Etrafon

Browse PDR's full list of drug information

Etrafon

Classes

Psycholeptic-psychoanaleptic Combinations

Administration
Oral Administration

May administer with or without food.

Adverse Reactions
Severe

myocardial infarction / Delayed / Incidence not known
heart failure / Delayed / Incidence not known
stroke / Early / Incidence not known
ventricular tachycardia / Early / Incidence not known
torsade de pointes / Rapid / Incidence not known
seizures / Delayed / Incidence not known
coma / Early / Incidence not known
corneal opacification / Delayed / Incidence not known
retinopathy / Delayed / Incidence not known
ocular hypertension / Delayed / Incidence not known
visual impairment / Early / Incidence not known
ileus / Delayed / Incidence not known
vasculitis / Delayed / Incidence not known
laryngeal edema / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
neuroleptic malignant syndrome-like symptoms / Delayed / Incidence not known
neuroleptic malignant syndrome / Delayed / Incidence not known
tardive dyskinesia / Delayed / Incidence not known
serotonin syndrome / Delayed / Incidence not known
aplastic anemia / Delayed / Incidence not known
hemolytic anemia / Delayed / Incidence not known
agranulocytosis / Delayed / Incidence not known
pancytopenia / Delayed / Incidence not known
suicidal ideation / Delayed / Incidence not known
exfoliative dermatitis / Delayed / Incidence not known
SIADH / Delayed / Incidence not known
water intoxication / Delayed / Incidence not known

Moderate

palpitations / Early / Incidence not known
orthostatic hypotension / Delayed / Incidence not known
edema / Delayed / Incidence not known
hypertension / Early / Incidence not known
PR prolongation / Rapid / Incidence not known
QT prolongation / Rapid / Incidence not known
dysarthria / Delayed / Incidence not known
hallucinations / Early / Incidence not known
EEG changes / Delayed / Incidence not known
hyperreflexia / Delayed / Incidence not known
peripheral neuropathy / Delayed / Incidence not known
confusion / Early / Incidence not known
ataxia / Delayed / Incidence not known
dystonic reaction / Delayed / Incidence not known
pseudoparkinsonism / Delayed / Incidence not known
akathisia / Delayed / Incidence not known
blurred vision / Early / Incidence not known
cycloplegia / Early / Incidence not known
urinary retention / Early / Incidence not known
urinary incontinence / Early / Incidence not known
constipation / Delayed / Incidence not known
cholestasis / Delayed / Incidence not known
jaundice / Delayed / Incidence not known
withdrawal / Early / Incidence not known
erythema / Early / Incidence not known
testicular swelling / Early / Incidence not known
hyperprolactinemia / Delayed / Incidence not known
impotence (erectile dysfunction) / Delayed / Incidence not known
ejaculation dysfunction / Delayed / Incidence not known
galactorrhea / Delayed / Incidence not known
priapism / Early / Incidence not known
eosinophilia / Delayed / Incidence not known
neutropenia / Delayed / Incidence not known
thrombocytopenia / Delayed / Incidence not known
leukopenia / Delayed / Incidence not known
depression / Delayed / Incidence not known
mania / Early / Incidence not known
photophobia / Early / Incidence not known
hyperthermia / Delayed / Incidence not known

Mild

anxiety / Delayed / Incidence not known
dizziness / Early / Incidence not known
insomnia / Early / Incidence not known
drowsiness / Early / Incidence not known
weakness / Early / Incidence not known
fatigue / Early / Incidence not known
paresthesias / Delayed / Incidence not known
tinnitus / Delayed / Incidence not known
headache / Early / Incidence not known
tremor / Early / Incidence not known
mydriasis / Early / Incidence not known
increased urinary frequency / Early / Incidence not known
nausea / Early / Incidence not known
xerostomia / Early / Incidence not known
abdominal pain / Early / Incidence not known
vomiting / Early / Incidence not known
diarrhea / Early / Incidence not known
anorexia / Delayed / Incidence not known
skin hyperpigmentation / Delayed / Incidence not known
pruritus / Rapid / Incidence not known
rash / Early / Incidence not known
urticaria / Rapid / Incidence not known
photosensitivity / Delayed / Incidence not known
gynecomastia / Delayed / Incidence not known
breast enlargement / Delayed / Incidence not known
menstrual irregularity / Delayed / Incidence not known
libido decrease / Delayed / Incidence not known
mastalgia / Delayed / Incidence not known
weight gain / Delayed / Incidence not known
purpura / Delayed / Incidence not known
alopecia / Delayed / Incidence not known
hypothermia / Delayed / Incidence not known
polydipsia / Early / Incidence not known

Boxed Warning
Children, Reye's syndrome, suicidal ideation

Safety and efficacy of amitriptyline; perphenazine combination products have not been established for the treatment of depression in pediatric patients less than 18 years of age. Because amitriptyline; perphenazine products are used in adults with major depressive disorder (MDD), a boxed warning regarding use in pediatric patients and young adults exists in the product label. In a pooled analysis of placebo-controlled trials of antidepressants, there was an increased risk for suicidal thoughts and behaviors in children, adolescent, and young adult patients 24 years of age and younger receiving an antidepressant vs. placebo, with considerable variation in the risk of suicidality among drugs. The difference in absolute risk of suicidal thoughts and behaviors across different indications was highest in those with major depression. All patients should be monitored for symptom worsening or suicidality, especially at treatment initiation or after dose changes. Caregivers and/or patients should immediately notify the prescriber of changes in behavior or suicidal ideation. A change to the treatment regimen or discontinuation of perphenazine; amitriptyline may be necessary. Amitriptyline should be used with caution in children with a known family history of heart disease or who are taking medications that cause QT prolongation. QTc interval prolongation, tachycardias, and other side effects have been reported in children who have taken tricyclic antidepressants (TCAs); there are rare reports of deaths due to cardiovascular side effects. Routine cardiovascular monitoring has been suggested for children receiving TCAs due to the potential of these agents to produce adverse cardiac effects. Children with acute illnesses or certain infections (e.g., varicella-zoster infections, CNS infections, measles, gastroenteritis, or dehydration) may be more susceptible to developing adverse reactions, respiratory depression, and extrapyramidal symptoms from phenothiazines such as perphenazine. Phenothiazines should not be administered to pediatric patients whose signs and symptoms are suggestive of Reye's syndrome.

Dementia, geriatric, stroke

Geriatric patients may be more susceptible to the adverse effects of phenothiazines or tricyclic antidepressants (TCAs), including tardive dyskinesia, dystonia, orthostatic hypotension, QT prolongation, anticholinergic effects, and risk for falls and fractures. Initiate treatment with low doses followed by careful dosage titration and close monitoring. Antipsychotics are not approved for the treatment of dementia-related psychosis in geriatric patients and the use of phenothiazines in this population should be avoided if possible due to an increase in morbidity and mortality in elderly patients with dementia receiving antipsychotics. Deaths have typically resulted from heart failure, sudden death, or infections. An increased incidence of cerebrovascular adverse events (e.g., stroke, transient ischemic attack), including fatal events, has also been reported. The Beers Criteria consider amitriptyline; perphenazine a potentially inappropriate medication (PIM) for use in geriatric patients; avoid use due to the potential for orthostatic hypotension, anticholinergic effects or toxicity, sedation, an increased risk of stroke, and a greater rate of cognitive decline and mortality in persons with dementia. Avoid in geriatric patients with delirium, dementia, lower urinary tract symptoms/benign prostatic hyperplasia in men, syncope, or Parkinson's disease. Non-pharmacological strategies are first-line options for treating delirium- or dementia-related behavioral problems unless they have failed or are not possible and the patient is a substantial threat to self or others. If antipsychotic use is necessary in geriatrics with a history of falls or fractures, consider reducing the use of other CNS depressants and implement other fall risk strategies. Due to the potential for hyponatremia and SIADH from either agent, sodium levels should be closely monitored when amitriptyline; perphenazine is initiated and after dose changes. The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities (LTCFs); this combination is rarely a medication of choice in the elderly. TCAs are associated with strong anticholinergic and sedating properties and antipsychotics can be associated with anticholinergic effects, neurological symptoms, metabolic syndrome, and cardiac arrhythmias. Monitor patients closely for worsening of depression or suicidal behavior or thinking, especially during initiation of therapy and during dose changes. Antidepressants and antipsychotics can increase the risk of falls. OBRA provides general dosing guidance for antipsychotics and antidepressants. Psychotropics are subject to periodic review for effectiveness, medical necessity, gradual dose reduction (GDR), or rationale for continued use. Refer to the OBRA guidelines for complete information. [60742]

Common Brand Names

Etrafon, Etrafon-A, Triavil

Dea Class

Rx

Description

Oral combination phenothiazine antipsychotic and tricyclic antidepressant
Used for schizophrenia and for moderate to severe anxiety/agitation and associated depressive symptoms
Boxed warning for increased risk of suicidality in children, adolescents, and young adults during early treatment phase and increased mortality risk in elderly patients with dementia-related psychosis

Dosage And Indications
For the treatment of depression in patients with moderate to severe anxiety and/or agitation. Oral dosage Adults

Initially, one perphenazine 2 mg/amitriptyline 25 mg tablet or one perphenazine 4 mg/amitriptyline 25 mg tablet PO 3 or 4 times daily. Alternatively, one perphenazine 4 mg/amitriptyline 50 mg tablet PO twice daily. A satisfactory response may take up to several weeks. Reduce to the lowest effective dose once adequate response achieved. Usual maintenance dose: one perphenazine 2 mg/amitriptyline 25 mg tablet or one perphenazine 4 mg/amitriptyline 25 mg tablet PO 2, 3, or 4 times per day. Alternatively, one perphenazine 4 mg/amitriptyline 50 mg tablet PO twice daily. Maximum: 16 mg/day of perphenazine and 200 mg/day of amitriptyline.

For the treatment of schizophrenia in patients who have associated depressive symptoms. Oral dosage Adults

Initially, 2 tablets of perphenazine 4 mg/amitriptyline 25 mg PO 3 times per day. If necessary, a fourth dose may be given at bedtime. A satisfactory response may take up to several weeks in some patients. Once an adequate response is achieved, the dose should be reduced to the lowest possible effective dose. A suggested maintenance dose is one perphenazine 2 mg/amitriptyline 25 mg tablet or one perphenazine 4 mg/amitriptyline 25 mg tablet PO 2 to 4 times a day. Alternatively, one perphenazine 4 mg/amitriptyline 50 mg tablet PO twice daily may be used. For conditions other than acute symptom control, Max: 16 mg of perphenazine and 200 mg of amitriptyline.

Geriatric Adults

The suggested initial dose is one perphenazine 4 mg/amitriptyline 10 mg tablet PO 3 to 4 times per day. Thereafter, adjust according to response and tolerability. A satisfactory response may take up to several weeks in some patients. Once an adequate response is achieved, the dose should be reduced to the lowest possible effective dose. Max: 16 mg of perphenazine and 200 mg of amitriptyline.

Adolescents†

Safety and efficacy have not been established; however, some dosing information is available from the manufacturers. The suggested initial dose for adolescents is one perphenazine 4 mg/amitriptyline 10 mg tablet PO 3 to 4 times per day. Thereafter, adjust according to response and tolerability. A satisfactory response may take up to several weeks in some patients. Once an adequate response is achieved, reduce to the lowest possible effective dose. Max: 16 mg of perphenazine and 200 mg of amitriptyline.

Dosing Considerations
Hepatic Impairment

Use with caution in patients with hepatic impairment; patients with hepatic encephalopathy are not good candidates for treatment with this drug combination.

Renal Impairment

Specific guidelines for dosage adjustments in renal impairment are not available; it appears no dosage adjustments are needed.
 
Intermittent hemodialysis:
Perphenazine and amitriptyline are not successfully removed by hemodialysis; supplemental doses do not appear required in patients undergoing hemodialysis.

