guaifenesin: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Guaifenesin; Phenylephrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Phenylephrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Phenylephrine; Pyrilamine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Pseudoephedrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Pyrilamine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbidopa; Levodopa; Entacapone: (Moderate) Concomitant use of opiate agonists with other central nervous system (CNS) depressants such as COMT inhibitors can potentiate the effects of the opiate and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of an opiate in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of the opiate and/or the CNS depressant is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
    Carbinoxamine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Carbinoxamine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Carbinoxamine; Hydrocodone; Phenylephrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Carbinoxamine; Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Carbinoxamine; Phenylephrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Carbinoxamine; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Cariprazine: (Moderate) Due to the CNS effects of cariprazine, caution is advisable when cariprazine is given in combination with other centrally-acting medications including opiate agonists.
    Carisoprodol: (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen is initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tablets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking skeletal muscle relaxants.
    Castor Oil: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as castor oil, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Ceritinib: (Major) Avoid coadministration of ceritinib with hydrocodone due to increased hydrocodone exposure. If coadministration is unavoidable, monitor for hydrocodone-related adverse reactions, including sedation and respiratory depression, especially if a stable dose of hydrocodone had been reached prior to beginning ceritinib therapy. Ceritinib is a CYP3A4 inhibitor and hydrocodone is primarily metabolized by CYP3A4.
    Cetirizine: (Moderate) Additive drowsiness may occur if cetirizine or levocetirizine is administered with other drugs that depress the CNS, including opiate agonists.
    Cetirizine; Pseudoephedrine: (Moderate) Additive drowsiness may occur if cetirizine or levocetirizine is administered with other drugs that depress the CNS, including opiate agonists.
    Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chloramphenicol: (Major) Monitor for respiratory depression and sedation if hydrocodone and chloramphenicol are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as chloramphenicol, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Chlorcyclizine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlordiazepoxide: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Chlordiazepoxide; Clidinium: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Chloroprocaine: (Minor) Due to the CNS depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists.
    Chlorothiazide: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Chlorpheniramine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlorpheniramine; Codeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlorpheniramine; Dextromethorphan: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlorpheniramine; Dihydrocodeine; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlorpheniramine; Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlorpheniramine; Hydrocodone: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlorpheniramine; Hydrocodone; Phenylephrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlorpheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlorpheniramine; Phenylephrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlorpheniramine; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Chlorpromazine: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as phenothiazines, may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Chlorthalidone: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Chlorthalidone; Clonidine: (Moderate) Clonidine has CNS depressive effects and can potentiate the actions of other CNS depressants including opiate agonists. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Chlorzoxazone: (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen is initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tablets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking skeletal muscle relaxants.
    Cimetidine: (Minor) Concurrent use may increase the adverse effects of hydrocodone, especially if a large cimetidine dose ( more than 600 mg/day) is used or if the patient is not young and healthy. The clinical significance of this interaction is not established. Monitor patients for increased respiratory and CNS depression.
    Cinacalcet: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as cinacalcet, may result in a reduction in the analgesic effect of hydrocodone.
    Ciprofloxacin: (Major) Monitor for respiratory depression and sedation if hydrocodone and ciprofloxacin are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized to norhydrocodone via CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as ciprofloxacin, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Cisatracurium: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as neuromuscular blockers, can potentiate CNS and respiratory depression. A dose reduction of one or both drugs may be warranted.
    Citalopram: (Major) The risk of serotonin syndrome and reduced efficacy of hydrocodone is possible if citalopram and hydrocodone are used together. Use of opioid medications with drugs known to affect the neurotransmitter system, such as citalopram, has resulted in serotonin syndrome. Monitor the patient for serotonin syndrome and discontinue one or both drugs if serotonin syndrome is suspected. Also, impairment of CYP2D6 metabolism by citalopram may reduce the conversion of hydrocodone to its active forms, thus reducing analgesic efficacy.
    Clarithromycin: (Major) Monitor for respiratory depression and sedation if hydrocodone and clarithromycin are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as clarithromycin, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Clemastine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Clobazam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, co-administration of hydrocodone and a CYP2D6 inhibitor, such as clobazam, may result in a reduction in the analgesic effect of hydrocodone. Avoid opiate cough medications in patients taking benzodiazepines.
    Clonazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Clonidine: (Moderate) Clonidine has CNS depressive effects and can potentiate the actions of other CNS depressants including opiate agonists.
    Clorazepate: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Clozapine: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as clozapine, may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, combining clozapine with opiate agonists may lead to additive effects on intestinal motility or bladder function.
    Cobicistat: (Moderate) Concomitant use of a CYP2D6 inhibitor, like cobicistat, will decrease the metabolism of hydrocodone to hydromorphone. Although theoretical, patients may experience varying degrees of cough or pain relief if they take hydrocodone and cobicistat together. Enhanced sedation, respiratory depression, or other effects that would be seen with excessive doses of opioids are also possible during concurrent administration.
    Cobicistat; Elvitegravir; Emtricitabine; Tenofovir Alafenamide: (Moderate) Concomitant use of a CYP2D6 inhibitor, like cobicistat, will decrease the metabolism of hydrocodone to hydromorphone. Although theoretical, patients may experience varying degrees of cough or pain relief if they take hydrocodone and cobicistat together. Enhanced sedation, respiratory depression, or other effects that would be seen with excessive doses of opioids are also possible during concurrent administration.
    Cobicistat; Elvitegravir; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Concomitant use of a CYP2D6 inhibitor, like cobicistat, will decrease the metabolism of hydrocodone to hydromorphone. Although theoretical, patients may experience varying degrees of cough or pain relief if they take hydrocodone and cobicistat together. Enhanced sedation, respiratory depression, or other effects that would be seen with excessive doses of opioids are also possible during concurrent administration.
    Codeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Codeine; Guaifenesin: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Codeine; Phenylephrine; Promethazine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Codeine; Promethazine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    COMT inhibitors: (Moderate) Concomitant use of opiate agonists with other central nervous system (CNS) depressants such as COMT inhibitors can potentiate the effects of the opiate and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of an opiate in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of the opiate and/or the CNS depressant is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
    Conivaptan: (Major) Monitor for respiratory depression and sedation if hydrocodone and conivaptan are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as conivaptan, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Crizotinib: (Moderate) Concomitant use of hydrocodone with crizotinib may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. Monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of crizotinib could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If crizotinib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP3A4. Crizotinib is a moderate inhibitor of CYP3A4.
    Crofelemer: (Moderate) Pharmacodynamic interactions between crofelemer and opiate agonists are theoretically possible. Crofelemer does not affect GI motility mechanisms, but does have antidiarrheal effects. Patients taking medications that decrease GI motility, such as opiate agonists, may be at greater risk for serious complications from crofelemer, such as constipation with chronic use. Use caution and monitor GI symptoms during coadministration.
    Cyclizine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Cyclobenzaprine: (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen is initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tablets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking skeletal muscle relaxants.
    Cyproheptadine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Dalfopristin; Quinupristin: (Major) Monitor for respiratory depression and sedation if hydrocodone and dalfopristin; quinupristin are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as dalfopristin; quinupristin, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Danazol: (Major) Monitor for respiratory depression and sedation if hydrocodone and danazol are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as danazol, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Dantrolene: (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen is initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tablets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking skeletal muscle relaxants.
    Darifenacin: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Darunavir: (Major) Monitor for respiratory depression and sedation if hydrocodone and darunavir are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as darunavir, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Darunavir; Cobicistat: (Major) Monitor for respiratory depression and sedation if hydrocodone and darunavir are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as darunavir, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects. (Moderate) Concomitant use of a CYP2D6 inhibitor, like cobicistat, will decrease the metabolism of hydrocodone to hydromorphone. Although theoretical, patients may experience varying degrees of cough or pain relief if they take hydrocodone and cobicistat together. Enhanced sedation, respiratory depression, or other effects that would be seen with excessive doses of opioids are also possible during concurrent administration.
    Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Major) Concurrent administration of hydrocodone with ritonavir may result in elevated hydrocodone plasma concentrations and subsequent adverse events, such as sedation and respiratory depression. If these drugs are given together, a 50% reduction in the dose of hydrocodone may be needed, and monitoring for respiratory depression and sedation at regular intervals is recommended. Hydrocodone is metabolized by the hepatic isoenzymes CYP3A4 and CYP2D6; ritonavir is an inhibitor of these enzymes. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as ritonavir may reduce the efficacy of hydrocodone. Caution and close monitoring for both efficacy and adverse reactions are advised if these drugs are administered together; a hydrocodone dosage adjustment may be necessary.
    Dasatinib: (Major) Monitor for respiratory depression and sedation if hydrocodone and dasatinib are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as dasatinib, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Delavirdine: (Major) Monitor for respiratory depression, sedation and decreased analgesic effect if hydrocodone and delavirdine are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as delavirdine, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as delavirdine, may result in a reduction in the analgesic effect of hydrocodone.
    Desflurane: (Moderate) Concurrent use with opiate agonists can decrease the minimum alveolar concentration (MAC) of desflurane needed to produce anesthesia.
    Desloratadine: (Minor) Although desloratadine is considered a 'non-sedating' antihistamine, rare CNS effects such as dizziness and sedation have been reported. For this reason, it would be prudent to monitor for drowsiness or dizziness when used concurrently with other CNS depressants such as opiate agonists.
    Desloratadine; Pseudoephedrine: (Minor) Although desloratadine is considered a 'non-sedating' antihistamine, rare CNS effects such as dizziness and sedation have been reported. For this reason, it would be prudent to monitor for drowsiness or dizziness when used concurrently with other CNS depressants such as opiate agonists.
    Desmopressin: (Major) Additive hyponatremic effects may be seen in patients treated with desmopressin and drugs associated with water intoxication, hyponatremia, or SIADH including opiate agonists. Use combination with caution, and monitor patients for signs and symptoms of hyponatremia.
    Deutetrabenazine: (Major) Concomitant use of opiate agonists with deutetrabenazine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with deutetrabenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen are initiated in a patient taking deutetrabenazine, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tabIets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If deutetrabenazine is prescribed for a patient taking an opiate agonist, use a lower initial dose of deutetrabenazine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking deutetrabenazine.
    Dexamethasone: (Moderate) Hydrocodone is metabolized by CYP3A4. Dexamethasone, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with dexamethasone.
    Dexchlorpheniramine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Dexmedetomidine: (Moderate) Co-administration of dexmedetomidine with opiate agonists likely to lead to an enhancement of CNS depression.
    Dexpanthenol: (Moderate) Use caution when using dexpanthenol with drugs that decrease gastrointestinal motility, such as opiate agonists, as it may decrease the effectiveness of dexpanthenol.
    Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Dextromethorphan; Quinidine: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as quinidine, may result in a reduction in the analgesic effect of hydrocodone.
    Diazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. If parental diazepam is used with an opiate agonist, reduce the opiate agonist dosage by at least 1/3. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Dicyclomine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Dihydrocodeine; Guaifenesin; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Diltiazem: (Major) Monitor for respiratory depression and sedation if hydrocodone and diltiazem are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as diltiazem, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Dimenhydrinate: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Diphenhydramine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Diphenhydramine; Hydrocodone; Phenylephrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Diphenhydramine; Ibuprofen: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Diphenhydramine; Naproxen: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Diphenhydramine; Phenylephrine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Doxacurium: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as neuromuscular blockers, can potentiate CNS and respiratory depression. A dose reduction of one or both drugs may be warranted.
    Doxylamine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Doxylamine; Pyridoxine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Dronabinol, THC: (Moderate) Concomitant use of opiate agonists and other CNS depressants such as dronabinol, THC may result in respiratory depression, CNS depression, and/or hypotension. Prior to concurrent use of opiate agonists in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. When concomitant treatment is necessary, reduce the dose of 1 or both drugs. When levorphanol is used with dronabinol, reduce the initial levorphanol dose by approximately 50% or more.
    Dronedarone: (Major) Monitor for respiratory depression, sedation and decreased analgesic effect if hydrocodone and dronedarone are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as dronedarone, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as dronedarone, may result in a reduction in the analgesic effect of hydrocodone.
    Droperidol: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. According to the manufacturer, ethanol abuse and the use of benzodiazepines and intravenous opiates are risk factors for the development of prolonged QT syndrome in patients receiving droperidol. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Duloxetine: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as duloxetine, may result in a reduction in the analgesic effect of hydrocodone.
    Efavirenz: (Moderate) Hydrocodone is metabolized by CYP3A4. Efavirenz, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with efavirenz.
    Efavirenz; Emtricitabine; Tenofovir: (Moderate) Hydrocodone is metabolized by CYP3A4. Efavirenz, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with efavirenz.
    Elbasvir; Grazoprevir: (Moderate) Administering hydrocodone with elbasvir; grazoprevir may result in elevated hydrocodone plasma concentrations. Hydrocodone is a substrate of CYP3A; grazoprevir is a weak CYP3A inhibitor. If these drugs are used together, closely monitor for signs of adverse events.
    Eliglustat: (Minor) Coadministration of hydrocodone and eliglustat may result in increased plasma concentrations of hydrocodone and/or, potentially, decreased analgesic efficacy. Eliglustat is a CYP2D6 inhibitor. Although hydrocodone is primarily metabolized by CYP3A4 to form norhydrocodone, CYP2D6 also contributes to conversion of hydrocodone to hydromorphone, which may contribute to the total analgesic activity of hydrocodone. The interaction is complex, and may not be clinically significant for either result; however, concomitant use of a CYP3A4 inhibitor with hydrocodone and eliglustat would significantly inhibit hydrocodone metabolism and likely result in an increase or prolongation of opioid effects. If coadministration is necessary, use caution and monitor patients closely for opioid-related adverse effects and efficacy of pain management. To counter the potential of increased opioid concentrations, it may be prudent to reduce the dosage of hydrocodone until stable drug effects are achieved, and titrate to clinical effect. If analgesic effect is not appropriate, another agent may be considered.
    Eltrombopag: (Moderate) Eltrombopag is a UDP-glucuronyltransferase inhibitor. Opiate agonists are a substrate of UDP-glucuronyltransferases. The significance or effect of this interaction is not known; however, elevated concentrations of the opiate agonist is possible. Monitor patients for adverse reactions if eltrombopage is administered with an opiate agonist.
    Eluxadoline: (Major) Avoid use of eluxadoline with medications that may cause constipation, such as opiate agonists. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle within the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. In addition, the CYP3A4 metabolism of some opiate agonists may be inhibited by eluxadoline. Although the CYP3A4 inhibitory effects of eluxadoline have not been definitively established, the manufacturer recommends caution when administering eluxadoline concurrently with CYP3A4 substrates that have a narrow therapeutic index, such as fentanyl and alfentanil. Closely monitor for increased side effects if these drugs are administered together. Discontinue use of eluxadoline in patients who develop severe constipation lasting more than 4 days.
    Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Enflurane: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include general anesthetics.
    Entacapone: (Moderate) Concomitant use of opiate agonists with other central nervous system (CNS) depressants such as COMT inhibitors can potentiate the effects of the opiate and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of an opiate in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of the opiate and/or the CNS depressant is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
    Enzalutamide: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with enzalutamide is necessary; consider increasing the dose of hydrocodone as needed. If enzalutamide is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and enzalutamide is a strong CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Erythromycin: (Major) Monitor for respiratory depression and sedation if hydrocodone and erythromycin are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as erythromycin, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Erythromycin; Sulfisoxazole: (Major) Monitor for respiratory depression and sedation if hydrocodone and erythromycin are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as erythromycin, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Escitalopram: (Major) The risk of serotonin syndrome and reduced efficacy of hydrocodone is possible if escitalopram and hydrocodone are used together. Use of opioid medications with drugs known to affect the neurotransmitter system, such as escitalopram, has resulted in serotonin syndrome. Monitor the patient for serotonin syndrome and discontinue one or both drugs if serotonin syndrome is suspected. Also, impairment of CYP2D6 metabolism by escitalopram may reduce the conversion of hydrocodone to its active forms, thus reducing analgesic efficacy.
    Eslicarbazepine: (Moderate) In vivo studies suggest eslicarbazepine is an inducer of CYP3A4. Hydrocodone is metabolized by CYP3A4. Coadministration may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with eslicarbazepine.
    Estazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Eszopiclone: (Moderate) Concomitant use of hydrocodone with eszopiclone may lead to hypotension, profound sedation, coma, respiratory depression and death. In addition, the risk of next-day psychomotor impairment is increased during co-administration of eszopiclone and other CNS depressants, which may decrease the ability to perform tasks requiring full mental alertness such as driving. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Ethanol: (Major) Alcohol is associated with CNS depression. The combined use of alcohol and CNS depressants can lead to additive CNS depression, which could be dangerous in tasks requiring mental alertness and fatal in overdose. Alcohol taken with other CNS depressants can lead to additive respiratory depression, hypotension, profound sedation, or coma. Consider the patient's use of alcohol or illicit drugs when prescribing CNS depressant medications. In many cases, the patient should receive a lower dose of the CNS depressant initially if the patient is not likely to be compliant with avoiding alcohol.
    Ethotoin: (Moderate) Additive CNS depression may occur when hydantoins are when given with hydrocodone. Also, hydrocodone is metabolized by CYP3A4. Fosphenytoin and phenytoin are CYP3A4 inducers and may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with phenytoin or fosphenytoin.
    Etomidate: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include general anesthetics.
    Etravirine: (Moderate) Hydrocodone is metabolized by CYP3A4. Etravirine, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with etravirine.
    Everolimus: (Moderate) Monitor for an increase in hydrocodone-related adverse reactions, including sedation and respiratory depression, if coadministration with everolimus is necessary; consider reducing the dose of hydrocodone if clinically appropriate. If everolimus is discontinued, monitor for evidence of opioid withdrawal until stable drug effects are achieved and consider increasing the hydrocodone dose if necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like everolimus can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. If everolimus is discontinued, hydrocodone plasma concentrations may decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Fentanyl: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Fesoterodine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Flavoxate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Flibanserin: (Moderate) The concomitant use of flibanserin with CNS depressants, such as opiate agonists, may increase the risk of CNS depression (e.g., dizziness, somnolence) compared to the use of flibanserin alone. Patients should avoid activities requiring full alertness (e.g., operating machinery or driving) until at least 6 hours after each dose and until they know how flibanserin affects them.
    Fluoxetine: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as fluoxetine, may result in a reduction in the analgesic effect of hydrocodone.
    Fluoxetine; Olanzapine: (Moderate) Concomitant use of hydrocodone with other CNS depressants like olanzapine may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking olanzapine, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider using a lower dose of olanzapine. Monitor patients for sedation and respiratory depression. (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as fluoxetine, may result in a reduction in the analgesic effect of hydrocodone.
    Fluphenazine: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as phenothiazines, may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Flurazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Flutamide: (Moderate) Hydrocodone is metabolized by CYP3A4. Flutamide, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with flutamide.
    Fluvoxamine: (Major) Monitor for respiratory depression and sedation if hydrocodone and fluvoxamine are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as fluvoxamine, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Fosamprenavir: (Major) Monitor for respiratory depression and sedation if hydrocodone and fosamprenavir are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as fosamprenavir, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Fosphenytoin: (Moderate) Additive CNS depression may occur when hydantoins are when given with hydrocodone. Also, hydrocodone is metabolized by CYP3A4. Fosphenytoin and phenytoin are CYP3A4 inducers and may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with phenytoin or fosphenytoin.
    Fospropofol: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include general anesthetics.
    Gabapentin: (Moderate) Coadministration of gabapentin may decrease the Cmax and AUC of hydrocodone in a dose-dependent manner relative to administration of hydrocodone alone. The mechanism for this interaction is unknown. In addition, hydrocodone may increase gabapentin AUC. Until more information is available, patients should be observed for indications that hydrocodone is not as effective, or for signs of additive drowsiness when these drugs are used together. The dose of gabapentin and/or hydrocodone should be adjusted appropriately if needed.
    Gefitinib: (Minor) Monitor for a decrease in the efficacy of hydrocodone if gefitinib and hydrocodone are used concomitantly. The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. At high concentrations, gefitinib is an inhibitor of CYP2D6. In patients with solid tumors, exposure to metoprolol, another CYP2D6 substrate, was increased by 30% when given on day 15 of gefitinib dosing (500 mg daily); the effect of gefitinib on CYP2D6-dependent drugs is only likely to be clinically relevant when given with CYP2D6 substrates with a narrow therapeutic index or that are individually dose titrated, such as hydromorphone.
    Glycopyrrolate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Glycopyrrolate; Formoterol: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Grapefruit juice: (Moderate) Patients should not significantly alter their intake of grapefruit or grapefruit juice duing therapy with hydrocodone. Grapefruit juice, a CYP3A4 inhibitor, may increase plasma concentrations of hydrocodone, a CYP3A4 substrate. This may increase or prolong hydrocodone-related toxicities including respiratory depression. Advise patients accordingly; patient monitoring and dosage adjustments may be necessary if grapefruit is consumed regularly.
    Griseofulvin: (Moderate) Hydrocodone is metabolized by CYP3A4. Griseofulvin, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with griseofulvin.
    Guanabenz: (Moderate) Guanabenz is associated with sedative effects. Guanabenz can potentiate the effects of CNS depressants such as opiate agonists, when administered concomitantly.
    Guanfacine: (Moderate) Central-acting adrenergic agonists like guanfacine have CNS depressive effects and can potentiate the actions of other CNS depressants including opiate agonists.
    Haloperidol: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as haloperidol, may result in a reduction in the analgesic effect of hydrocodone.
    Halothane: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include general anesthetics.
    Homatropine; Hydrocodone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Hydantoins: (Moderate) Additive CNS depression may occur when hydantoins are when given with hydrocodone. Also, hydrocodone is metabolized by CYP3A4. Fosphenytoin and phenytoin are CYP3A4 inducers and may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with phenytoin or fosphenytoin.
    Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Irbesartan: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Lisinopril: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Losartan: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Methyldopa is associated with sedative effects. Methyldopa can potentiate the effects of CNS depressants, such as opiate agonists, when administered concomitantly. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Metoprolol: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Propranolol: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Quinapril: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Spironolactone: (Moderate) Opiate agonists like hydrocodone may potentiate orthostatic hypotension when given concomitantly with spironolactone. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Telmisartan: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Triamterene: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Hydromorphone: (Major) Concomitant use of hydromorphone with other central nervous system (CNS) depressants, such as other opiate agonists like hydrocodone, can potentiate the effects of hydromorphone and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of hydromorphone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If hydromorphone is used concurrently with a CNS depressant, a reduced dosage of hydromorphone and/or the CNS depressant is recommended; start with one-third to one-half of the estimated hydromorphone starting dose when using hydromorphone extended-release tablets. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
    Hydroxyzine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Hyoscyamine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Ibuprofen; Oxycodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
    Idelalisib: (Major) Avoid concomitant use of idelalisib, a strong CYP3A inhibitor, with hydrocodone, a CYP3A substrate, as hydrocodone toxicities may be significantly increased. The AUC of a sensitive CYP3A substrate was increased 5.4-fold when coadministered with idelalisib.
    Iloperidone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
    Imatinib: (Major) Monitor for respiratory depression, sedation and decreased analgesic effect if hydrocodone and imatinib, STI-571 are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as imatinib, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as imatinib, may result in a reduction in the analgesic effect of hydrocodone.