Drug Interactions

Abarelix: (Major) Abarelix carries an established risk for QT prolongation. In a single, active-controlled, clinical study comparing abarelix to LHRH agonist plus nonsteroidal antiandrogen, periodic ECGs were performed. Both therapies prolonged the mean QTc interval by >10 msec from baseline. Patients with a baseline QTc value greater than 450 milliseconds may not be appropriate candidates for abarelix receipt. Prescribers need to weigh the potential benefits and risks of abarelix use in patients with prolonged QT syndrome or in patients taking other drugs that may prolong the QT interval, including tricyclic antidepressants (TCAs). Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). ECG monitoring is recommended if the drugs must be used together. (Minor) Abarelix can cause QT prolongation. In a single, active-controlled, clinical study comparing abarelix to LHRH agonist plus nonsteroidal antiandrogen, periodic electrocardiograms were performed. Both therapies prolonged the mean QTc interval by >10 msec from baseline. In approximately 20% of 340 patients, the QTc increased more than 30 milliseconds from baseline or the end-of-treatment QTc values were more than 450 milliseconds. The effect of abarelix on the QT interval may be due to androgen deprivation or other variables, as similar effects were seen in men that received a gonadotropin-releasing hormone (GnRH) agonist with a nonsteroidal antiandrogen. Patients with a baseline QTc value greater than 450 milliseconds may not be appropriate candidates for abarelix receipt. Prescribers need to weigh the potential benefits and risks of abarelix use in patients with prolonged QT syndrome or in patients taking other drugs that may prolong the QT interval. Agents with a possible risk for QT prolongation and TdP include phenothiazines.
Abiraterone: (Moderate) Closely monitor for an increase in perphenazine-related adverse reactions if coadministration with abiraterone is necessary; reduce the dose of perphenazine if clinically appropriate. Perphenazine is a CYP2D6 substrate and abiraterone is a moderate CYP2D6 inhibitor. Concomitant administration may acutely increase plasma concentrations of perphenazine. (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with abiraterone is necessary; a dose reduction of amitriptyline may be necessary. Amitriptyline is a CYP2D6 substrate and abiraterone is a moderate CYP2D6 inhibitor. Patients who are stable on a given dose of amitriptyline may become abruptly toxic when given abiraterone is concomitant therapy.
Acarbose: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as diphenhydramine. Patients should be informed to read non-prescription allergy, sleep, and cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of diphenhydramine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Acetaminophen; Caffeine; Dihydrocodeine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as pyrilamine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Acetaminophen; Chlorpheniramine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Acetaminophen; Codeine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Acetaminophen; Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Doxylamine: (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as doxylamine. Patients should be informed to read non-prescription allergy, sleep, cough, and cold product labels carefully for additional interacting antihistamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of doxylamine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dichloralphenazone; Isometheptene: (Major) Avoid use of tricyclic antidepressants with isometheptene, a sympathomimetic amine, whenever possible. Tricyclic antidepressants (TCAs) may potentiate the pressor response to sympathomimetic agents. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience side effects like hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. Patients should be closely monitored if use together is unavoidable. (Major) The CNS depressant effects of dichloralphenazone can be potentiated by tricyclic antidepressants. (Moderate) Phenothiazines can potentiate the CNS-depressant action of other drugs such as dichloralphenazone. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension.
Acetaminophen; Diphenhydramine: (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as diphenhydramine. Patients should be informed to read non-prescription allergy, sleep, and cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of diphenhydramine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Acetaminophen; Guaifenesin; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Acetaminophen; Hydrocodone: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Acetaminophen; Oxycodone: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Acetaminophen; Pamabrom; Pyrilamine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as pyrilamine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Acetaminophen; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Acetaminophen; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines.
Acetazolamide: (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions.
Acetylcholine Chloride: (Moderate) Tricyclic antidepressants (TCAs) may antagonize some of the effects of parasympathomimetics (e.g., cholinesterase inhibitors) due to their anticholinergic activity. However, parasympathomimetics like bethanechol have occasionally been used historically to offset some of the adverse peripheral antimuscarinic (anticholinergic) effects of TCAs, such as dry mouth, constipation, or urinary retention. For years, physostigmine was used as an adjunct to the treatment of TCA overdose; however, its efficacy was limited to addressing anticholinergic effects. Additionally, case reports suggest that harmful effects such as seizures and bradyarrhythmias progressing to asystole, especially in patients with cardiac conduction abnormalities at baseline, are possible. For these reasons, physostigmine is no longer considered a standard of care in the treatment of TCA overdose.
Acrivastine; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation.
Adagrasib: (Moderate) Monitor for an increase in tricyclic antidepressant (TCA)-related adverse reactions if coadministration with adagrasib is necessary; a dose reduction of TCA may be necessary. Concurrent use may increase the exposure of TCAs which are CYP2D6 substrates; adagrasib is a CYP2D6 inhibitor. (Minor) QT/QTc prolongation can occur with concomitant use of adagrasib and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Alfentanil: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Concomitant use of alfentanil with other CNS depressants, including the phenothiazines, can potentiate the effects of alfentanil on respiration, alertness, and blood pressure. A dose reduction of one or both drugs may be warranted.
Alfuzosin: (Minor) Use caution when administering alfuzosin with perphenazine due to the potential for QT prolongation. Alfuzosin may prolong the QT interval in a dose-dependent manner. Perphenazine is also associated with a possible risk for QT prolongation.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Alogliptin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Alogliptin; Metformin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Alogliptin; Pioglitazone: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Alosetron: (Moderate) Alosetron, if combined with drugs that possess anticholinergic properties like phenothiazines, may seriously worsen constipation, leading to events such as GI obstruction/impaction or paralytic ileus. (Moderate) Alosetron, if combined with drugs that possess anticholinergic properties like tricyclic antidepressants, may seriously worsen constipation, leading to events such as GI obstruction/impaction or paralytic ileus.
Alpha-glucosidase Inhibitors: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Alprazolam: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Amantadine: (Moderate) Additive anticholinergic effects and CNS effects may be seen when tricyclic antidepressants are used concomitantly with amantadine. (Moderate) Although the mechanism of amantadine is not clear, it may potentiate the actions of dopamine. Since phenothiazines are dopamine antagonists, these drugs are best avoided when possible in patients with Parkinson's disease who require amantadine therapy. Also, the anticholinergic effects of phenothiazines can be additive to those of amantadine.
Amifampridine: (Major) Carefully consider the need for concomitant treatment with phenothiazines and amifampridine, as coadministration may increase the risk of seizures. Consider an alternative to the phenothiazine. If coadministration occurs, closely monitor patients for seizure activity. Seizures have been observed in patients without a history of seizures taking amifampridine at recommended doses. Phenothiazines may lower seizure threshold and should be used with caution with concomitant medications which may also affect seizure threshold. (Major) Carefully consider the need for concomitant treatment with tricyclic antidepressants and amifampridine, as coadministration may increase the risk of seizures. If coadministration occurs, closely monitor patients for seizure activity. Seizures have been observed in patients without a history of seizures taking amifampridine at recommended doses. Tricyclic antidepressants may increase the risk of seizures.
Amikacin: (Minor) When used for the treatment of nausea and vomiting, antiemetic phenothiazines may effectively mask symptoms that are associated with ototoxicity induced by the aminoglycosides.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Aminoglycosides: (Minor) When used for the treatment of nausea and vomiting, antiemetic phenothiazines may effectively mask symptoms that are associated with ototoxicity induced by the aminoglycosides.
Aminolevulinic Acid: (Moderate) Phenothiazines may increase the photosensitizing effects of photosensitizing agents used in photodynamic therapy. Patients should limit ultra-violet exposure.
Amiodarone: (Minor) The concomitant use of amiodarone and other drugs known to prolong the QT interval should only be done after careful assessment of risks versus benefits. Amiodarone, a Class III antiarrhythmic agent, is associated with a well-established risk of QT prolongation and TdP. Although the frequency of TdP is less with amiodarone than with other Class III agents, amiodarone is still associated with a risk of TdP. Due to the extremely long half-life of amiodarone, a drug interaction is possible for days to weeks after discontinuation of amiodarone. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation.
Amisulpride: (Major) Monitor ECGs for QT prolongation when amisulpride is administered with perphenazine. Amisulpride causes dose- and concentration- dependent QT prolongation. Perphenazine is associated with a possible risk for QT prolongation.
Amitriptyline: (Moderate) During coadministration of tricyclic antidepressants (TCAs) and perphenazine, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Phenothiazines have been reported to prolong the QT interval. Because tricyclic antidepressants are associated with a possible risk for QT prolongation and torsade de pointes when given in excessive doses or overdosage, concurrent use with phenothiazines should be approached with caution. Additive anticholinergic effects or sedation may also occur.
Amlodipine; Celecoxib: (Moderate) A dosage adjustment may be warranted for perphenazine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of perphenazine. Celecoxib is a CYP2D6 inhibitor, and perphenazine is a CYP2D6 substrate. (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with celecoxib is necessary; a dose reduction of amitriptyline may be necessary. Concurrent use may increase the plasma concentrations of amitriptyline. Amitriptyline is a CYP2D6 substrate and celecoxib is a CYP2D6 inhibitor.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Amobarbital: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Amoxapine: (Major) The use of a heterocyclic antidepressant, such as amoxapine, with tricyclic antidepressants (TCAs) is not generally recommended due to the duplicative nature of therapy and the risk for side effects. Additive cardiac effects (e.g., tachycardia), CNS effects, or antimuscarinic effects may occur. Additive dry mouth, constipation, drowsiness, bladder difficulties, or changes in heart rate might be possible. (Moderate) Use caution during coadministration of amoxapine and perphenazine. Amoxapine exhibits some antipsychotic activity and may increase the risk of tardive dyskinesia or neuroleptic malignant syndrome (NMS) when antipsychotics are given concurrently. CNS effects, orthostatic hypotension, anticholinergic effects, and lowering of seizure threshold are potential problems with the combined use of amoxapine and antipsychotics.
Amoxicillin; Clarithromycin; Omeprazole: (Minor) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering clarithromycin with perphenazine. Clarithromycin is associated with an established risk for QT prolongation and TdP, while perphenazine (a phenothiazine) is associated with a possible risk for QT prolongation.
Amphetamine: (Moderate) Monitor blood pressure, heart rate, and for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant amphetamine and tricyclic antidepressant use. Adjust doses or use alternative therapy based on clinical response. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for potentiation of cardiovascular effects and serotonin syndrome. Amphetamines may enhance the activity of tricyclic antidepressants causing significant and sustained increases in amphetamine concentrations in the brain.
Amphetamine; Dextroamphetamine: (Moderate) Monitor blood pressure, heart rate, and for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant amphetamine and tricyclic antidepressant use. Adjust doses or use alternative therapy based on clinical response. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for potentiation of cardiovascular effects and serotonin syndrome. Amphetamines may enhance the activity of tricyclic antidepressants causing significant and sustained increases in amphetamine concentrations in the brain.
Amphetamines: (Moderate) Monitor blood pressure, heart rate, and for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant amphetamine and tricyclic antidepressant use. Adjust doses or use alternative therapy based on clinical response. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for potentiation of cardiovascular effects and serotonin syndrome. Amphetamines may enhance the activity of tricyclic antidepressants causing significant and sustained increases in amphetamine concentrations in the brain.
Anagrelide: (Minor) Torsades de pointes (TdP) and ventricular tachycardia have been reported with anagrelide. In addition, dose-related increases in mean QTc and heart rate were observed in healthy subjects. A cardiovascular examination, including an ECG, should be obtained in all patients prior to initiating anagrelide therapy. Monitor patients during anagrelide therapy for cardiovascular effects and evaluate as necessary. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously with anagrelide include perphenazine.
Anticholinergics: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including perphenazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Anxiolytics; Sedatives; and Hypnotics: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered with other CNS depressant drugs and they should be used cautiously with anxiolytic, sedative, and hypnotics. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of hypnotics and other CNS depressants than with use of a hypnotic alone.
Apomorphine: (Major) Use perphenazine with apomorphine with caution; avoid use if possible due to an increased risk for QT prolongation and sedation. Also, the effectiveness of either agent may be decreased due to opposing effects on dopamine; consider if an atypical antipsychotic would be a suitable alternative to perphenazine. Additive CNS depression is also possible. Dose-related QTc prolongation is associated with therapeutic apomorphine exposure. Perphenazine is associated with a possible risk for QT prolongation. (Moderate) Use apomorphine and tricyclic antidepressants together with caution due to the risk of additive QT prolongation. Tricyclic antidepressants have been associated with QT prolongation, primarily in overdosage or when excessive plasma concentrations are encountered. Dose-related QTc prolongation is associated with therapeutic apomorphine exposure. Additive sedation is also possible during combined use of these agents.
Apraclonidine: (Moderate) Tricyclic antidepressants have been reported to blunt the hypotensive effects of systemic clonidine; it is not known whether or not the concomitant use of these agents with apraclonidine can reduce the intraocular pressure lowering effect. (Minor) No specific drug interactions were identified with systemic agents and apraclonidine during clinical trials. Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as phenothiazines.
Aprepitant, Fosaprepitant: (Moderate) Use caution if amitriptyline and multi-day regimens of oral aprepitant are used concurrently and monitor for an increase in amitriptyline-related adverse effects, including QT prolongation and torsade de pointes (TdP), for several days after administration. Amitriptyline is a CYP3A4 substrate. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of amitriptyline. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important. Aprepitant is also a CYP2C9 inducer and amitriptyline is a CYP2C9 substrate. Administration of a CYP2C9 substrate, tolbutamide, on days 1, 4, 8, and 15 with a 3-day regimen of oral aprepitant (125 mg/80 mg/80 mg) decreased the tolbutamide AUC by 23% on day 4, 28% on day 8, and 15% on day 15. The AUC of tolbutamide was decreased by 8% on day 2, 16% on day 4, 15% on day 8, and 10% on day 15 when given prior to oral administration of aprepitant 40 mg on day 1, and on days 2, 4, 8, and 15. The effects of aprepitant on tolbutamide were not considered significant.
Aripiprazole: (Major) Coadministration may result in additive effects on the QT interval. Both perphenazine and aripiprazole have been associated with QT prolongation; concurrent use may increase this risk. Additionally, increased aripiprazole blood levels may occur when it is coadministered with an inhibitor of CYP2D6, such as perphenazine. If these agents are used in combination, the patient should be carefully monitored for aripiprazole-related adverse reactions. In addition, because aripiprazole is also metabolized by CYP3A4, patients receiving a combination of a CYP3A4 and CYP2D6 inhibitor should have their oral aripiprazole dose reduced to one-quarter (25%) of the usual dose with subsequent adjustments based upon clinical response. Adults receiving a combination of a CYP3A4 and CYP2D6 inhibitor for more than 14 days should have their Abilify Maintena dose reduced from 400 mg/month to 200 mg/month or from 300 mg/month to 160 mg/month, respectively. There are no dosing recommendations for Aristada or Aristada Initio during use of a mild to moderate CYP2D6 inhibitor. Coadministration of perphenazine with atypical agents may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone. (Moderate) Monitor for unusual drowsiness and sedation during coadministration of aripiprazole and tricyclic antidepressants due to the risk for additive CNS depression.
Arsenic Trioxide: (Minor) If possible, drugs that are known to prolong the QT interval should be discontinued prior to initiating arsenic trioxide therapy. QT prolongation should be expected with the administration of arsenic trioxide. Torsade de pointes (TdP) and complete atrioventricular block have been reported. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously with arsenic trioxide include perphenazine.
Artemether; Lumefantrine: (Major) Artemether; lumefantrine is an inhibitor and the tricyclic antidepressants are substrates of the CYP2D6 isoenzyme; therefore, coadministration may lead to increased tricyclic antidepressant concentrations. Furthermore, although there are no studies examining the effects of artemether; lumefantrine in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation. Concomitant use of artemether; lumefantrine with drugs that may prolong the QT interval such as tricyclic antidepressants should be avoided. Consider ECG monitoring if tricyclic antidepressants must be used with or after artemether; lumefantrine treatment. (Minor) Artemether; lumefantrine is an inhibitor of and perphenazine is partially metabolized by the CYP2D6 isoenzyme; therefore, coadministration may lead to increased perphenazine concentrations. Furthermore, although there are no studies examining the effects of artemether; lumefantrine in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation. Concomitant use of artemether; lumefantrine with drugs that may prolong the QT interval, such as perphenazine, should be avoided. Consider ECG monitoring if perphenazine must be used with or after artemether; lumefantrine treatment.
Articaine; Epinephrine: (Major) Avoid use of epinephrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the vasopressor effects of epinephrine. (Moderate) Monitor blood pressure during concomitant epinephrine and phenothiazine use. Phenothiazines antagonize the pressor effects of epinephrine. Do not use epinephrine to counteract hypotension caused by a phenothiazine, as a reversal of the pressor effect of epinephrine may result in paradoxical further lowering of blood pressure.
Asenapine: (Moderate) Concurrent use of asenapine and tricyclic antidepressants should be avoided if possible. Asenapine has been associated with a risk for QT prolongation and torsade de pointes, and tricyclics at elevated serum concentrations may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other interactions, such as augmentation of CNS impairment or orthostatic hypotension. Further, in vitro studies indicate that CYP1A2 and CYP3A4 are involved in the metabolism of asenapine. Inhibitors of these isoenzymes such as imipramine may decrease the elimination of asenapine. During co-administration of a single 75 mg dose of imipramine and a single 5 mg dose of asenapine, the Cmax of asenapine was increased by 17% and the AUC was increased by 10%. No asenapine dose adjustments are required during combined use. (Moderate) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation. According to the manufacturer, asenapine should be avoided in combination with other drugs having an association with QT prolongation. Co-administration of perphenazine with atypical agents may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Additive anticholinergic effects may be seen when perphenazine is used concomitantly with other drugs having antimuscarinic activity such as orphenadrine. Additive sedation may also occur. (Moderate) Orphenadrine should be combined cautiously with tricyclic antidepressants due to the potential for additive anticholinergic and CNS depressant effects. Antimuscarinic effects might be seen on GI smooth muscle, bladder function, the eye, and temperature regulation. Consider an alternative skeletal muscle relaxant.
Aspirin, ASA; Carisoprodol: (Moderate) Concomitant use of carisoprodol with tricyclic antidepressants can result in additive CNS depression (sedation and dizziness), which can impair the ability to undertake tasks requiring mental alertness. (Moderate) Phenothiazines can potentiate the CNS-depressant action of other drugs such as skeletal muscle relaxants. Caution should be exercised during simultaneous use of these agents due to potential for additive hypotension and excessive CNS effects (sedation and dizziness), which can impair the ability to undertake tasks requiring mental alertness.
Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of carisoprodol with tricyclic antidepressants can result in additive CNS depression (sedation and dizziness), which can impair the ability to undertake tasks requiring mental alertness. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Phenothiazines can potentiate the CNS-depressant action of other drugs such as skeletal muscle relaxants. Caution should be exercised during simultaneous use of these agents due to potential for additive hypotension and excessive CNS effects (sedation and dizziness), which can impair the ability to undertake tasks requiring mental alertness.
Aspirin, ASA; Oxycodone: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Atazanavir: (Moderate) According to the manufacturer, concurrent use of tricyclic antidepressants (TCAs) and atazanavir may result in elevated TCA plasma concentration, and could increase the potential for serious adverse effects. If these drugs are administered together, carefully titrate the TCA dose based on a clinical assessment of antidepressant response. Patients on a stable dose of TCA who start treatment with atazanavir should be monitored for TCA-associated anticholinergic effects (e.g., sedation, confusion, constipation). In addition to clinical monitoring, the manufacturer suggests obtaining TCA serum concentrations (where available) as an adjunct to assessing the potential for interactions.
Atazanavir; Cobicistat: (Moderate) According to the manufacturer, concurrent use of tricyclic antidepressants (TCAs) and atazanavir may result in elevated TCA plasma concentration, and could increase the potential for serious adverse effects. If these drugs are administered together, carefully titrate the TCA dose based on a clinical assessment of antidepressant response. Patients on a stable dose of TCA who start treatment with atazanavir should be monitored for TCA-associated anticholinergic effects (e.g., sedation, confusion, constipation). In addition to clinical monitoring, the manufacturer suggests obtaining TCA serum concentrations (where available) as an adjunct to assessing the potential for interactions. (Moderate) Close monitoring for antidepressant response and careful dose titrations of the antidepressant therapy is recommended during coadministration of tricyclic antidepressants (TCAs) and cobicistat. Concurrent use may result in elevated TCA plasma concentrations. (Moderate) The plasma concentrations of perphenazine may be elevated when administered concurrently with cobicistat. During coadministration, a reduction in the perphenazine dose may be required. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. Cobicistat is an inhibitor of CYP2D6, an isoenzyme responsible for the metabolism of perphenazine. These drugs used in combination may result in elevated perphenazine plasma concentrations, causing an increased risk for perphenazine-related adverse events.
Atenolol; Chlorthalidone: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Atomoxetine: (Minor) Use caution when administering atomoxetine with perphenazine as concurrent use may increase the risk of QT prolongation. QT prolongation has occurred during therapeutic use of atomoxetine and following overdose. Additionally, perphenazine is associated with a possible risk for QT prolongation.
Atropine: (Moderate) Monitor for unusual drowsiness or excess sedation and for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and atropine use. Concomitant use may result in additive CNS depression or anticholinergic adverse effects.
Atropine; Difenoxin: (Moderate) Concurrent administration can potentiate the CNS and respiratory depressant effects of diphenoxylate/difenoxin and the CNS depressant effects of the tricyclic antidepressant (TCA). Both TCAs and diphenoxylate/difenoxin may cause constipation. Use caution during coadministration. Cases of severe GI reactions including toxic megacolon and adynamic ileus have been rarely reported. In some cases, a dosage reduction of diphenoxylate or difenoxin might be needed to manage any noted side effects. (Moderate) Diphenoxylate is a synthetic opiate derivative that appears to exert its effect locally and centrally on the smooth muscle cells of the GI tract to inhibit GI motility and slow excess GI propulsion. The effects can be additive to other agents with CNS and anticholinergic effects, such as the phenothiazines. In some cases, constipation might occur, and effects on the CNS or bladder function may also be additive. (Moderate) Monitor for unusual drowsiness or excess sedation and for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and atropine use. Concomitant use may result in additive CNS depression or anticholinergic adverse effects.
Azelastine: (Moderate) An enhanced CNS depressant effect may occur when azelastine is combined with other CNS depressants including phenothiazines. (Moderate) Monitor for excessive sedation and somnolence during coadministration of azelastine and tricyclic antidepressants. Concurrent use may result in additive CNS depression.
Azelastine; Fluticasone: (Moderate) An enhanced CNS depressant effect may occur when azelastine is combined with other CNS depressants including phenothiazines. (Moderate) Monitor for excessive sedation and somnolence during coadministration of azelastine and tricyclic antidepressants. Concurrent use may result in additive CNS depression.
Azilsartan; Chlorthalidone: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Azithromycin: (Major) Concomitant use of perphenazine and azithromycin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Baclofen: (Moderate) Monitor for unusual drowsiness and excess sedation during coadministration of baclofen and tricyclic antidepressants due to the risk for additive CNS depression. (Moderate) Monitor for u