    Indacaterol; Glycopyrrolate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Indinavir: (Major) Monitor for respiratory depression and sedation if hydrocodone and indinavir are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as indinavir, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Isavuconazonium: (Moderate) Monitor for respiratory depression, sedation and decreased analgesic effect if hydrocodone and isavuconazonium are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Concomitant administration may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Isocarboxazid: (Major) Hydrocodone is not recommended for use in patients who have received MAOIs within 14 days. Certain products are contraindicated due to the risk: benefit ratio (e.g., hydrocodone-containing cough syrups). Consider if an alternative to the hydrocodone-containing product is available and appropriate. Severe and unpredictable potentiation by MAO inhibitors has been reported with opioid analgesics. Also, potentiation of the effects of the MAOI have been reported, which may increase the risk for adverse events. If combination therapy is necessary, advise patients against driving or performing other hazardous activities until they know how the combination affects them.
    Isoflurane: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include general anesthetics.
    Isoniazid, INH: (Major) Monitor for respiratory depression and sedation if hydrocodone and isoniazid, INH are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as isoniazid, INH, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) Monitor for respiratory depression and sedation if hydrocodone and isoniazid, INH are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as isoniazid, INH, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects. (Moderate) Hydrocodone is metabolized by CYP3A4. Rifamycins, inducers of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with rifamycins.
    Isoniazid, INH; Rifampin: (Major) Monitor for respiratory depression and sedation if hydrocodone and isoniazid, INH are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as isoniazid, INH, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects. (Moderate) Hydrocodone is metabolized by CYP3A4. Rifamycins, inducers of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with rifamycins.
    Itraconazole: (Major) Monitor for respiratory depression and sedation if hydrocodone and itraconazole are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as itraconazole, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Ivacaftor: (Minor) Use caution when administering ivacaftor and hydrocodone concurrently. Ivacaftor is an inhibitor of CYP3A and hydrocodone is partially metabolized by CYP3A. Co-administration of ivacaftor with CYP3A substrates, such as hydrocodone, can theoretically increase hydrocodone exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
    Ketamine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include general anesthetics.
    Ketoconazole: (Major) Monitor for respiratory depression and sedation if hydrocodone and ketoconazole are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as ketoconazole, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Lactobacillus: (Moderate) Concurrent use of antidiarrheals and opiate agonists, can lead to severe constipation and possibly additive CNS depression. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Lactulose: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as lactulose, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Lapatinib: (Major) Monitor for respiratory depression and sedation if hydrocodone and lapatinib are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as lapatinib, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Levobupivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Levocetirizine: (Moderate) Additive drowsiness may occur if cetirizine or levocetirizine is administered with other drugs that depress the CNS, including opiate agonists.
    Levorphanol: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Lidocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Lincosamides: (Moderate) Lincosamides, which have been shown to exhibit neuromuscular blocking action, can enhance the effects of opiate agonists if used concomitantly, enhancing respiratory depressant effects. They should be used together with caution and the patient carefully monitored.
    Loperamide: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Concurrent use of selected antidiarrheals (e.g., loperamide, diphenoxylate) and opiate agonists can lead to additive CNS depression.
    Loperamide; Simethicone: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Concurrent use of selected antidiarrheals (e.g., loperamide, diphenoxylate) and opiate agonists can lead to additive CNS depression.
    Lopinavir; Ritonavir: (Major) Concurrent administration of hydrocodone with ritonavir may result in elevated hydrocodone plasma concentrations and subsequent adverse events, such as sedation and respiratory depression. If these drugs are given together, a 50% reduction in the dose of hydrocodone may be needed, and monitoring for respiratory depression and sedation at regular intervals is recommended. Hydrocodone is metabolized by the hepatic isoenzymes CYP3A4 and CYP2D6; ritonavir is an inhibitor of these enzymes. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as ritonavir may reduce the efficacy of hydrocodone. Caution and close monitoring for both efficacy and adverse reactions are advised if these drugs are administered together; a hydrocodone dosage adjustment may be necessary.
    Loratadine: (Minor) Although loratadine is considered a 'non-sedating' antihistamine, dose-related sedation has been noted. For this reason, it would be prudent to monitor for drowsiness during concurrent use of loratadine with CNS depressants such as opiate agonists.
    Loratadine; Pseudoephedrine: (Minor) Although loratadine is considered a 'non-sedating' antihistamine, dose-related sedation has been noted. For this reason, it would be prudent to monitor for drowsiness during concurrent use of loratadine with CNS depressants such as opiate agonists.
    Lorazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Loxapine: (Moderate) Loxapine can potentiate the actions of other CNS depressants such as opiate agonists. Caution should be exercised with simultaneous use of these agents due to potential excessive CNS effects.
    Lumacaftor; Ivacaftor: (Moderate) Concomitant use of hydrocodone and lumacaftor; ivacaftor may decrease the systemic exposure of hydrocodone, leading to decreased analgesia and, potentially, development of an abstinence syndrome in physically dependent patients. If used together, evaluate the patient at frequent intervals and consider hydrocodone dosage adjustments until stable drug effects are achieved. If lumacaftor; ivacaftor is subsequently discontinued, the hydrocodone plasma concentrations will increase, which may increase or prolong therapeutic and adverse effects, and may cause life-threatening respiratory depression. Monitor patients closely and reduce the hydrocodone dosage as appropriate. Hydrocodone is a substrate of CYP3A4. Lumacaftor is a strong CYP3A inducer. (Minor) Use caution when administering ivacaftor and hydrocodone concurrently. Ivacaftor is an inhibitor of CYP3A and hydrocodone is partially metabolized by CYP3A. Co-administration of ivacaftor with CYP3A substrates, such as hydrocodone, can theoretically increase hydrocodone exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
    Lumacaftor; Ivacaftor: (Moderate) Concomitant use of hydrocodone and lumacaftor; ivacaftor may decrease the systemic exposure of hydrocodone, leading to decreased analgesia and, potentially, development of an abstinence syndrome in physically dependent patients. If used together, evaluate the patient at frequent intervals and consider hydrocodone dosage adjustments until stable drug effects are achieved. If lumacaftor; ivacaftor is subsequently discontinued, the hydrocodone plasma concentrations will increase, which may increase or prolong therapeutic and adverse effects, and may cause life-threatening respiratory depression. Monitor patients closely and reduce the hydrocodone dosage as appropriate. Hydrocodone is a substrate of CYP3A4. Lumacaftor is a strong CYP3A inducer.
    Lurasidone: (Moderate) Due to the CNS effects of lurasidone, caution should be used when lurasidone is given in combination with other centrally acting medications such as opiate agonists.
    Magnesium Citrate: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as magnesium citrate, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Magnesium Hydroxide: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as magnesium hydroxide, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Magnesium Salts: (Minor) Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as opiate agonists. Caution should be exercised when using these agents concurrently.
    Magnesium Sulfate; Potassium Sulfate; Sodium Sulfate: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as magnesium sulfate; potassium sulfate; sodium sulfate, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Maprotiline: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include maprotiline.
    Meclizine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Mepenzolate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Meperidine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Meperidine; Promethazine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Mepivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Mepivacaine; Levonordefrin: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Meprobamate: (Moderate) Concomitant use of hydrocodone with meprobamate may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include anxiolytics, sedatives, and hypnotics.
    Mesoridazine: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as phenothiazines, may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Metaxalone: (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen is initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tablets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking skeletal muscle relaxants.
    Methadone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Methocarbamol: (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen are initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tabIets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking skeletal muscle relaxants.
    Methscopolamine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Methyclothiazide: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Methyldopa: (Moderate) Methyldopa is associated with sedative effects. Methyldopa can potentiate the effects of CNS depressants, such as opiate agonists, when administered concomitantly.
    Metoclopramide: (Moderate) Opiate agonists antagonize GI motility and can decrease the gastroprokinetic effects of metoclopramide.
    Metolazone: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Metyrapone: (Moderate) Metyrapone may cause dizziness and/or drowsiness. Other drugs that may also cause drowsiness, such as opiate agonists, should be used with caution. Additive drowsiness and/or dizziness is possible. Also, hydrocodone is metabolized by CYP3A4. Metyrapone, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with metyrapone.