nusual drowsiness and sedation during coadministration of baclofen and phenothiazines due to the risk for additive CNS depression.
Barbiturates: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Bedaquiline: (Minor) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering bedaquiline with perphenazine. Bedaquiline has been reported to prolong the QT interval. Prior to initiating bedaquiline, obtain serum electrolyte concentrations and a baseline ECG. An ECG should also be performed at least 2, 12, and 24 weeks after starting bedaquiline therapy. Perphenazine, a phenothiazine, is also associated with a possible risk for QT prolongation.
Belladonna; Opium: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome. Monitor for signs of urinary retention and reduced gastric motility. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and belladonna use. Concomitant use may result in additive anticholinergic adverse effects.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Benzhydrocodone; Acetaminophen: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome. Monitor for signs of urinary retention and reduced gastric motility. (Major) Perphenazine is contraindicated for use in patients receiving large doses of CNS depressants, such as opioid agonists. Concomitant use of opioid agonists with perphenazine may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If benzhydrocodone is initiated in a patient taking perphenazine, reduce initial dosage and titrate to clinical response. If perphenazine is initiated a patient taking an opioid agonist, use a lower initial dose of perphenazine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Benzodiazepines: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Contraindicated) Per the manufacturer, treatment initiation with amitriptyline is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than amitriptyline (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving amitriptyline and requiring urgent treatment with IV methylene blue, amitriptyline should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Amitriptyline may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Benzphetamine: (Moderate) Monitor blood pressure, heart rate, and for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant amphetamine and tricyclic antidepressant use. Adjust doses or use alternative therapy based on clinical response. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for potentiation of cardiovascular effects and serotonin syndrome. Amphetamines may enhance the activity of tricyclic antidepressants causing significant and sustained increases in amphetamine concentrations in the brain.
Benztropine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and benztropine use. Concomitant use may result in additive anticholinergic adverse effects.
Berotralstat: (Moderate) Monitor for an increase in tricyclic antidepressant-related adverse reactions if coadministration with berotralstat is necessary; a dose reduction of the antidepressant may be necessary. Concurrent use may increase exposure of tricyclic antidepressants (TCAs). TCAs are CYP2D6 substrates and berotralstat is a CYP2D6 inhibitor.
Bethanechol: (Moderate) Tricyclic antidepressants (TCAs) may antagonize some of the effects of parasympathomimetics (e.g., cholinesterase inhibitors) due to their anticholinergic activity. However, parasympathomimetics like bethanechol have occasionally been used historically to offset some of the adverse peripheral antimuscarinic (anticholinergic) effects of TCAs, such as dry mouth, constipation, or urinary retention. For years, physostigmine was used as an adjunct to the treatment of TCA overdose; however, its efficacy was limited to addressing anticholinergic effects. Additionally, case reports suggest that harmful effects such as seizures and bradyarrhythmias progressing to asystole, especially in patients with cardiac conduction abnormalities at baseline, are possible. For these reasons, physostigmine is no longer considered a standard of care in the treatment of TCA overdose.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Minor) QT/QTc prolongation can occur with concomitant use of metronidazole and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Bismuth Subsalicylate: (Moderate) Antidiarrheals decrease GI motility. Agents that inhibit intestinal motility or prolong intestinal transit time have been reported to induce toxic megacolon. The concomitant administration of phenothiazines may produce additive effects.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Antidiarrheals decrease GI motility. Agents that inhibit intestinal motility or prolong intestinal transit time have been reported to induce toxic megacolon. The concomitant administration of phenothiazines may produce additive effects. (Minor) QT/QTc prolongation can occur with concomitant use of metronidazole and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Brexpiprazole: (Major) Caution is advisable during concurrent use of brexpiprazole with antipsychotics such as perphenazine. Brexpiprazole is partially metabolized by CYP2D6 and perphenazine is an inhibitor of CYP2D6. The manufacturer of brexpiprazole recommends that the brexpiprazole dose be reduced to one-quarter (25%) of the usual dose in patients receiving a moderate to strong inhibitor of CYP3A4 in combination with a moderate to strong inhibitor of CYP2D6. Therefore, if perphenazine is used in combination with brexpiprazole and a moderate to strong CYP3A4 inhibitor, the brexpiprazole dose should be adjusted and the patient should be carefully monitored for brexpiprazole-related adverse reactions. However, no dosage adjustment is needed in patients taking a CYP2D6 inhibitor who are receiving brexpiprazole as adjunct treatment for major depressive disorder because CYP2D6 considerations are already factored into general dosing recommendations. The risk of drowsiness, dizziness, hypotension, extrapyramidal symptoms, anticholinergic effects, neuroleptic malignant syndrome, or seizures may be increased during combined use of brexpiprazole and perphenazine; therefore, it may be advisable to initiate treatment with lower dosages if combination therapy is deemed necessary. Perphenazine has a high potential for causing extrapyramidal symptoms and a low potential for causing sedation, orthostasis, and anticholinergic effects. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone. (Moderate) Due to the CNS effects of brexpiprazole, caution is advisable when brexpiprazole is given in combination with other centrally-acting medications including tricyclic antidepressants (TCAs). Sedation is generally more pronounced with tertiary TCAs such as amitriptyline, imipramine, doxepin, and clomipramine.
Brimonidine: (Moderate) Tricyclic antidepressants have been reported to decrease the antihypertensive effects of systemic clonidine. It is not known whether tricyclic antidepressants will affect the IOP-lowering efficacy of brimonidine eye solution. There are no data concerning the levels of systemic catecholamines after ophthalmic administration of brimonidine; however, monitor patients carefully who are taking brimonidine and tricyclic antidepressants.
Brimonidine; Brinzolamide: (Moderate) Tricyclic antidepressants have been reported to decrease the antihypertensive effects of systemic clonidine. It is not known whether tricyclic antidepressants will affect the IOP-lowering efficacy of brimonidine eye solution. There are no data concerning the levels of systemic catecholamines after ophthalmic administration of brimonidine; however, monitor patients carefully who are taking brimonidine and tricyclic antidepressants.
Brimonidine; Timolol: (Moderate) Tricyclic antidepressants have been reported to decrease the antihypertensive effects of systemic clonidine. It is not known whether tricyclic antidepressants will affect the IOP-lowering efficacy of brimonidine eye solution. There are no data concerning the levels of systemic catecholamines after ophthalmic administration of brimonidine; however, monitor patients carefully who are taking brimonidine and tricyclic antidepressants.
Brivaracetam: (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. Monitor patients on anticonvulsants carefully when a TCA is used concurrently.
Bromocriptine: (Major) Avoid concurrent use of phenothiazines and bromocriptine when possible. Bromocriptine may interact with dopamine antagonists such as the phenothiazines. The phenothiazines are noted to result in a decreased efficacy of bromocriptine. The prolactin-lowering effect of bromocriptine is antagonized; the elevation in prolactin levels produced by phenothiazines persists with chronic administration. In addition, bromocriptine, a dopamine agonist, may theoretically diminish the effectiveness of central dopamine antagonists such as the phenothiazines; however, such interactions are not certain.
Brompheniramine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as brompheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Brompheniramine; Dextromethorphan; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as brompheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Brompheniramine; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as brompheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Brompheniramine; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as brompheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as brompheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and glycopyrrolate use. Concomitant use may result in additive anticholinergic adverse effects.
Bupivacaine Liposomal: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Bupivacaine: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Bupivacaine; Epinephrine: (Major) Avoid use of epinephrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the vasopressor effects of epinephrine. (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient. (Moderate) Monitor blood pressure during concomitant epinephrine and phenothiazine use. Phenothiazines antagonize the pressor effects of epinephrine. Do not use epinephrine to counteract hypotension caused by a phenothiazine, as a reversal of the pressor effect of epinephrine may result in paradoxical further lowering of blood pressure.
Bupivacaine; Lidocaine: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient. (Major) If epinephrine is added to lidocaine for the purpose of infiltration and nerve block or spinal anesthesia, receipt of the product to a patient taking tricyclic antidepressants (TCA) may lead to severe, prolonged hypertension. In general, concurrent use of a local anesthetic solution containing epinephrine and a TCA should be avoided. If coadministration is necessary, careful patient monitoring is essential.
Bupivacaine; Meloxicam: (Major) Coadminister bupivacaine and tricyclic antidepressants together with caution. If epinephrine is added to bupivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient.
Buprenorphine: (Major) Concomitant use of tricyclic antidepressants (TCAs) and buprenorphine increases the risk of QT/QTc prolongation, torsade de pointes (TdP), serotonin syndrome, hypotension, profound sedation, coma, respiratory depression, or death. Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. In addition, concurrent use of opioids with other drugs that modulate serotonergic function, such as TCAs, has resulted in serotonin syndrome in some cases. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. If combination treatment is required, patients should be carefully observed, particularly during treatment initiation and during dose adjustments of the serotonergic drug; discontinue buprenorphine if serotonin syndrome is suspected. Lastly, concomitant use of buprenorphine with other CNS depressants, such as TCAs, can lead to additive CNS depressive effects. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of buprenorphine in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Evaluate the patient's use of alcohol or illicit drugs. Consider a dose reduction of one or both drugs. It is recommended that the injectable buprenorphine dose be halved for patients who receive other drugs with CNS depressant effects; for the buprenorphine transdermal patch, start with the 5 mcg/hour patch. Monitor patients for sedation or respiratory depression. (Moderate) Due to the potential for QT prolongation and additive CNS depressant effects, cautious use and close monitoring are advisable if concurrent use of phenothiazines and buprenorphine is necessary. Buprenorphine has been associated with QT prolongation and has a possible risk of torsade de pointes (TdP). FDA-approved labeling for some buprenorphine products recommend avoiding use with Class 1A and Class III antiarrhythmic medications while other labels recommend avoiding use with any drug that has the potential to prolong the QT interval. Phenothiazines including fluphenazine, perphenazine, prochlorperazine, and trifluoperazine are associated with a possible risk for QT prolongation. Theoretically, these phenothiazines may increase the risk of QT prolongation if co-administered with drugs with a risk of QT prolongation. Also, concomitant use of buprenorphine with other CNS depressants, such as phenothiazines, can lead to additive CNS depressive effects. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of buprenorphine in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Evaluate the patient's use of alcohol or illicit drugs. Consider a dose reduction of one or both drugs. It is recommended that the injectable buprenorphine dose be halved for patients who receive other drugs with CNS depressant effects; for the buprenorphine transdermal patch, start with the 5 mcg/hour patch. Monitor patients for sedation or respiratory depression.
Buprenorphine; Naloxone: (Major) Concomitant use of tricyclic antidepressants (TCAs) and buprenorphine increases the risk of QT/QTc prolongation, torsade de pointes (TdP), serotonin syndrome, hypotension, profound sedation, coma, respiratory depression, or death. Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. In addition, concurrent use of opioids with other drugs that modulate serotonergic function, such as TCAs, has resulted in serotonin syndrome in some cases. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. If combination treatment is required, patients should be carefully observed, particularly during treatment initiation and during dose adjustments of the serotonergic drug; discontinue buprenorphine if serotonin syndrome is suspected. Lastly, concomitant use of buprenorphine with other CNS depressants, such as TCAs, can lead to additive CNS depressive effects. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of buprenorphine in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Evaluate the patient's use of alcohol or illicit drugs. Consider a dose reduction of one or both drugs. It is recommended that the injectable buprenorphine dose be halved for patients who receive other drugs with CNS depressant effects; for the buprenorphine transdermal patch, start with the 5 mcg/hour patch. Monitor patients for sedation or respiratory depression. (Moderate) Due to the potential for QT prolongation and additive CNS depressant effects, cautious use and close monitoring are advisable if concurrent use of phenothiazines and buprenorphine is necessary. Buprenorphine has been associated with QT prolongation and has a possible risk of torsade de pointes (TdP). FDA-approved labeling for some buprenorphine products recommend avoiding use with Class 1A and Class III antiarrhythmic medications while other labels recommend avoiding use with any drug that has the potential to prolong the QT interval. Phenothiazines including fluphenazine, perphenazine, prochlorperazine, and trifluoperazine are associated with a possible risk for QT prolongation. Theoretically, these phenothiazines may increase the risk of QT prolongation if co-administered with drugs with a risk of QT prolongation. Also, concomitant use of buprenorphine with other CNS depressants, such as phenothiazines, can lead to additive CNS depressive effects. Hypotension, profound sedation, coma, respiratory depression, or death may occur. Prior to concurrent use of buprenorphine in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Evaluate the patient's use of alcohol or illicit drugs. Consider a dose reduction of one or both drugs. It is recommended that the injectable buprenorphine dose be halved for patients who receive other drugs with CNS depressant effects; for the buprenorphine transdermal patch, start with the 5 mcg/hour patch. Monitor patients for sedation or respiratory depression.
Bupropion: (Major) Bupropion is associated with a dose-related risk of seizures and may have an additive effect with phenothiazines on lowering the seizure threshold. Low initial dosing and slow titration is recommended if this combination must be used. In addition, bupropion is a strong inhibitor of CYP2D6. Dosage reductions of perphenazine, a CYP2D6 substrate, may be needed during coadministration with bupropion. Increased serum concentrations of perphenazine may result in extrapyramidal symptoms, somnolence, or other adverse effects. (Moderate) Use extreme caution when coadministering bupropion with other drugs that lower the seizure threshold, such as tricyclic antidepressants. Use low initial doses of bupropion and increase the dose gradually. Monitor patients for an increase in tricyclic antidepressant-related adverse reactions and signs and symptoms of serotonin syndrome during concomitant use, particularly during treatment initiation and dosage increases; a dose reduction of the tricyclic antidepressant may be necessary. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Tricyclic antidepressants are CYP2D6 substrates and bupropion is a CYP2D6 inhibitor.
Bupropion; Naltrexone: (Major) Bupropion is associated with a dose-related risk of seizures and may have an additive effect with phenothiazines on lowering the seizure threshold. Low initial dosing and slow titration is recommended if this combination must be used. In addition, bupropion is a strong inhibitor of CYP2D6. Dosage reductions of perphenazine, a CYP2D6 substrate, may be needed during coadministration with bupropion. Increased serum concentrations of perphenazine may result in extrapyramidal symptoms, somnolence, or other adverse effects. (Moderate) Patients receiving phenothiazines and naltrexone concomitantly have had symptoms of somnolence and lethargy. (Moderate) Use extreme caution when coadministering bupropion with other drugs that lower the seizure threshold, such as tricyclic antidepressants. Use low initial doses of bupropion and increase the dose gradually. Monitor patients for an increase in tricyclic antidepressant-related adverse reactions and signs and symptoms of serotonin syndrome during concomitant use, particularly during treatment initiation and dosage increases; a dose reduction of the tricyclic antidepressant may be necessary. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Tricyclic antidepressants are CYP2D6 substrates and bupropion is a CYP2D6 inhibitor.
Buspirone: (Moderate) Coadministration of buspirone with tricyclic antidepressants (TCAs) may increase the risk of serotonin syndrome. Both types of medications have serotonergic properties. Inform patients of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose increases. If serotonin syndrome occurs, all serotonergic drugs should be discontinued and appropriate medical treatment should be initiated.
Butabarbital: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Butalbital; Acetaminophen: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Butalbital; Acetaminophen; Caffeine: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Butalbital; Aspirin; Caffeine; Codeine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Butorphanol: (Moderate) Concomitant use of butorphanol with other CNS depressants, such as phenothiazines, can potentiate the effects of butorphanol on respiratory depression, CNS depression, and sedation. (Moderate) Pain medications such as mixed opiate agonists/antagonists should be combined cautiously with tricyclic antidepressants due to the possibility of additive CNS depression, respiratory depression, hypotension, or decreased intestinal motility. Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering tricyclic antidepressants with other drugs that have serotonergic properties such as pentazocine. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. If serotonin syndrome is suspected, tricyclic antidepressants and concurrent serotonergic agents should be discontinued. If a CNS depressant needs to be used with butorphanol, use the smallest effective dose and the longest dosing frequency of butorphanol.
Cabergoline: (Moderate) Cabergoline should generally not be coadministered with phenothiazines due to mutually antagonistic effects on dopaminergic function. The dopamine antagonist action of phenothiazines may diminish the prolactin-lowering ability of cabergoline while the dopamine agonist effects of cabergoline may exacerbate a psychotic disorder, reducing the effectiveness of antipsychotics such as phenothiazines.
Cabotegravir; Rilpivirine: (Minor) Caution is advised when administering rilpivirine with perphenazine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Calcium, Magnesium, Potassium, Sodium Oxybates: (Major) Additive CNS depressant effects may be possible when sodium oxybate is used concurrently with phenothiazines.
Canagliflozin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted.
Canagliflozin; Metformin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Cannabidiol: (Moderate) Monitor for excessive sedation and somnolence during coadministration of cannabidiol and amitriptyline. Concurrent use may result in additive CNS depression. (Moderate) Monitor for excessive sedation and somnolence during coadministration of cannabidiol and phenothiazines. CNS depressants can potentiate the effects of cannabidiol.
Capsaicin; Metaxalone: (Moderate) Coadministration of tricyclic antidepressants (TCAs) with metaxalone may result in additive CNS-depressant effects, such as sedation, and may increase the risk for serotonin syndrome. Use with caution and monitor for the emergence of excessive sedation or serotonin syndrome. If serotonin syndrome is suspected, serotonergic agents should be discontinued and appropriate medical treatment instituted. (Moderate) Phenothiazines can potentiate the CNS-depressant action of skeletal muscle relaxants like metaxalone. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Carbamazepine: (Moderate) Monitor for loss of tricyclic antidepressant efficacy during concomitant carbamazepine use. Concomitant use may result in decreased tricyclic antidepressant exposure.
Carbidopa; Levodopa: (Major) Avoid concurrent use if possible and consider an atypical antipsychotic as an alternative to the phenothiazine. If coadministration cannot be avoided, monitor for changes in movement, moods, or behaviors. Due to opposing effects on central dopaminergic activity, phenothiazines and levodopa may interfere with the effectiveness of each other. (Moderate) Monitor blood pressure and for symptoms of dyskinesia during concomitant levodopa and tricyclic antidepressant use. There have been rare reports of adverse reactions, including hypertension and dyskinesia, resulting from the concomitant use.
Carbidopa; Levodopa; Entacapone: (Major) Avoid concurrent use if possible and consider an atypical antipsychotic as an alternative to the phenothiazine. If coadministration cannot be avoided, monitor for changes in movement, moods, or behaviors. Due to opposing effects on central dopaminergic activity, phenothiazines and levodopa may interfere with the effectiveness of each other. (Major) COMT inhibitors should be given cautiously with other agents that cause CNS depression, including tricyclic antidepressants, due to the possibility of additive sedation. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. Patients should be advised to avoid driving or other tasks requiring mental alertness until they know how the combination affects them. (Moderate) Monitor blood pressure and for symptoms of dyskinesia during concomitant levodopa and tricyclic antidepressant use. There have been rare reports of adverse reactions, including hypertension and dyskinesia, resulting from the concomitant use.
Carbinoxamine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as carbinoxamine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Cariprazine: (Major) Avoid use of these drugs together due to duplicative therapeutic effects and additive risks for drowsiness, dizziness, orthostatic hypotension, extrapyramidal symptoms, neuroleptic malignant syndrome, and seizures. Cariprazine, like other antipsychotics, has the potential to impair judgment, thinking, or motor skills. The use of cariprazine with other antipsychotic agents, such as the phenothiazines, would be expected to have additive risks for pharmacologic effects and adverse reactions. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during combined use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone. (Moderate) Due to the CNS effects of cariprazine, caution is advisable when cariprazine is given in combination with other centrally-acting medications including tricyclic antidepressants. Sedation is generally more pronounced with tertiary agents such as amitriptyline, imipramine, doxepin, and clomipramine.
Carisoprodol: (Moderate) Concomitant use of carisoprodol with tricyclic antidepressants can result in additive CNS depression (sedation and dizziness), which can impair the ability to undertake tasks requiring mental alertness. (Moderate) Phenothiazines can potentiate the CNS-depressant action of other drugs such as skeletal muscle relaxants. Caution should be exercised during simultaneous use of these agents due to potential for additive hypotension and excessive CNS effects (sedation and dizziness), which can impair the ability to undertake tasks requiring mental alertness.
Celecoxib: (Moderate) A dosage adjustment may be warranted for perphenazine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of perphenazine. Celecoxib is a CYP2D6 inhibitor, and perphenazine is a CYP2D6 substrate. (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with celecoxib is necessary; a dose reduction of amitriptyline may be necessary. Concurrent use may increase the plasma concentrations of amitriptyline. Amitriptyline is a CYP2D6 substrate and celecoxib is a CYP2D6 inhibitor.
Celecoxib; Tramadol: (Major) Concomitant use of tramadol with tricyclic antidepressants may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome, seizures, and anticholinergic effects. Limit the use of opioid pain medications to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. (Major) Seizures have been reported in patients receiving monotherapy with tramadol or antipsychotics at recommended doses. Concomitant use of tramadol and antipsychotics may increase the risk of seizures and result in other additive CNS effects. The manufacturer of tramadol cautions that serotonin syndrome may occur during use of drugs that impair the metabolism of tramadol such as CYP2D6 inhibitors, including antipsychotics like perphenazine. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. The analgesic activity of tramadol is due to the activity of both the parent drug and the O-desmethyltramadol metabolite (M1), and M1 formation is dependent on CYP2D6. Therefore, use of tramadol with a CYP2D6 inhibitor may in theory also decrease tramadol efficacy. (Moderate) A dosage adjustment may be warranted for perphenazine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of perphenazine. Celecoxib is a CYP2D6 inhibitor, and perphenazine is a CYP2D6 substrate. (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with celecoxib is necessary; a dose reduction of amitriptyline may be necessary. Concurrent use may increase the plasma concentrations of amitriptyline. Amitriptyline is a CYP2D6 substrate and celecoxib is a CYP2D6 inhibitor.
Cenobamate: (Moderate) Monitor for excessive sedation and somnolence during coadministration of cenobamate and a phenothiazine. Concurrent use may result in additive CNS depression. (Moderate) Monitor for excessive sedation and somnolence during coadministration of cenobamate and tricyclic antidepressants. Concurrent use may result in additive CNS depression.
Central-acting adrenergic agents: (Moderate) Monitor blood pressure and for unusual drowsiness or excessive sedation during concomitant central-acting adrenergic agent and phenothiazine use. Concomitant use increases the risk for additive hypotension and CNS depression.
Ceritinib: (Minor) Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation such as ceritinib.
Cetirizine: (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of cetirizine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Cetirizine; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of cetirizine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Cetrorelix: (Moderate) Drugs that cause hyperprolactinemia, such as antipsychotics, should not be administered concomitantly with cetrorelix since hyperprolactinemia downregulates the number of pituitary GnRH receptors.
Cevimeline: (Moderate) Tricyclic antidepressants (TCAs) may antagonize some of the effects of parasympathomimetics (e.g., cholinesterase inhibitors) due to their anticholinergic activity. However, parasympathomimetics like bethanechol have occasionally been used historically to offset some of the adverse peripheral antimuscarinic (anticholinergic) effects of TCAs, such as dry mouth, constipation, or urinary retention. For years, physostigmine was used as an adjunct to the treatment of TCA overdose; however, its efficacy was limited to addressing anticholinergic effects. Additionally, case reports suggest that harmful effects such as seizures and bradyarrhythmias progressing to asystole, especially in patients with cardiac conduction abnormalities at baseline, are possible. For these reasons, physostigmine is no longer considered a standard of care in the treatment of TCA overdose.
Charcoal: (Major) Phenothiazine absorption is reduced when coadministered with activated charcoal. Concomitant administration of phenothiazines and activated charcoal dietary supplements is not recommended. Activated charcoal may be appropriate in phenothiazine overdose situations, as charcoal absorbs the phenothiazines and also enhances drug elimination.
Chlophedianol; Dexbrompheniramine: (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as dexbrompheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as dexchlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Chlorcyclizine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation.
Chlordiazepoxide: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Chlordiazepoxide; Amitriptyline: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur. (Moderate) During coadministration of tricyclic antidepressants (TCAs) and perphenazine, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Phenothiazines have been reported to prolong the QT interval. Because tricyclic antidepressants are associated with a possible risk for QT prolongation and torsade de pointes when given in excessive doses or overdosage, concurrent use with phenothiazines should be approached with caution. Additive anticholinergic effects or sedation may also occur.
Chlordiazepoxide; Clidinium: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Chloroquine: (Major) Avoid coadministration of chloroquine with perphenazine due to the increased risk of QT prolongation. If use together is necessary, obtain an ECG at baseline to assess initial QT interval and determine frequency of subsequent ECG monitoring, avoid any non-essential QT prolonging drugs, and correct electrolyte imbalances. Chloroquine is associated with an increased risk of QT prolongation and torsade de pointes (TdP); the risk of QT prolongation is increased with higher chloroquine doses. Perphenazine is associated with a possible risk for QT prolongation.
Chlorothiazide: (M oderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Chlorpheniramine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Chlorpheniramine; Codeine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Dextromethorphan: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Chlorpheniramine; Hydrocodone: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Chlorpheniramine; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Chlorpheniramine; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Chlorpromazine: (Moderate) Coadministration of chlorpromazine and perphenazine should be avoided when possible. Chlorpromazine, a phenothiazine, is associated with an established risk of QT prolongation and torsade de pointes (TdP). Perphenazine is also a phenothiazine and is associated with a possible risk for QT prolongation. In addition, coadministration may increase the risk of drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures. (Moderate) During coadministration of tricyclic antidepressants (TCAs) and chlorpromazine, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Chlorpromazine is associated with an established risk of QT prolongation and torsades de pointes (TdP); case reports have included patients receiving therapeutic doses of chlorpromazine. TCAs may cause cardiac effects (e.g., QT prolongation) in some cases. Additive anticholinergic effects, hypotension, and sedation may also occur.
Chlorpropamide: (Moderate) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. Also, concomitant use may increase the risk for phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure.
Chlorthalidone: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Chlorthalidone; Clonidine: (Moderate) Monitor blood pressure and for unusual drowsiness or excess sedation during coadministration of clonidine and tricyclic antidepressants. Concomitant use may result in reduced hypotensive effect of clonidine and additive CNS depression. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Chlorzoxazone: (Moderate) Concomitant use of chlorzoxazone with tricyclic antidepressants can result in additive CNS depression. (Moderate) Phenothiazines can potentiate the CNS-depressant action of other drugs such as skeletal muscle relaxants. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension.
Cholinergic agonists: (Moderate) Tricyclic antidepressants (TCAs) may antagonize some of the effects of parasympathomimetics (e.g., cholinesterase inhibitors) due to their anticholinergic activity. However, parasympathomimetics like bethanechol have occasionally been used historically to offset some of the adverse peripheral antimuscarinic (anticholinergic) effects of TCAs, such as dry mouth, constipation, or urinary retention. For years, physostigmine was used as an adjunct to the treatment of TCA overdose; however, its efficacy was limited to addressing anticholinergic effects. Additionally, case reports suggest that harmful effects such as seizures and bradyarrhythmias progressing to asystole, especially in patients with cardiac conduction abnormalities at baseline, are possible. For these reasons, physostigmine is no longer considered a standard of care in the treatment of TCA overdose.
Cimetidine: (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with cimetidine is necessary; a dose reduction of amitriptyline may be necessary. Concurrent use may increase the plasma concentrations of amitriptyline. Amitriptyline is a CYP2D6 substrate and cimetidine is a CYP2D6 inhibitor.
Cinacalcet: (Moderate) Monitor for an increase in tricyclic antidepressant (TCA)-related adverse reactions if coadministration with cinacalcet is necessary; a dose reduction of TCA may be necessary. Concurrent use may increase the exposure of TCAs which are CYP2D6 substrates; cinacalcet is a CYP2D6 inhibitor.
Ciprofloxacin: (Minor) QT/QTc prolongation can occur with concomitant use of ciprofloxacin and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Cisapride: (Contraindicated) Coadministration of cisapride and perphenazine is contraindicated due to the risk for serious adverse events, such as torsade de pointes (TdP). QT prolongation and ventricular arrhythmias, including TdP and death, have been reported with cisapride. Perphenazine, a phenothiazine, is also associated with a possible risk for QT prolongation and/or TdP.
Citalopram: (Major) The use of tricyclic antidepressants (TCAs) and citalopram together may increase the risk of QT prolongation and serotonin syndrome; consider a decreased dosage of the TCA or the avoidance of concomitant SSRI therapy. If concomitant use is necessary, consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, and monitor for serotonin syndrome. If serotonin syndrome is suspected, discontinue all serotonergic agents. Citalopram is a weak inhibitor of CYP2D6 that has been associated with a risk of QT prolongation and torsade de pointes (TdP). CYP2D6 is responsible for metabolism of many of the TCAs; elevated TCA concentrations may potentially occur. TCAs share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). (Minor) Citalopram causes dose-dependent QT interval prolongation and perphenazine is associated with a possible risk for QT prolongation and torsade de pointes (TdP). Per the manufacturer of citalopram, ECG monitoring is recommended in patients receiving concurrent drugs that prolong the QT interval.
Clarithromycin: (Minor) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering clarithromycin with perphenazine. Clarithromycin is associated with an established risk for QT prolongation and TdP, while perphenazine (a phenothiazine) is associated with a possible risk for QT prolongation.
Clemastine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as clemastine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Clindamycin; Tretinoin: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as phenothiazines, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Clobazam: (Major) A dose reduction of CYP2D6 substrates, such as perphenazine, may be necessary during coadministration of clobazam. Clobazam is a weak inhibitor of CYP2D6. Elevated concentrations of perphenazine occurring through inhibition of CYP2D6 may increase the risk of extrapyramidal symptoms, somnolence, or other serious adverse effects. In addition, phenothiazines may lower the seizure threshold and reduce the effectiveness of clobazam as an anticonvulsant. (Moderate) A dosage reduction of CYP2D6 substrates, such tricyclic antidepressants, may be necessary during co-administration of clobazam. Limited in vivo data suggest that clobazam is an inhibitor of CYP2D6. Additive CNS depressant effects are possible when clobazam is administered concurrently with tricyclic antidepressants.
Clofazimine: (Minor) QT/QTc prolongation can occur with concomitant use of clofazimine and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Clomipramine: (Moderate) During coadministration of tricyclic antidepressants (TCAs) and perphenazine, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Phenothiazines have been reported to prolong the QT interval. Because tricyclic antidepressants are associated with a possible risk for QT prolongation and torsade de pointes when given in excessive doses or overdosage, concurrent use with phenothiazines should be approached with caution. Additive anticholinergic effects or sedation may also occur.
Clonazepam: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Clonidine: (Moderate) Monitor blood pressure and for unusual drowsiness or excess sedation during coadministration of clonidine and tricyclic antidepressants. Concomitant use may result in reduced hypotensive effect of clonidine and additive CNS depression.