    Metyrosine: (Moderate) The concomitant administration of metyrosine with opiate agonists can result in additive sedative effects.
    Midazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Mifepristone, RU-486: (Major) Monitor for respiratory depression and sedation if hydrocodone and mifepristone, RU-486 are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as mifepristone, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Mineral Oil: (Moderate) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as mineral oil, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Minocycline: (Minor) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as opiate agonists. Caution should be exercised when using these agents concurrently.
    Mirabegron: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as mirabegron, may result in a reduction in the analgesic effect of hydrocodone.
    Mirtazapine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include mirtazapine.
    Mitotane: (Major) Use caution if mitotane and hydrocodone are used concomitantly, and monitor for decreased efficacy of hydrocodone and a possible change in dosage requirements. Hydrocodone is metabolized by CYP3A4. Mitotane, a strong inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. A higher hydrocodone dose may be needed if used with mitotane. Additionally, mitotane can cause sedation, lethargy, vertigo, and other CNS adverse reactions; additive CNS effects may occur initially when mitotane is given concurrently with hydrocodone.
    Mivacurium: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as neuromuscular blockers, can potentiate CNS and respiratory depression. A dose reduction of one or both drugs may be warranted.
    Modafinil: (Moderate) Hydrocodone is metabolized by CYP3A4. Modafinil, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with modafinil.
    Molindone: (Moderate) Concomitant use of opiate agonists with other central nervous system (CNS) depressants, such as molindone, can potentiate the effects of the opiate and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of an opiate in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of the opiate and/or molindone is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
    Monoamine oxidase inhibitors: (Major) Hydrocodone is not recommended for use in patients who have received MAOIs within 14 days. Certain products are contraindicated due to the risk: benefit ratio (e.g., hydrocodone-containing cough syrups). Consider if an alternative to the hydrocodone-containing product is available and appropriate. Severe and unpredictable potentiation by MAO inhibitors has been reported with opioid analgesics. Also, potentiation of the effects of the MAOI have been reported, which may increase the risk for adverse events. If combination therapy is necessary, advise patients against driving or performing other hazardous activities until they know how the combination affects them.
    Morphine: (Major) Concomitant use of hydrocodone with morphine may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage. Also, consider a using a lower dose of morphine. Monitor patients for sedation and respiratory depression.
    Morphine; Naltrexone: (Major) Concomitant use of hydrocodone with morphine may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage. Also, consider a using a lower dose of morphine. Monitor patients for sedation and respiratory depression.
    Nabilone: (Moderate) Concomitant use of opiate agonists with other central nervous system (CNS) depressants, such as nabilone, can potentiate the effects of the opiate and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of an opiate in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of the opiate and/or the CNS depressant is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
    Nafcillin: (Moderate) Hydrocodone is metabolized by CYP3A4. Nafcillin, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with nafcillin.
    Nalbuphine: (Major) Avoid the concomitant use of nalbuphine and opiate agonists, such as hydrocodone. Nalbuphine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects. Nalbuphine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of nalbuphine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
    Naloxone: (Major) The opiate antagonists naloxone and naltrexone are pharmacologic opposites of hydrocodone. These drugs can block the actions of hydrocodone and, if administered to patients who have received chronic hydrocodone, can produce acute withdrawal and/or reduce the analgesic effect of hydrocodone.
    Naltrexone: (Major) The opiate antagonists naloxone and naltrexone are pharmacologic opposites of hydrocodone. These drugs can block the actions of hydrocodone and, if administered to patients who have received chronic hydrocodone, can produce acute withdrawal and/or reduce the analgesic effect of hydrocodone.
    Nefazodone: (Major) Monitor for respiratory depression and sedation if hydrocodone and nefazodone are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as nefazodone, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Nelfinavir: (Major) Monitor for respiratory depression and sedation if hydrocodone and nelfinavir are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as nelfinavir, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Nesiritide, BNP: (Major) The potential for hypotension may be increased when coadministering nesiritide with opiate agonists.
    Netupitant; Palonosetron: (Moderate) Netupitant is a moderate inhibitor of CYP3A4 and should be used with caution in patients receiving concomitant medications that are primarily metabolized through CYP3A4, such as hydrocodone. The plasma concentrations of hydrocodone can increase when coadministered with netupitant; the inhibitory effect on CYP3A4 can last for multiple days.
    Neuromuscular blockers: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as neuromuscular blockers, can potentiate CNS and respiratory depression. A dose reduction of one or both drugs may be warranted.
    Nevirapine: (Moderate) Hydrocodone is metabolized by CYP3A4. Nevirapine, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with nevirapine.
    Nicardipine: (Major) Monitor for respiratory depression, sedation and decreased analgesic effect if hydrocodone and nicardipine are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as nicardipine, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as nicardipine, may result in a reduction in the analgesic effect of hydrocodone.
    Nilotinib: (Moderate) Nilotinib may inhibit CYP2D6 and may theoretically increase serum concentrations of hydrocodone. Patients should be monitored for toxicity if nilotinib is administered with CYP2D6 substrates such as hydrocodone.
    Nitroglycerin: (Minor) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as opiate agonists. Patients should be monitored more closely for hypotension if nitroglycerin is used concurrently with opiate agonists.
    Octreotide: (Moderate) Octreotide can cause additive constipation with opiate agonists such as hydrocodone. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Monitor patients during concomitant use.
    Olanzapine: (Moderate) Concomitant use of hydrocodone with other CNS depressants like olanzapine may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking olanzapine, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider using a lower dose of olanzapine. Monitor patients for sedation and respiratory depression.
    Ombitasvir; Paritaprevir; Ritonavir: (Major) Concurrent administration of hydrocodone with ritonavir may result in elevated hydrocodone plasma concentrations and subsequent adverse events, such as sedation and respiratory depression. If these drugs are given together, a 50% reduction in the dose of hydrocodone may be needed, and monitoring for respiratory depression and sedation at regular intervals is recommended. Hydrocodone is metabolized by the hepatic isoenzymes CYP3A4 and CYP2D6; ritonavir is an inhibitor of these enzymes. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as ritonavir may reduce the efficacy of hydrocodone. Caution and close monitoring for both efficacy and adverse reactions are advised if these drugs are administered together; a hydrocodone dosage adjustment may be necessary.
    Oritavancin: (Moderate) Hydrocodone is metabolized by CYP3A4 and CYP2D6; oritavancin is a weak CYP3A4 and CYP2D6 inducer. Plasma concentrations and efficacy of hydrocodone may be reduced if these drugs are administered concurrently, which could also result in an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. A higher hydrocodone dose may be needed if used with oritavancin.
    Orphenadrine: (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen is initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tablets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking skeletal muscle relaxants.
    Oxazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Oxcarbazepine: (Moderate) Hydrocodone is metabolized by CYP3A4. Oxcarbazepine, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with oxcarbazepine.
    Oxybutynin: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Oxycodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression.
    Oxymorphone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Palbociclib: (Moderate) Monitor frequently for an increase in hydrocodone-related adverse reactions (e.g., sedation, respiratory depression) if coadministered with palbociclib. Consider dosage reduction of hydrocodone until stable drug effects are achieved if concurrent use is necessary. If palbociclib is discontinued, consider an increased dose of hydrocodone and monitor for signs of opioid withdrawal. Palbociclib is a weak time-dependent inhibitor of CYP3A and hydrocodone is a CYP3A4 substrate.
    Paliperidone: (Moderate) Concomitant use of drugs that can cause CNS depression, such as hydrocodone and paliperidone, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
    Pancuronium: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as neuromuscular blockers, can potentiate CNS and respiratory depression. A dose reduction of one or both drugs may be warranted.
    Papaverine: (Moderate) Papaverine is a benzylisoquinoline alkaloid of opium and may have synergistic effects with opiate agonists. Concurrent use of papaverine with potent CNS depressants could lead to enhanced sedation.
    Paroxetine: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as paroxetine, may result in a reduction in the analgesic effect of hydrocodone.