Clorazepate: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Clozapine: (Moderate) Concurrent use of clozapine and tricyclic antidepressants should be avoided if possible. Treatment with clozapine has been associated with QT prolongation, torsade de pointes (TdP), cardiac arrest, and sudden death. Tricyclic antidepressants have a possible risk of QT prolongation (particularly with elevated concentrations). The manufacturer of clozapine recommends caution during concurrent use with medications known to cause QT prolongation. Anticholinergic effects may be seen when clozapine is used concomitantly with other drugs known to possess antimuscarinic activity like tricyclic antidepressants. Anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive hypotension or sedation is also possible when clozapine is combined with these drugs. Anticholinergic effects are most prominent with tertiary TCAs such as amitriptyline, clomipramine, imipramine, trimipramine, and doxepin. (Moderate) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation, such as clozapine. Coadministration may increase the risk of drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Cobicistat: (Moderate) Close monitoring for antidepressant response and careful dose titrations of the antidepressant therapy is recommended during coadministration of tricyclic antidepressants (TCAs) and cobicistat. Concurrent use may result in elevated TCA plasma concentrations. (Moderate) The plasma concentrations of perphenazine may be elevated when administered concurrently with cobicistat. During coadministration, a reduction in the perphenazine dose may be required. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. Cobicistat is an inhibitor of CYP2D6, an isoenzyme responsible for the metabolism of perphenazine. These drugs used in combination may result in elevated perphenazine plasma concentrations, causing an increased risk for perphenazine-related adverse events.
Cocaine: (Moderate) Monitor patients for increased CNS stimulation during coadministration of cocaine and tricyclic antidepressants (TCAs). Concurrent use of cocaine and TCAs may increase the risk for excessive sympathetic CNS activity leading to symptoms such as tachycardia, hypertension, diaphoresis, agitation, cardiac arrythmias, or convulsions.
Codeine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Codeine; Guaifenesin: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Codeine; Guaifenesin; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Codeine; Phenylephrine; Promethazine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Monitor for unusual drowsiness or excess sedation and for signs or symptoms of anticholinergic toxicity during concomitant promethazine and tricyclic antidepressant use. Concomitant use may result in additive CNS depression or anticholinergic adverse effects. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension. (Moderate) The use of promethazine, a phenothiazine antiemetic, with phenothiazine antipsychotics such as perphenazine should be avoided if possible. Promethazine is associated with QT prolongation and perphenazine is associated with a possible risk of QT prolongation. Concomitant administration would increase the risk of QT prolongation. Coadministration may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures.
Codeine; Promethazine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Monitor for unusual drowsiness or excess sedation and for signs or symptoms of anticholinergic toxicity during concomitant promethazine and tricyclic antidepressant use. Concomitant use may result in additive CNS depression or anticholinergic adverse effects. (Moderate) The use of promethazine, a phenothiazine antiemetic, with phenothiazine antipsychotics such as perphenazine should be avoided if possible. Promethazine is associated with QT prolongation and perphenazine is associated with a possible risk of QT prolongation. Concomitant administration would increase the risk of QT prolongation. Coadministration may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures.
COMT inhibitors: (Major) COMT inhibitors should be given cautiously with other agents that cause CNS depression, including tricyclic antidepressants, due to the possibility of additive sedation. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. Patients should be advised to avoid driving or other tasks requiring mental alertness until they know how the combination affects them. (Major) Due to opposing effects on central dopaminergic activity, phenothiazines and COMT inhibitors may interfere with the effectiveness of each other. Avoid concurrent use if possible and consider an alternative to the phenothiazine. If coadministration cannot be avoided, monitor for changes in movement, moods, or behaviors.
Conjugated Estrogens: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Conjugated Estrogens; Bazedoxifene: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Conjugated Estrogens; Medroxyprogesterone: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Crizotinib: (Minor) Monitor ECGs for QT prolongation and monitor electrolytes in patients receiving crizotinib concomitantly with perphenazine. An interruption of therapy, dose reduction, or discontinuation of therapy may be necessary for crizotinib patients if QT prolongation occurs. Crizotinib has been associated with concentration-dependent QT prolongation. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Cyclizine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation.
Cyclobenzaprine: (Moderate) Additive anticholinergic effects may be seen when perphenazine is used concomitantly with other drugs with antimuscarinic activity such as cyclobenzaprine. Antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive sedation may also occur. (Moderate) Monitor for unusual drowsiness, sedation, signs of anticholinergic toxicity, and serotonin syndrome during coadministration of cyclobenzaprine and tricyclic antidepressants. Concomitant use may increase the risk for additive CNS depression, anticholinergic adverse events, and serotonin syndrome. If serotonin syndrome occurs, consider discontinuation of therapy.
Cyproheptadine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation.
Dacomitinib: (Moderate) Monitor for an increase in tricyclic antidepressant (TCA)-related adverse reactions if coadministration with dacomitinib is necessary; a dose reduction of TCA may be necessary. Concurrent use may increase the exposure of TCAs which are CYP2D6 substrates; dacomitinib is a CYP2D6 inhibitor. (Moderate) Monitor for increased toxicity of perphenazine if coadministered with dacomitinib. Coadministration may increase serum concentrations of perphenazine. Perphenazine is a CYP2D6 substrate; dacomitinib is a strong CYP2D6 inhibitor.
Dantrolene: (Moderate) Concomitant use of dantrolene with tricyclic antidepressants can result in additive CNS depression. (Moderate) Phenothiazines can potentiate the CNS-depressant action of other drugs such as skeletal muscle relaxants. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension.
Dapagliflozin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted.
Dapagliflozin; Metformin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Dapagliflozin; Saxagliptin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Daridorexant: (Moderate) Monitor for excessive sedation and somnolence during coadministration of daridorexant and tricyclic antidepressants. Dosage adjustments of daridorexant and the tricyclic antidepressant may be necessary when administered together because of potentially additive CNS effects. The risk of next-day impairment, including impaired driving, is increased if daridorexant is taken with other CNS depressants.
Darifenacin: (Moderate) The exposure to tricyclic antidepressants (TCAs) may be increased when coadministered with darifenacin. Appropriate monitoring and dose adjustment may be necessary. Darifenacin is a moderate CYP2D6 inhibitor; TCAs are CYP2D6 substrates.
Darunavir: (Major) Coadministration of darunavir and amitriptyline may result in increased amitriptyline plasma concentrations. Darunavir inhibits CYP3A. When administered as approved by the FDA (i.e., 'boosted' with ritonavir), further inhibition of CYP3A is seen and clinically significant drug interactions are expected with CYP3A substrates. Darunavir plus ritonavir is also an inhibitor of CYP2D6. Monitor for increased tricyclic antidepressant (TCA) adverse effects, such as nausea, dizziness, hypotension, and syncope, and consider a lower dose of amitriptyline with concurrent use. Amitriptyline is metabolized by CYP2D6 and also partially metabolized by CYP3A4. (Moderate) The plasma concentrations of perphenazine may be elevated when administered concurrently with darunavir. During coadministration, a reduction in the perphenazine dose may be required. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. Darunavir is an inhibitor of CYP2D6, an isoenzyme responsible for the metabolism of perphenazine. These drugs used in combination may result in elevated perphenazine plasma concentrations, causing an increased risk for perphenazine-related adverse events.
Darunavir; Cobicistat: (Major) Coadministration of darunavir and amitriptyline may result in increased amitriptyline plasma concentrations. Darunavir inhibits CYP3A. When administered as approved by the FDA (i.e., 'boosted' with ritonavir), further inhibition of CYP3A is seen and clinically significant drug interactions are expected with CYP3A substrates. Darunavir plus ritonavir is also an inhibitor of CYP2D6. Monitor for increased tricyclic antidepressant (TCA) adverse effects, such as nausea, dizziness, hypotension, and syncope, and consider a lower dose of amitriptyline with concurrent use. Amitriptyline is metabolized by CYP2D6 and also partially metabolized by CYP3A4. (Moderate) Close monitoring for antidepressant response and careful dose titrations of the antidepressant therapy is recommended during coadministration of tricyclic antidepressants (TCAs) and cobicistat. Concurrent use may result in elevated TCA plasma concentrations. (Moderate) The plasma concentrations of perphenazine may be elevated when administered concurrently with cobicistat. During coadministration, a reduction in the perphenazine dose may be required. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. Cobicistat is an inhibitor of CYP2D6, an isoenzyme responsible for the metabolism of perphenazine. These drugs used in combination may result in elevated perphenazine plasma concentrations, causing an increased risk for perphenazine-related adverse events. (Moderate) The plasma concentrations of perphenazine may be elevated when administered concurrently with darunavir. During coadministration, a reduction in the perphenazine dose may be required. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. Darunavir is an inhibitor of CYP2D6, an isoenzyme responsible for the metabolism of perphenazine. These drugs used in combination may result in elevated perphenazine plasma concentrations, causing an increased risk for perphenazine-related adverse events.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Major) Coadministration of darunavir and amitriptyline may result in increased amitriptyline plasma concentrations. Darunavir inhibits CYP3A. When administered as approved by the FDA (i.e., 'boosted' with ritonavir), further inhibition of CYP3A is seen and clinically significant drug interactions are expected with CYP3A substrates. Darunavir plus ritonavir is also an inhibitor of CYP2D6. Monitor for increased tricyclic antidepressant (TCA) adverse effects, such as nausea, dizziness, hypotension, and syncope, and consider a lower dose of amitriptyline with concurrent use. Amitriptyline is metabolized by CYP2D6 and also partially metabolized by CYP3A4. (Moderate) Close monitoring for antidepressant response and careful dose titrations of the antidepressant therapy is recommended during coadministration of tricyclic antidepressants (TCAs) and cobicistat. Concurrent use may result in elevated TCA plasma concentrations. (Moderate) The plasma concentrations of perphenazine may be elevated when administered concurrently with cobicistat. During coadministration, a reduction in the perphenazine dose may be required. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. Cobicistat is an inhibitor of CYP2D6, an isoenzyme responsible for the metabolism of perphenazine. These drugs used in combination may result in elevated perphenazine plasma concentrations, causing an increased risk for perphenazine-related adverse events. (Moderate) The plasma concentrations of perphenazine may be elevated when administered concurrently with darunavir. During coadministration, a reduction in the perphenazine dose may be required. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. Darunavir is an inhibitor of CYP2D6, an isoenzyme responsible for the metabolism of perphenazine. These drugs used in combination may result in elevated perphenazine plasma concentrations, causing an increased risk for perphenazine-related adverse events.
Dasatinib: (Minor) Monitor for evidence of QT prolongation during concurrent use of dasatinib and perphenazine. In vitro studies have shown that dasatinib has the potential to prolong the QT interval. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Degarelix: (Major) Avoid coadministration of degarelix with perphenazine due to the risk of reduced efficacy of degarelix; QT prolongation may also occur. Perphenazine can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; degarelix is a GnRH analog. Additionally, androgen deprivation therapy (i.e., degarelix) may prolong the QT/QTc interval. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Delavirdine: (Major) Delavirdine inhibits CYP2D6 and may increase concentrations of other drugs metabolized by this enzyme, such as tricyclic antidepressants (TCAs). Monitor the patient for side effects associated with TCAs such as an increase in constipation, urinary difficulty, dizziness, or rarely, fast, irregular heartbeat. A dosage adjustment may be needed for TCAs when given concurrently with delavirdine. (Moderate) Delavirdine is a potent inhibitor of cytochrome P4502D6 and might decrease perphenazine metabolism leading to increased adverse reactions.
Desflurane: (Minor) Halogenated anesthetics should be used cautiously and with close monitoring with perphenazine. Halogenated anesthetics can prolong the QT interval. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. In addition, Phenothiazines can potentiate the CNS-depressant action of halogenated anesthetics. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects. (Minor) Tricyclic antidepressants (TCAs) should be used cautiously and with close monitoring with halogenated anesthetics. Halogenated anesthetics can prolong the QT interval. Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). In addition, general anesthetics may produce additive CNS depression when used in patients taking tricyclic antidepressants.
Desipramine: (Moderate) During coadministration of tricyclic antidepressants (TCAs) and perphenazine, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Phenothiazines have been reported to prolong the QT interval. Because tricyclic antidepressants are associated with a possible risk for QT prolongation and torsade de pointes when given in excessive doses or overdosage, concurrent use with phenothiazines should be approached with caution. Additive anticholinergic effects or sedation may also occur.
Desloratadine; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines.
Desmopressin: (Moderate) Additive hyponatremic effects may be seen in patients treated with desmopressin and drugs associated with SIADH including tricyclic antidepressants. Hyponatremia-induced convulsions have been rarely reported when imipramine and desmopressin are used concomitantly. Use these drugs together with caution, and monitor patients for signs and symptoms of hyponatremia.
Desogestrel; Ethinyl Estradiol: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Desvenlafaxine: (Major) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering serotonin norepinephrine reuptake inhibitors (SNRIs) with other drugs that have serotonergic properties such as tricyclic antidepressants (TCAs). Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. If serotonin syndrome is suspected, desvenlafaxine and concurrent serotonergic agents should be discontinued. Dosage adjustments of TCAs may be necessary during concurrent use of desvenlafaxine. Although clinical studies have shown that desvenlafaxine does not have a clinically relevant effect on CYP2D6 inhibition at doses of 100 mg/day, the manufacturer recommends that primary substrates of CYP2D6, such as desipramine, doxepin, clomipramine, and imipramine be dosed at the original level when coadministered with desvenlafaxine 100 mg or lower, or when desvenlafaxine is discontinued. The dose of these CYP2D6 substrates should be reduced by up to one-half if coadministered with desvenlafaxine 400 mg/day. (Major) Dosage adjustments of some phenothiazines may be necessary during concurrent use of desvenlafaxine. Although clinical studies have shown that desvenlafaxine does not have a clinically relevant effect on CYP2D6 inhibition at doses of 100 mg/day, the manufacturer that primary substrates of CYP2D6, such as perphenazine, be dosed at the original level when co-administered with desvenlafaxine 100 mg or lower or when desvenlafaxine is discontinued. The dose of these CYP2D6 substrates should be reduced by up to one-half if co-administered with desvenlafaxine 400 mg/day.
Deutetrabenazine: (Moderate) The risk of QT prolongation may be increased with coadministration of deutetrabenazine and perphenazine. Deutetrabenazine may prolong the QT interval, but the degree of QT prolongation is not clinically significant when deutetrabenazine is administered within the recommended dosage range. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Monitor for signs and symptoms of neuroleptic malignant syndrome (NMS), restlessness, and agitation. If NMS is diagnosed, immediately discontinue deutetrabenazine, and provide intensive symptomatic treatment and medical monitoring. Recurrence of NMS has been reported with resumption of drug therapy. If akathisia or parkinsonism develops during treatment, the deutetrabenazine dose should be reduced; discontinuation may be required. Deutetrabenazine is a reversible, dopamine depleting drug and perphenazine is a dopamine antagonist. The risk for parkinsonism, NMS, or akathisia may be increased with concomitant administration. Additionally, monitor for excessive sedation and somnolence during coadministration of perphenazine and deutetrabenazine. Concurrent use may result in additive CNS depression. (Moderate) The risk of QT prolongation may be increased with coadministration of deutetrabenazine and tricyclic antidepressants (TCAs). Deutetrabenazine may prolong the QT interval, but the degree of QT prolongation is not clinically significant when deutetrabenazine is administered within the recommended dosage range. TCAs share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). Monitor for excessive sedation and somnolence during coadministration of TCAs and deutetrabenazine. Concurrent use may result in additive CNS depression.
Dexbrompheniramine: (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as dexbrompheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Dexbrompheniramine; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as dexbrompheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Dexchlorpheniramine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as dexchlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as dexchlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dexmedetomidine: (Moderate) Consider a dosage reduction for dexmedetomidine or perphenazine during concomitant use due to the risk of additive CNS effects. QT/QTc prolongation can also occur with concomitant use, although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Dextroamphetamine: (Moderate) Monitor blood pressure, heart rate, and for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant amphetamine and tricyclic antidepressant use. Adjust doses or use alternative therapy based on clinical response. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for potentiation of cardiovascular effects and serotonin syndrome. Amphetamines may enhance the activity of tricyclic antidepressants causing significant and sustained increases in amphetamine concentrations in the brain.
Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Bupropion: (Major) Bupropion is associated with a dose-related risk of seizures and may have an additive effect with phenothiazines on lowering the seizure threshold. Low initial dosing and slow titration is recommended if this combination must be used. In addition, bupropion is a strong inhibitor of CYP2D6. Dosage reductions of perphenazine, a CYP2D6 substrate, may be needed during coadministration with bupropion. Inc reased serum concentrations of perphenazine may result in extrapyramidal symptoms, somnolence, or other adverse effects. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Use extreme caution when coadministering bupropion with other drugs that lower the seizure threshold, such as tricyclic antidepressants. Use low initial doses of bupropion and increase the dose gradually. Monitor patients for an increase in tricyclic antidepressant-related adverse reactions and signs and symptoms of serotonin syndrome during concomitant use, particularly during treatment initiation and dosage increases; a dose reduction of the tricyclic antidepressant may be necessary. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Tricyclic antidepressants are CYP2D6 substrates and bupropion is a CYP2D6 inhibitor.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as diphenhydramine. Patients should be informed to read non-prescription allergy, sleep, and cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of diphenhydramine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Dextromethorphan; Guaifenesin: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Guaifenesin; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Dextromethorphan; Guaifenesin; Potassium Guaiacolsulfonate: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Quinidine: (Contraindicated) Quinidine administration is associated with QT prolongation and torsade de pointes (TdP). Quinidine inhibits CYP2D6 and has QT-prolonging actions. Quinidine is contraindicated with other drugs that prolong the QT interval and are metabolized by CYP2D6 as the effects on the QT interval may be increased during concurrent use of these agents. Tricyclic antidepressants are associated with a possible risk of QT prolongation, particularly at high dosages or in overdose, and are substrates for CYP2D6. (Contraindicated) Quinidine administration is associated with QT prolongation and torsades de pointes (TdP). Quinidine inhibits CYP2D6 and has QT-prolonging actions; quinidine is contraindicated with other drugs that prolong the QT interval and are metabolized by CYP2D6 as the effects on the QT interval may be increased during concurrent use of these agents. Drugs that prolong the QT and are substrates for CYP2D6 that are contraindicated with quinidine include perphenazine. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Diazepam: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Dicyclomine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and dicyclomine use. Concomitant use may result in additive anticholinergic adverse effects.
Dienogest; Estradiol valerate: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Diethylpropion: (Major) Avoid the use of these agents together. Tricyclic antidepressants (TCAs) may potentiate the pressor response to sympathomimetic agents, such as diethylpropion. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience side effects like hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. Patients should be closely monitored if use together is unavoidable. (Minor) Use of diethylpropion with phenothiazines may antagonize the anorectic effects of diethylpropion.
Diethylstilbestrol, DES: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Difelikefalin: (Moderate) Monitor for dizziness, somnolence, mental status changes, and gait disturbances if concomitant use of difelikefalin with CNS depressants is necessary. Concomitant use may increase the risk for these adverse reactions.
Dimenhydrinate: (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as dimenhydrinate. Patients should be informed to read non-prescription motion sickness, allergy, sleep, and cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of dimenhydrinate and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Dipeptidyl Peptidase-4 Inhibitors: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Diphenhydramine: (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as diphenhydramine. Patients should be informed to read non-prescription allergy, sleep, and cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of diphenhydramine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Diphenhydramine; Ibuprofen: (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as diphenhydramine. Patients should be informed to read non-prescription allergy, sleep, and cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of diphenhydramine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Diphenhydramine; Naproxen: (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as diphenhydramine. Patients should be informed to read non-prescription allergy, sleep, and cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of diphenhydramine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Diphenhydramine; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as diphenhydramine. Patients should be informed to read non-prescription allergy, sleep, and cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of diphenhydramine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Diphenoxylate; Atropine: (Moderate) Concurrent administration can potentiate the CNS and respiratory depressant effects of diphenoxylate/difenoxin and the CNS depressant effects of the tricyclic antidepressant (TCA). Both TCAs and diphenoxylate/difenoxin may cause constipation. Use caution during coadministration. Cases of severe GI reactions including toxic megacolon and adynamic ileus have been rarely reported. In some cases, a dosage reduction of diphenoxylate or difenoxin might be needed to manage any noted side effects. (Moderate) Diphenoxylate is a synthetic opiate derivative that appears to exert its effect locally and centrally on the smooth muscle cells of the GI tract to inhibit GI motility and slow excess GI propulsion. The effects can be additive to other agents with CNS and anticholinergic effects, such as the phenothiazines. In some cases, constipation might occur, and effects on the CNS or bladder function may also be additive. (Moderate) Monitor for unusual drowsiness or excess sedation and for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and atropine use. Concomitant use may result in additive CNS depression or anticholinergic adverse effects.
Disopyramide: (Major) Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). This pharmacologic property of the TCAs is of concern in patients with significant cardiac histories or treated with selected cardiac agents. Cases of long QT syndrome and torsade de pointes tachycardia have been described with TCA use, but rarely occur when TCAs are used alone in normal prescribed doses and in the absence of other known risk factors for QT prolongation. Limited data are available regarding the safety of TCAs in combination with other QT-prolonging drugs. One study reported the common occurrence of overlapping prescriptions for 2 or more drugs with potential for QT-prolonging effects; antidepressants were involved in nearly 50% of the cases, but there are little data to document safety of the combined therapies. Class IA antiarrhythmics are associated with QT prolongation and torsades de pointes (TdP). The need to coadminister TCAs with any of these therapies should be done with a careful assessment of risk versus benefit; consider alternative therapy to the TCA. In addition to effects on the EKG, disopyramide has significant anticholinergic effects that are additive to those of the TCAs. (Moderate) Perphenazine should be used cautiously and with close monitoring with disopyramide. Disopyramide administration is associated with QT prolongation and torsade de pointes (TdP). Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Additive anticholinergic effects are also possible.
Disulfiram: (Moderate) Limited data suggest that the combination of tricyclic antidepressants with disulfiram can produce transient delirium. In addition, disulfiram may inhibit some of the CYP450 isoenzymes involved in tricyclic antidepressant metabolism, although the clinical significance is unknown.
Dofetilide: (Minor) Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation, such as dofetilide.
Dolasetron: (Minor) Due to a possible risk for QT prolongation and torsade de pointes (TdP), dolasetron and perphenazine should be used together cautiously. Dolasetron has been associated with a dose-dependent prolongation in the QT, PR, and QRS intervals on an electrocardiogram. Perphenazine, a phenothiazine, is also associated with a possible risk for QT prolongation.
Dolutegravir; Rilpivirine: (Minor) Caution is advised when administering rilpivirine with perphenazine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Donepezil: (Moderate) Use donepezil with caution in combination with tricyclic antidepressants as concurrent use may increase the risk of QT prolongation; the efficacy of donepezil may also be reduced. Case reports indicate that QT prolongation and torsade de pointes (TdP) can occur during donepezil therapy. Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). Donepezil inhibits acetylcholinesterase, the enzyme responsible for the degradation of acetylcholine, and improves the availability of acetylcholine. Tricyclic antidepressants with significant anticholinergic activity, such as amitriptyline, imipramine, doxepin, and clomipramine, are more likely to interfere with the therapeutic effect of donepezil than other tricyclics. (Minor) Use donepezil with caution in combination with perphenazine as concurrent use may increase the risk of QT prolongation. Case reports indicate that QT prolongation and torsade de pointes (TdP) can occur during donepezil therapy. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Donepezil; Memantine: (Moderate) Use donepezil with caution in combination with tricyclic antidepressants as concurrent use may increase the risk of QT prolongation; the efficacy of donepezil may also be reduced. Case reports indicate that QT prolongation and torsade de pointes (TdP) can occur during donepezil therapy. Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). Donepezil inhibits acetylcholinesterase, the enzyme responsible for the degradation of acetylcholine, and improves the availability of acetylcholine. Tricyclic antidepressants with significant anticholinergic activity, such as amitriptyline, imipramine, doxepin, and clomipramine, are more likely to interfere with the therapeutic effect of donepezil than other tricyclics. (Minor) Use donepezil with caution in combination with perphenazine as concurrent use may increase the risk of QT prolongation. Case reports indicate that QT prolongation and torsade de pointes (TdP) can occur during donepezil therapy. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Dopamine: (Moderate) Monitor blood pressure and carefully adjust doses during concomitant use of dopamine and tricyclic antidepressants due to the risk for hypertension. Concomitant use of tricyclic antidepressants may potentiate the cardiovascular effects of dopamine. (Moderate) The vasoconstrictive properties of dopamine infusion can be decreased due to the alpha-adrenergic blocking capability of phenothiazines.
Doxepin: (Moderate) During coadministration of tricyclic antidepressants (TCAs) and perphenazine, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Phenothiazines have been reported to prolong the QT interval. Because tricyclic antidepressants are associated with a possible risk for QT prolongation and torsade de pointes when given in excessive doses or overdosage, concurrent use with phenothiazines should be approached with caution. Additive anticholinergic effects or sedation may also occur.
Doxylamine: (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as doxylamine. Patients should be informed to read non-prescription allergy, sleep, cough, and cold product labels carefully for additional interacting antihistamines. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of doxylamine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Doxylamine; Pyridoxine: (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as doxylamine. Patients should be informed to read non-prescription allergy, sleep, cough, and cold product labels carefully for additional interacting antihistamines. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of doxylamine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Dronabinol: (Moderate) Use caution if coadministration of dronabinol with tricyclic antidepressants (e.g., amitriptyline, desipramine) is necessary. Concurrent use of dronabinol, THC with tricyclic antidepressants may result in additive drowsiness, hypertension, tachycardia, and possibly cardiotoxicity. (Moderate) Use caution if coadministration of phenothiazines with dronabinol is necessary. Administration of dronabinol with phenothiazines (e.g., prochlorperazine) has resulted in improved antiemetic efficacy as compared to either drug alone, without additional toxicity. However, it is also possible that coadministration may result in additive dizziness, confusion, somnolence, and other CNS effects.
Dronedarone: (Contraindicated) Coadministration of dronedarone and tricyclic antidepressants is contraindicated due to the potential for QT prolongation and torsade de pointes (TdP). Tricyclic antidepressants (TCAs) have pharmacologic properties like the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). Dronedarone administration is associated with a dose-related increase in the QTc interval. The increase in QTc is approximately 10 milliseconds at doses of 400 mg twice daily (the FDA-approved dose) and up to 25 milliseconds at doses of 1600 mg twice daily. Although there are no studies examining the effects of dronedarone in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation. (Contraindicated) Concurrent use of dronedarone and perphenazine is contraindicated. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation and/or torsade de pointes (TdP). Dronedarone administration is associated with a dose-related increase in the QTc interval. The increase in QTc is approximately 10 milliseconds at doses of 400 mg twice daily (the FDA-approved dose) and up to 25 milliseconds at doses of 1600 mg twice daily. Although there are no studies examining the effects of dronedarone in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation.
Droperidol: (Minor) Droperidol should be administered with extreme caution to patients receiving other agents that may prolong the QT interval. Droperidol administration is associated with an established risk for QT prolongation and torsades de pointes (TdP). Drugs with a possible risk for QT prolongation that should be used cautiously with droperidol include perphenazine. Droperidol may also cause increased CNS sedation when given with perphenazine.
Drospirenone; Estetrol: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Drospirenone; Estradiol: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Drospirenone; Ethinyl Estradiol: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Duloxetine: (Moderate) Caution is advisable during concurrent use of perphenazine and serotonin norepinephrine reuptake inhibitors (SNRIs) since elevations in plasma concentrations of perphenazine may occur. Phenothiazines are CYP2D6 substrates, and SNRIs including duloxetine are CYP2D6 inhibitors. In addition, perphenazine is associated with a possible risk of QT prolongation; therefore, cardiac effects are possible. (Moderate) Monitor for an increase in tricyclic antidepressant-related adverse reactions and signs and symptoms of serotonin syndrome if coadministration with duloxetine is necessary, particularly during treatment initiation and dosage increases; a dose reduction of the tricyclic antidepressant may be necessary. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Concurrent use may increase exposure of the tricyclic antidepressant. Tricyclic antidepressants are CYP2D6 substrates and duloxetine is a CYP2D6 inhibitor.
Dutasteride; Tamsulosin: (Moderate) Use caution when administering tamsulosin with a moderate CYP2D6 inhibitor such as perphenazine. Tamsulosin is extensively metabolized by CYP2D6 hepatic enzymes. In clinical evaluation, concomitant treatment with a strong CYP2D6 inhibitor resulted in increases in tamsulosin exposure; interactions with moderate CYP2D6 inhibitors have not been evaluated. If concomitant use in necessary, monitor patient closely for increased side effects.
Efavirenz: (Minor) Consider alternatives to efavirenz when coadministering with perphenazine as concurrent use may increase the risk of QT prolongation. QTc prolongation has been observed with the use of efavirenz. Perphenazine is associated with a possible risk for QT prolongation.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Minor) Consider alternatives to efavirenz when coadministering with perphenazine as concurrent use may increase the risk of QT prolongation. QTc prolongation has been observed with the use of efavirenz. Perphenazine is associated with a possible risk for QT prolongation.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Minor) Consider alternatives to efavirenz when coadministering with perphenazine as concurrent use may increase the risk of QT prolongation. QTc prolongation has been observed with the use of efavirenz. Perphenazine is associated with a possible risk for QT prolongation.
Elagolix; Estradiol; Norethindrone acetate: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Elbasvir; Grazoprevir: (Moderate) Administering perphenazine; amitriptyline with elbasvir; grazoprevir may result in elevated amitriptyline plasma concentrations. Amitriptyline is a substrate of CYP3A; grazoprevir is a weak CYP3A inhibitor. If these drugs are used together, closely monitor for signs of adverse events.
Eliglustat: (Moderate) Coadminister tricyclic antidepressants (TCAs) and eliglustat cautiously and with close monitoring; there may be an increased risk of QT prolongation and/or antidepressant-associated adverse effects. TCAs share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). In addition, coadministration may result in increased concentrations of the antidepressant. If eliglustat and a TCA are used together, consider reducing the dosage of the TCA and titrating to clinical effect. When available, monitoring antidepressant serum concentrations may be beneficial. Eliglustat is a CYP2D6 inhibitor, and tricyclic antidepressants are CYP2D6 substrates. (Minor) Coadministration of perphenazine and eliglustat may result in increased concentrations of the phenothiazine and, theoretically, an increased risk of QT prolongation. If coadministration is necessary, use caution and monitor closely. Consider reducing the dosage of phenothiazine and titrating to clinical effect. Perphenazine is a CYP2D6 substrate associated with a possible risk for QT prolongation. Eliglustat is a CYP2D6 inhibitor that is predicted to cause PR, QRS, and/or QT prolongation at significantly elevated plasma concentrations.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Close monitoring for antidepressant response and careful dose titrations of the antidepressant therapy is recommended during coadministration of tricyclic antidepressants (TCAs) and cobicistat. Concurrent use may result in elevated TCA plasma concentrations. (Moderate) The plasma concentrations of perphenazine may be elevated when administered concurrently with cobicistat. During coadministration, a reduction in the perphenazine dose may be required. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. Cobicistat is an inhibitor of CYP2D6, an isoenzyme responsible for the metabolism of perphenazine. These drugs used in combination may result in elevated perphenazine plasma concentrations, causing an increased risk for perphenazine-related adverse events.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Close monitoring for antidepressant response and careful dose titrations of the antidepressant therapy is recommended during coadministration of tricyclic antidepressants (TCAs) and cobicistat. Concurrent use may result in elevated TCA plasma concentrations. (Moderate) The plasma concentrations of perphenazine may be elevated when administered concurrently with cobicistat. During coadministration, a reduction in the perphenazine dose may be required. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. Cobicistat is an inhibitor of CYP2D6, an isoenzyme responsible for the metabolism of perphenazine. These drugs used in combination may result in elevated perphenazine plasma concentrations, causing an increased risk for perphenazine-related adverse events.