    Pazopanib: (Moderate) Pazopanib is a weak inhibitor of CYP3A4. Coadministration of pazopanib and hydrocodone, a CYP3A4 substrate, may cause an increase in systemic concentrations of hydrocodone. Use caution when administering hydrocodone and pazopanib together.
    Peginterferon Alfa-2b: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as peginterferon alfa-2b, may result in a reduction in the analgesic effect of hydrocodone.
    Pegvisomant: (Moderate) In clinical trials, patients taking opiate agonists often required higher serum pegvisomant concentrations to achieve appropriate IGF-I suppression compared with patients not receiving opiate agonists. The mechanism of this interaction is unknown.
    Pentazocine: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as hydrocodone. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of hydrocodone. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist.
    Pentazocine; Naloxone: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as hydrocodone. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of hydrocodone. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist. (Major) The opiate antagonists naloxone and naltrexone are pharmacologic opposites of hydrocodone. These drugs can block the actions of hydrocodone and, if administered to patients who have received chronic hydrocodone, can produce acute withdrawal and/or reduce the analgesic effect of hydrocodone.
    Perampanel: (Moderate) Co-administration of perampanel with CNS depressants, including ethanol, may increase CNS depression. The combination of perampanel (particularly at high doses) with ethanol has led to decreased mental alertness and ability to perform complex tasks (such as driving), as well as increased levels of anger, confusion, and depression; similar reactions should be expected with concomitant use of other CNS depressants, such as opiate agonists.
    Perphenazine: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as phenothiazines, may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Perphenazine; Amitriptyline: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as phenothiazines, may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Phenelzine: (Major) Hydrocodone is not recommended for use in patients who have received MAOIs within 14 days. Certain products are contraindicated due to the risk: benefit ratio (e.g., hydrocodone-containing cough syrups). Consider if an alternative to the hydrocodone-containing product is available and appropriate. Severe and unpredictable potentiation by MAO inhibitors has been reported with opioid analgesics. Also, potentiation of the effects of the MAOI have been reported, which may increase the risk for adverse events. If combination therapy is necessary, advise patients against driving or performing other hazardous activities until they know how the combination affects them.
    Phenothiazines: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as phenothiazines, may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Phenytoin: (Moderate) Additive CNS depression may occur when hydantoins are when given with hydrocodone. Also, hydrocodone is metabolized by CYP3A4. Fosphenytoin and phenytoin are CYP3A4 inducers and may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with phenytoin or fosphenytoin.
    Pimozide: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include pimozide.
    Polyethylene Glycol: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as polyethylene glycol, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Polyethylene Glycol; Electrolytes: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as magnesium sulfate; potassium sulfate; sodium sulfate, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events. (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as polyethylene glycol, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Polyethylene Glycol; Electrolytes; Bisacodyl: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as bisacodyl, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events. (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as polyethylene glycol, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Posaconazole: (Major) Monitor for respiratory depression and sedation if hydrocodone and posaconazole are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as posaconazole, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Pramipexole: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include pramipexole.
    Pramlintide: (Major) Pramlintide slows gastric emptying and the rate of nutrient delivery to the small intestine. Medications with the potential to slow GI motility, such as opiate agonists, should be used with caution, if at all, with pramlintide until more data are available from the manufacturer. Monitor blood glucose.
    Pregabalin: (Moderate) Concomitant use of opiate agonists with other central nervous system (CNS) depressants can potentiate the effects of the opiate and may lead to additive CNS or respiratory depression, profound sedation, or coma. Examples of drugs associated with CNS depression include pregabalin. Prior to concurrent use of an opiate in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of the opiate and/or the CNS depressant is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
    Prilocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Prilocaine; Epinephrine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Procaine: (Minor) Due to the CNS depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists.
    Prochlorperazine: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as phenothiazines, may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Propafenone: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as propafenone, may result in a reduction in the analgesic effect of hydrocodone.
    Propantheline: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Propofol: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include general anesthetics.
    Propoxyphene: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Quazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Quetiapine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include quetiapine.
    Quinidine: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as quinidine, may result in a reduction in the analgesic effect of hydrocodone.
    Quinine: (Major) Monitor for respiratory depression, sedation and decreased analgesic effect if hydrocodone and quinine are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Quinine is both an inhibitor and an inducer of CYP3A4. Coadministration may cause an increase or decrease in hydrocodone plasma concentrations, which could increase or prolong adverse effects or decrease analgesic effects. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as quinine, may result in a reduction in the analgesic effect of hydrocodone.
    Ranolazine: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as ranolazine, may result in a reduction in the analgesic effect of hydrocodone.
    Rapacuronium: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as neuromuscular blockers, can potentiate CNS and respiratory depression. A dose reduction of one or both drugs may be warranted.
    Rasagiline: (Moderate) Opiate agonists (e.g., alfentanil, codeine, hydrocodone, morphine, sufentanil, etc.) may cause additive CNS depression, drowsiness, dizziness or hypotension, so use with MAOIs should be cautious; lower initial dosages of the opiate are recommended followed by careful titration.
    Remifentanil: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Ribociclib: (Moderate) Use caution if coadministration of ribociclib with hydrocodone is necessary, as the systemic exposure of hydrocodone may be increased resulting in an increase in treatment-related adverse reactions including sedation and respiratory depression; adjust the dose of hydrocodone if necessary. Ribociclib is a moderate CYP3A4 inhibitor and hydrocodone is a CYP3A4 substrate.
    Ribociclib; Letrozole: (Moderate) Use caution if coadministration of ribociclib with hydrocodone is necessary, as the systemic exposure of hydrocodone may be increased resulting in an increase in treatment-related adverse reactions including sedation and respiratory depression; adjust the dose of hydrocodone if necessary. Ribociclib is a moderate CYP3A4 inhibitor and hydrocodone is a CYP3A4 substrate.
    Rifabutin: (Moderate) Hydrocodone is metabolized by CYP3A4. Rifamycins, inducers of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with rifamycins.
    Rifampin: (Moderate) Hydrocodone is metabolized by CYP3A4. Rifamycins, inducers of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with rifamycins.
    Rifamycins: (Moderate) Hydrocodone is metabolized by CYP3A4. Rifamycins, inducers of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with rifamycins.
    Rifapentine: (Moderate) Hydrocodone is metabolized by CYP3A4. Rifamycins, inducers of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with rifamycins.
    Risperidone: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include risperidone.
    Ritonavir: (Major) Concurrent administration of hydrocodone with ritonavir may result in elevated hydrocodone plasma concentrations and subsequent adverse events, such as sedation and respiratory depression. If these drugs are given together, a 50% reduction in the dose of hydrocodone may be needed, and monitoring for respiratory depression and sedation at regular intervals is recommended. Hydrocodone is metabolized by the hepatic isoenzymes CYP3A4 and CYP2D6; ritonavir is an inhibitor of these enzymes. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as ritonavir may reduce the efficacy of hydrocodone. Caution and close monitoring for both efficacy and adverse reactions are advised if these drugs are administered together; a hydrocodone dosage adjustment may be necessary.
    Rocuronium: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as neuromuscular blockers, can potentiate CNS and respiratory depression. A dose reduction of one or both drugs may be warranted.
    Rolapitant: (Major) Use caution if hydrocodone and rolapitant are used concurrently, and monitor for a decrease in the efficacy of hydrocodone. The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6; rolapitant is a moderate CYP2D6 inhibitor. The inhibitory effect of rolapitant lasts for at least 7 days after single dose administration. The Cmax and AUC of another CYP2D6 substrate were increased by 120% and 160%, respectively, on day 1 with rolapitant and by 180% and 230%, respectively, on day 8 after rolapitant administration.
    Ropinirole: (Moderate) Concomitant use of opiate agonists with other central nervous system (CNS) depressants such as ropinirole can potentiate the effects of the opiate and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of an opiate in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of the opiate and/or the CNS depressant is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
    Ropivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Saquinavir: (Major) Monitor for respiratory depression and sedation if hydrocodone and saquinavir are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as saquinavir, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Scopolamine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Sedating H1-blockers: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Selegiline: (Major) Hydrocodone is not recommended for use in patients who have received MAOIs within 14 days. Certain products are contraindicated due to the risk: benefit ratio (e.g., hydrocodone-containing cough syrups). Consider if an alternative to the hydrocodone-containing product is available and appropriate. Severe and unpredictable potentiation by MAO inhibitors has been reported with opioid analgesics. Also, potentiation of the effects of the MAOI have been reported, which may increase the risk for adverse events. If combination therapy is necessary, advise patients against driving or performing other hazardous activities until they know how the combination affects them.
    Senna: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as senna, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Sertraline: (Major) The risk of serotonin syndrome and reduced efficacy of hydrocodone is possible if sertraline and hydrocodone are used together. Use of opioid medications with drugs known to affect the neurotransmitter system, such as sertraline, has resulted in serotonin syndrome. Monitor the patient for serotonin syndrome and discontinue one or both drugs if serotonin syndrome is suspected. Also, impairment of CYP2D6 metabolism by sertraline may reduce the conversion of hydrocodone to its active forms, thus reducing analgesic efficacy.
    Sevoflurane: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include general anesthetics.
    Sildenafil: (Moderate) Prolonged erections have been reported in two patients taking sildenafil with dihydrocodeine. Although more data are needed, use caution when prescribing opiate agonists and sildenafil concomitantly.
    Simeprevir: (Moderate) Simeprevir, a mild intestinal CYP3A4 inhibitor, may increase the side effects of hydrocodone, which is a CYP3A4 substrate. Monitor patients for adverse effects of hydrocodone, such as CNS or respiratory depression.
    Skeletal Muscle Relaxants: (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen is initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tablets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking skeletal muscle relaxants.
    Sodium Oxybate: (Major) Additive CNS depressant effects may be possible when sodium oxybate is used concurrently with opiate agonists.
    Solifenacin: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug, such as solifenacin. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Sorbitol: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as sorbitol, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Spironolactone: (Moderate) Opiate agonists like hydrocodone may potentiate orthostatic hypotension when given concomitantly with spironolactone.
    St. John's Wort, Hypericum perforatum: (Moderate) Hydrocodone is metabolized by CYP3A4. St. John's Wort, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with St. John's Wort.
    Streptogramins: (Major) Monitor for respiratory depression and sedation if hydrocodone and dalfopristin; quinupristin are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as dalfopristin; quinupristin, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Succinylcholine: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as neuromuscular blockers, can potentiate CNS and respiratory depression. A dose reduction of one or both drugs may be warranted.
    Sufentanil: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Suvorexant: (Moderate) CNS depressant drugs may have cumulative effects when administered concurrently and they should be used cautiously with suvorexant. A reduction in dose of the CNS depressant may be needed in some cases.
    Tapentadol: (Major) Additive CNS depressive effects are expected if tapentadol is used in conjunction with other CNS depressants, including other opiate agonists. Severe hypotension, profound sedation, coma, or respiratory depression may occur. Prior to concurrent use of tapentadol in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If an opiate agonist is used concurrently with tapentadol, a reduced dosage of tapentadol and/or the opiate agonist is recommended. If the extended-release tapentadol tablets are used concurrently with a CNS depressant, it is recommended to use an initial tapentadol dose of 50 mg PO every 12 hours. Monitor patients for sedation and respiratory depression.
    Telaprevir: (Major) Monitor for respiratory depression and sedation if hydrocodone and telaprevir are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as telaprevir, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Telithromycin: (Major) Monitor for respiratory depression and sedation if hydrocodone and telithromycin are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as telithromycin, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Telotristat Ethyl: (Moderate) Use caution if coadministration of telotristat ethyl and hydrocodone is necessary, as the systemic exposure of hydrocodone may be decreased resulting in reduced efficacy or possibly, lead to a withdrawal syndrome in patients who have developed physical dependence to hydrocodone. If these drugs are used together, monitor closely at frequent intervals and consider increasing the opioid dosage if needed to maintain adequate analgesia or if symptoms of opioid withdrawal occur. If telotristat ethyl is discontinued, consider a hydrocodone dosage reduction and monitor for signs of respiratory depression. Hydrocodone is a CYP3A4 substrate. The mean Cmax and AUC of another sensitive CYP3A4 substrate was decreased by 25% and 48%, respectively, when coadministered with telotristat ethyl; the mechanism of this interaction appears to be that telotristat ethyl increases the glucuronidation of the CYP3A4 substrate.
    Temazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Terbinafine: (Minor) The metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as terbinafine, may result in a reduction in the analgesic effect of hydrocodone.
    Tetrabenazine: (Moderate) Additive effects are possible when tetrabenazine is combined with other drugs that cause CNS depression. Concurrent use of tetrabenazine and drugs that can cause CNS depression, such as hydrocodone, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, dizziness, and orthostatic hypotension.
    Tetracaine: (Major) Due to the central nervous system depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists. Excitation or depression of the CNS may be the first manifestation of CNS toxicity. Restlessness, anxiety, tinnitus, dizziness, blurred vision, tremors, depression, or drowsiness may be early warning signs of CNS toxicity. After each local anesthetic injection, careful and constant monitoring of ventilation adequacy, cardiovascular vital signs, and the patient's state of consciousness is advised.
    Thalidomide: (Major) Avoid the concomitant use of thalidomide with opiate agonists; antihistamines; antipsychotics; anxiolytics, sedatives, and hypnotics; and other central nervous system depressants due to the potential for additive sedative effects.
    Thiazide diuretics: (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Thiethylperazine: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as phenothiazines, may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Thioridazine: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as phenothiazines, may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Thiothixene: (Moderate) Thiothixene can potentiate the CNS-depressant action of other drugs such as opiate agonists. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension.
    Tipranavir: (Major) Monitor for respiratory depression, sedation and decreased analgesic effect if hydrocodone and tipranavir are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as tipranavir, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as tipranavir, may result in a reduction in the analgesic effect of hydrocodone.
    Tizanidine: (Major) Concomitant use of opiate agonists with skeletal muscle relaxants may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with skeletal muscle relaxants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If acetaminophen; hydrocodone or hydrocodone; ibuprofen are initiated in a patient taking a skeletal muscle relaxant, reduced initial doses are recommended. If a decision is made to start treatment with hydrocodone extended-release tabIets or capsules, initiate hydrocodone at 20% to 30% of the usual dosage. If a skeletal muscle relaxant is prescribed for a patient taking an opiate agonist, use a lower initial dose of the skeletal muscle relaxant and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opiate cough medications in patients taking skeletal muscle relaxants.
    Tolcapone: (Moderate) Concomitant use of opiate agonists with other central nervous system (CNS) depressants such as COMT inhibitors can potentiate the effects of the opiate and may lead to additive CNS or respiratory depression, profound sedation, or coma. Prior to concurrent use of an opiate in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. If these agents are used together, a reduced dosage of the opiate and/or the CNS depressant is recommended. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids.
    Tolterodine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug, such as tolterodine. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Tramadol: (Major) Concomitant use of tramadol increases the seizure risk in patients taking opiate agonists. Also, tramadol can cause additive CNS depression and respiratory depression when used with opiate agonists; avoid concurrent use whenever possible. If used together, extreme caution is needed, and a reduced tramadol dose is recommended.
    Trandolapril; Verapamil: (Major) Monitor for respiratory depression and sedation if hydrocodone and verapamil are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as verapamil, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Tranylcypromine: (Major) Hydrocodone is not recommended for use in patients who have received MAOIs within 14 days. Certain products are contraindicated due to the risk: benefit ratio (e.g., hydrocodone-containing cough syrups). Consider if an alternative to the hydrocodone-containing product is available and appropriate. Severe and unpredictable potentiation by MAO inhibitors has been reported with opioid analgesics. Also, potentiation of the effects of the MAOI have been reported, which may increase the risk for adverse events. If combination therapy is necessary, advise patients against driving or performing other hazardous activities until they know how the combination affects them.
    Trazodone: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include trazodone.
    Triazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Tricyclic antidepressants: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as tricyclic antidepressants (TCAs), may lead to hypotension, profound sedation, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20% to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Trifluoperazine: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as phenothiazines, may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression.
    Trihexyphenidyl: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Trimethobenzamide: (Moderate) The concurrent use of trimethobenzamide with other medications that cause CNS depression, like opiate agonists, may potentiate the effects of either trimethobenzamide or the opiate agonist.
    Triprolidine: (Moderate) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also, consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, coadministration of hydrocodone and a CYP2D6 inhibitor, such as chlorpheniramine or diphenhydramine, may result in a reduction in the analgesic effect of hydrocodone.
    Trospium: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when opiate agonists are used concomitantly with an anticholinergic drug, such as trospium. The concomitant use of opiate agonists and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Tubocurarine: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as neuromuscular blockers, can potentiate CNS and respiratory depression. A dose reduction of one or both drugs may be warranted.
    Valerian, Valeriana officinalis: (Moderate) Any substances that act on the CNS may theoretically interact with valerian, Valeriana officinalis. The valerian derivative, dihydrovaltrate, binds at barbiturate binding sites; valerenic acid has been shown to inhibit enzyme-induced breakdown of GABA in the brain; the non-volatile monoterpenes (valepotriates) have sedative activity. The sedative effect may be additive to other drugs with sedative actions, such as the opiate agonists. Consider the patient's use of alcohol or illicit drugs. If valerian is used concurrently with a CNS depressant, a reduced dosage of the CNS depressant may be required, or, the valerian supplement may be discontinued. Carefully monitor the patient for hypotension, CNS depression, and respiratory depression.
    Vecuronium: (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as neuromuscular blockers, can potentiate CNS and respiratory depression. A dose reduction of one or both drugs may be warranted.
    Vemurafenib: (Moderate) Hydrocodone is metabolized by CYP3A4. Vemurafenib, an inducer of CYP3A4, may cause increased clearance of hydrocodone, which could result in lack of efficacy or the development of an abstinence syndrome in a patient who had developed physical dependence to hydrocodone. Monitor the patient for reduced efficacy of hydrocodone. A higher hydrocodone dose may be needed if used with vemurafenib.
    Verapamil: (Major) Monitor for respiratory depression and sedation if hydrocodone and verapamil are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as verapamil, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Vigabatrin: (Moderate) Vigabatrin may cause somnolence and fatigue. Drugs that can cause CNS depression, if used concomitantly with vigabatrin, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when vigabatrin is given with opiate agonists.
    Vilazodone: (Moderate) Due to the CNS effects of vilazodone, caution should be used when vilazodone is given in combination with other centrally acting medications such as opiate agonists.
    Voriconazole: (Major) Monitor for respiratory depression and sedation if hydrocodone and voriconazole are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as voriconazole, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Zafirlukast: (Moderate) Monitor for respiratory depression and sedation if hydrocodone and zafirlukast are coadministered; consider dosage adjustments if necessary. Concomitant administration may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects. Hydrocodone is metabolized by CYP3A4. Zafirlukast is a weak inhibitor of CYP3A4.
    Zaleplon: (Moderate) Concomitant use of hydrocodone with zaleplon may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. Drugs that may cause additive CNS effects include anxiolytics, sedatives, and hypnotics.
    Ziconotide: (Moderate) Concurrent use of ziconotide and opiate agonists may result in an increased incidence of dizziness and confusion. Ziconotide neither interacts with opiate receptors nor potentiates opiate-induced respiratory depression. However, in animal models, ziconotide did potentiate gastrointestinal motility reduction by opioid agonists.
    Ziprasidone: (Moderate) Ziprasidone has the potential to impair cognitive and motor skills. Additive CNS depressant effects are possible when ziprasidone is used concurrently with any CNS depressant, including hydrocodone.
    Zolpidem: (Moderate) Concomitant use of hydrocodone with zolpidem may lead to hypotension, profound sedation, coma, respiratory depression and death. In addition, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of zolpidem and other CNS depressants than with zolpidem alone. Prior to concurrent use, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of zolpidem. For Intermezzo brand of sublingual zolpidem tablets, reduce the dose to 1.75 mg/night. Monitor patients for sedation and respiratory depression.

    PREGNANCY AND LACTATION

    Pregnancy

    Guaifenesin; hydrocodone is classified in FDA pregnancy risk category C. No well-controlled studies in pregnant women have been performed. The pregnancy risk factor increases to FDA category D if guaifenesin; hydrocodone is used for prolonged periods during pregnancy or in high doses close to term. Hydrocodone readily crosses the placenta. Newborns whose mothers have been chronically taking guaifenesin; hydrocodone may show respiratory depression and/or withdrawal symptoms at birth or within a few days. Avoid product formulations that contain alcohol in pregnant women. Guaifenesin; hydrocodone should be given to a pregnant woman only if benefit clearly outweighs the risk.

    Hydrocodone may be distributed into breast milk in varying degrees depending upon the dose. It is not known if guaifenesin is excreted into breast milk. Guaifenesin; hydrocodone should not be used chronically during breast-feeding as withdrawal symptoms may occur in the infant when the mother discontinues this drug.

    MECHANISM OF ACTION

    The cumulative actions of hydrocodone in combination with guaifenesin result in the relief of cough and associated symptoms.
    •Guaifenesin: Guaifenesin is an expectorant which increases the output of phlegm (sputum) and bronchial secretions by reducing adhesiveness and surface tension. The increased flow of less viscous secretions promotes ciliary action and changes a dry, unproductive cough to one that is more productive and less frequent. By reducing the viscosity and adhesiveness of secretions, guaifenesin increases the efficacy of the mucociliary mechanism in removing accumulated secretions from the upper and lower airway. The expectorant effect can reduce cough frequency. Guaifenesin can also be beneficial for irritating, nonproductive coughs and for conditions in which thick mucous secretions are produced.
    •Hydrocodone: The antitussive effects of hydrocodone are mediated through direct action on receptors in the cough center of the medulla in the brain. Cough suppression can be achieved at lower doses than those required to produce analgesia. Hydrocodone also has a drying effect on the respiratory track and increases the viscosity of respiratory secretions.

    PHARMACOKINETICS

    Guaifenesin; hydrocodone combinations are administered orally.
    Hydrocodone: Hydrocodone undergoes complex hepatic metabolism via O-demethylation, N-demethylation, and 6-keto reduction to the corresponding metabolites, hydromorphone and norhydrocodone. The O-demethylation of hydrocodone is predominantly catalyzed by CYP2D6, which yields hydromorphone. The relative contributions of the parent drug and the metabolite hydromorphone to the antitussive and analgesic effects are unknown. The N-demethylation of hydrocodone appears to be catalyzed by CYP3A4, which yields norhydrocodone. Norhydrocodone is an inactive metabolite. About 40% of hydrocodone metabolism appears to be through non-CYP pathways. The elimination half-life is roughly 3.8 hours.
    Guaifenesin: The drug is rapidly hydrolyzed (60% within 7 hours) and then excreted in the urine, with beta-(2-methoxyphenoxy)-lactic acid as its major urinary metabolite. No unchanged drug can be detected in the urine following administration of oral guaifenesin. Excessive use of guaifenesin may result in urolithiasis; renal stones have been documented to contain beta-(2-methoxyphenoxy)-lactic acid and other guaifenesin metabolites. Additional pharmacokinetic information is not known.
     
    Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: CYP2D6, CYP3A4
    Hydrocodone is metabolized to norhydrocodone via CYP3A4 and to hydromorphone via CYP2D6. The formation of these metabolites may theoretically be affected by drugs that inhibit/induce these enzymes.

    Oral Route

    Hydrocodone: Hydrocodone is administered orally and is well absorbed from the GI tract. Antitussive activity lasts for 4—6 hours.  
    Guaifenesin: Guaifenesin is rapidly absorbed from the GI tract and has a plasma half-life of about 1 hour.