Empagliflozin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted.
Empagliflozin; Linagliptin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Empagliflozin; Linagliptin; Metformin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Empagliflozin; Metformin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Emtricitabine; Rilpivirine; Tenofovir alafenamide: (Minor) Caution is advised when administering rilpivirine with perphenazine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Emtricitabine; Rilpivirine; Tenofovir Disoproxil Fumarate: (Minor) Caution is advised when administering rilpivirine with perphenazine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Encorafenib: (Minor) Consider monitoring ECGs for QT prolongation and electrolytes if encorafenib and perphenazine are coadministered due to the potential for additive QT prolongation. Correct hypokalemia and hypomagnesemia prior to treatment. Encorafenib is associated with dose-dependent prolongation of the QT interval. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Entacapone: (Major) COMT inhibitors should be given cautiously with other agents that cause CNS depression, including tricyclic antidepressants, due to the possibility of additive sedation. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. Patients should be advised to avoid driving or other tasks requiring mental alertness until they know how the combination affects them.
Entrectinib: (Minor) Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation, such as entrectinib.
Ephedrine: (Major) Avoid use of ephedrine in patients receiving phenothiazines due to the risk of paradoxical vasodilation. Phenothiazines possess potent alpha-blocking properties, making the use of vasopressors with mixed alpha- and beta-agonist properties inappropriate. If a vasopressor is required, norepinephrine and phenylephrine are most appropriate. (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to certain sympathomimetic agents, such as ephedrine or ephedra. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat.
Ephedrine; Guaifenesin: (Major) Avoid use of ephedrine in patients receiving phenothiazines due to the risk of paradoxical vasodilation. Phenothiazines possess potent alpha-blocking properties, making the use of vasopressors with mixed alpha- and beta-agonist properties inappropriate. If a vasopressor is required, norepinephrine and phenylephrine are most appropriate. (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to certain sympathomimetic agents, such as ephedrine or ephedra. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat.
Epinephrine: (Major) Avoid use of epinephrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the vasopressor effects of epinephrine. (Moderate) Monitor blood pressure during concomitant epinephrine and phenothiazine use. Phenothiazines antagonize the pressor effects of epinephrine. Do not use epinephrine to counteract hypotension caused by a phenothiazine, as a reversal of the pressor effect of epinephrine may result in paradoxical further lowering of blood pressure.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Eribulin: (Minor) Eribulin has been associated with QT prolongation. If eribulin and another drug that prolongs the QT interval, such as perphenazine, must be coadministered, ECG monitoring is recommended; closely monitor the patient for QT interval prolongation.
Ertugliflozin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted.
Ertugliflozin; Metformin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Ertugliflozin; Sitagliptin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Erythromycin: (Minor) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering erythromycin with perphenazine. Erythromycin is associated with prolongation of the QT interval and TdP. Perphenazine, a phenothiazine, is also associated with a possible risk for QT prolongation. (Minor) The use of erythromycin with tricyclic antidepressants is rarely problematic. Tricyclic antidepressants may prolong the QT interval, particularly in overdose, and erythromycin has also been reported to have this effect in rare circumstances. Erythromycin is sometimes used to stimulate GI motility, for example, in patients with diabetic gastroparesis. In patients requiring erythromycin to enhance GI motility, some tricyclic antidepressants with substantial antimuscarinic properties may counteract erythromycin's effectiveness.
Escitalopram: (Moderate) Use tricyclic antidepressants (TCAs) and escitalopram together with caution as concurrent use may increase the risk of QT prolongation and serotonin syndrome; consider a decreased dosage of the TCA or the avoidance of concomitant SSRI therapy. If serotonin syndrome is suspected, discontinue all serotonergic agents. Escitalopram is a moderate inhibitor of CYP2D6 that has been associated with a risk of QT prolongation and torsade de pointes (TdP). CYP2D6 is responsible for metabolism of many of the TCAs; elevated TCA concentrations may occur in some patients. TCAs share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). (Minor) Use escitalopram with caution in combination with perphenazine as concurrent use may increase the risk of QT prolongation. Escitalopram has been associated with a risk of QT prolongation and torsade de pointes (TdP). Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Esketamine: (Major) Closely monitor patients receiving esketamine and a tricyclic antidepressant for sedation and other CNS depressant effects. Patients who receive a dose of esketamine should not drive or engage in other activities requiring alertness until the next day after a restful sleep. (Moderate) Closely monitor patients receiving esketamine and perphenazine for sedation and other CNS depressant effects. Instruct patients who receive a dose of esketamine not to drive or engage in other activities requiring alertness until the next day after a restful sleep.
Eslicarbazepine: (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions.
Estazolam: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Esterified Estrogens: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Esterified Estrogens; Methyltestosterone: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Estradiol: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Estradiol; Levonorgestrel: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Estradiol; Norethindrone: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Estradiol; Norgestimate: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Estradiol; Progesterone: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Estrogens: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Estropipate: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Eszopiclone: (Moderate) A reduction in the dose of eszopiclone and concomitantly administered CNS depressants, such as tricyclic antidepressants, should be considered to minimize additive sedative effects. In addition, the risk of next-day psychomotor impairment is increased during co-administration of eszopiclone and other CNS depressants, which may decrease the ability to perform tasks requiring full mental alertness such as driving. Tricyclics with a higher incidence of sedation, such as amitriptyline, imipramine, doxepin, and clomipramine, are more likely to interact with eszopiclone. (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered with other CNS depressant drugs and they should be used cautiously with anxiolytic, sedative, and hypnotics. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of hypnotics and other CNS depressants than with use of a hypnotic alone.
Ethanol: (Major) Advise patients to avoid alcohol consumption while taking CNS depressants such as tricyclic antidepressants (TCAs). TCAs may exaggerate the CNS depressant response to alcohol, leading to an increase in sedation or psychomotor impairment. In some studies, alcohol has increased the unbound form of the TCA in the blood, which might be related to exaggerated clinical effect. (Major) Advise patients to avoid alcohol consumption while taking CNS depressants. Alcohol consumption may result in additive CNS depression.
Ethinyl Estradiol; Norelgestromin: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Ethinyl Estradiol; Norethindrone Acetate: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Ethinyl Estradiol; Norgestrel: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Ethiodized Oil: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering the use of intrathecal radiopaque contrast agents. Phenothiazines should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours postprocedure.
Ethosuximide: (Moderate) Concomitant use of ethosuximide with phenothiazines can lower the seizure threshold and reduce the effectiveness of ethosuximide as an anticonvulsant. Additive CNS effects, such as drowsiness, may also occur. (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase drowsiness and CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. Monitor patients on anticonvulsants carefully when a TCA is used concurrently.
Ethynodiol Diacetate; Ethinyl Estradiol: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Etomidate: (Moderate) Etomidate potentiates the effects of CNS depressants including perphenazine. Additive CNS effects (e.g., oversedation, respiratory depression, and hypotension) may occur if etomidate and perphenazine are used concomitantly. (Moderate) General anesthetics like etomidate may produce additive CNS depression when used in patients taking tricyclic antidepressants.
Etonogestrel; Ethinyl Estradiol: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Everolimus: (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with everolimus is necessary; consider reducing the dose of amitriptyline if clinically appropriate. Amitriptyline is a CYP2D6 substrate and everolimus is a CYP2D6 inhibitor; concomitant use may increase plasma concentrations of amitriptyline.
Fedratinib: (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with fedratinib is necessary; a dose reduction of amitriptyline may be necessary. Amitriptyline is a CYP2D6 and CYP2C19 substrate and fedratinib is a moderate inhibitor of CYP2D6 and CYP2C19. (Moderate) Monitor for an increase in perphenazine-related adverse reactions if coadministration with fedratinib is necessary; a dose reduction of perphenazine may be necessary. Perphenazine is a sensitive CYP2D6 substrate and fedratinib is a moderate CYP2D6 inhibitor.
Felbamate: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added. (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. Monitor patients on anticonvulsants carefully when a TCA is used concurrently.
Fenfluramine: (Moderate) Monitor for excessive sedation and somnolence during coadministration of fenfluramine and perphenazine. Concurrent use may result in additive CNS depression. (Moderate) Use fenfluramine and tricyclic antidepressants with caution due to an increased risk of serotonin syndrome and additive CNS depression. Monitor for excessive sedation, somnolence, and serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Fentanyl: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Fexofenadine; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines.
Fingolimod: (Minor) Exercise caution when administering fingolimod concomitantly with perphenazine as concurrent use may increase the risk of QT prolongation. Fingolimod initiation results in decreased heart rate and may prolong the QT interval. Fingolimod has not been studied in patients treated with drugs that prolong the QT interval, but drugs that prolong the QT interval have been associated with cases of TdP in patients with bradycardia. Perphenazine is assoc iated with a possible risk for QT prolongation.
Flavoxate: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and flavoxate use. Concomitant use may result in additive anticholinergic adverse effects.
Flecainide: (Minor) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering perphenazine with flecainide. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Flecainide, a Class IC antiarrhythmic, is also associated with a possible risk for QT prolongation and/or TdP; flecainide increases the QT interval, but largely due to prolongation of the QRS interval.
Flibanserin: (Moderate) The concomitant use of flibanserin with CNS depressants, such as phenothiazines, may increase the risk of CNS depression (e.g., dizziness, somnolence) compared to the use of flibanserin alone. Patients should avoid activities requiring full alertness (e.g., operating machinery or driving) until at least 6 hours after each dose and until they know how flibanserin affects them.
Fluconazole: (Minor) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering fluconazole with perphenazine. Fluconazole has been associated with QT prolongation and rare cases of TdP. Perphenazine, a phenothiazine, is also associated with a possible risk for QT prolongation. (Minor) Fluconazole should be administered together with TCAs with caution. Fluconazole has been associated with QT prolongation and rare cases of torsade de pointes (TdP). TCAs share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). In addition, fluconazole has been reported to increase the effects of amitriptyline, likely via inhibition of the hepatic microsomal CYP2C19 or CYP3A4 isoenzymes. In at least one case, the interaction resulted in an increased incidence of TCA-related side effects, like dizziness and syncope. Monitor for an increased response to amitriptyline if fluconazole is coadministered.
Flucytosine: (Minor) Because of flucytosine's ability to cause significant hematologic toxicity, it should be used cautiously with all bone marrow depressants. These include: carbamazepine, clozapine, phenothiazines, zidovudine, ZDV and other blood dyscrasia-causing medications.
Flumazenil: (Major) Particular caution is necessary when using flumazenil in cases of mixed drug overdosage since the toxic effects (such as convulsions and cardiac dysrhythmias) of other drugs taken in overdose (especially tricyclic antidepressants) may emerge with the reversal of the benzodiazepine effect by flumazenil. The reversal of benzodiazepine effects may be associated with the onset of seizures in certain high-risk populations; concurrent cyclic antidepressant poisoning is a risk factor for seizures. Flumazenil is not recommended in cases of serious cyclic antidepressant poisoning, as manifested by motor abnormalities (twitching, rigidity, focal seizure), dysrhythmia (wide QRS, ventricular dysrhythmia, heart block), anticholinergic signs (mydriasis, dry mucosa, hypoperistalsis), and cardiovascular collapse at presentation. In such cases flumazenil should be withheld and the patient should be allowed to remain sedated (with ventilatory and circulatory support as needed) until the signs of antidepressant toxicity have subsided. Treatment with flumazenil has no known benefit to the seriously ill mixed-overdose patient other than reversing sedation and should not be used in cases where seizures (from any cause) are likely.
Fluocinolone; Hydroquinone; Tretinoin: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as phenothiazines, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Fluoxetine: (Moderate) Monitor for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant amitriptyline and fluoxetine use. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for serotonin syndrome. (Moderate) Use fluoxetine with caution in combination with perphenazine. Coadministration may increase the risk for QT prolongation and torsade de pointes (TdP). Additionally, fluoxetine is a potent inhibitor of CYP2D6 and may result in increases in serum perphenazine concentrations, leading to side effects. QT prolongation and TdP have been reported in patients treated with fluoxetine. Perphenazine is associated with a possible risk for QT prolongation.
Fluphenazine: (Moderate) Fluphenazine and perphenazine are phenothiazines that are associated with a possible risk for QT prolongation. Coadministration may represent duplicate therapy and increase the risk for QT prolongation. In addition, co-administration may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. (Moderate) When prescribing tricyclic antidepressants (TCAs) to patients already receiving phenothiazine therapy, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Lower doses than usually prescribed for either the phenothiazine or the TCA may be required. TCAs may impair metabolism via the hepatic isoenzyme CYP2D6 at therapeutic doses and may result in increased serum phenothiazine concentrations, leading to side effects. Depending on the specific agent, additive anticholinergic effects may also be seen; clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur. TCAs may also cause additive cardiac effects (e.g., QT prolongation) in some cases.
Flurazepam: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Fluvoxamine: (Major) Concomitant use of fluvoxamine and tricyclic antidepressants (TCAs) such as amitriptyline may increase the risk of serotonin syndrome, QT prolongation, and torsade de pointes (TdP). Tricyclics share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with high dose therapy (elevated serum concentrations). QT prolongation and TdP have been reported during postmarketing use of fluvoxamine. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. In addition, several isoenzymes have been identified in the metabolism of amitriptyline including CYP2D6 (primary), CYP2C19, CYP1A2, CYP3A4, and CYP2C9. Fluvoxamine is a potent inhibitor of CYP1A2 and 2C19 and a moderate inhibitor of CYP3A4. At least one case report exists of a death thought to be due to impaired clearance of amitriptyline by the SSRI fluoxetine. Patients receiving a TCA should be monitored closely for toxicity if fluvoxamine is added. (Minor) Due to the possibility of additive effects on the QT interval, caution is advisable during concurrent use of fluvoxamine and perphenazine. Cases of QT prolongation and TdP have been reported during postmarketing use of fluvoxamine. Perphenazine is associated with a possible risk for QT prolongation, particularly in overdose settings. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Food: (Major) Advise patients to avoid cannabis use while taking CNS depressants due to the risk for additive CNS depression and potential for other cognitive adverse reactions.
Fosamprenavir: (Moderate) An increased plasma concentration of amitriptyline is seen when coadministered with fosamprenavir; therapeutic concentration monitoring is recommended when coadministered.
Foscarnet: (Minor) When possible, avoid concurrent use of foscarnet with other drugs known to prolong the QT interval, such as perphenazine. Foscarnet has been associated with postmarketing reports of both QT prolongation and torsade de pointes (TdP). Perphenazine is also associated with a possible risk for QT prolongation. If these drugs are administered together, obtain an electrocardiogram and electrolyte concentrations before and periodically during treatment.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Fosphenytoin: (Moderate) Monitor phenytoin concentrations during concomitant therapy with fosphenytoin and phenothiazines; a fosphenytoin dosage decrease may be necessary. Phenothiazines may inhibit the metabolism of fosphenytoin.
Fostemsavir: (Minor) Use perphenazine and fostemsavir together with caution due to the potential for QT prolongation. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Supratherapeutic doses of fostemsavir (2,400 mg twice daily, four times the recommended daily dose) have been shown to cause QT prolongation. Fostemsavir causes dose-dependent QT prolongation.
Gabapentin: (Major) Initiate gabapentin at the lowest recommended dose and monitor patients for symptoms of sedation and somnolence during coadministration of gabapentin and tricyclic antidepressants. Concomitant use of gabapentin with tricyclic antidepressants may cause additive CNS depression. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Monitor for excessive sedation and somnolence during coadministration of perphenazine and gabapentin. Concurrent use may result in additive CNS depression.
Galantamine: (Moderate) The therapeutic benefits of galantamine may be diminished when coadministered with drugs known to exhibit anticholinergic properties including tricyclic antidepressants (TCAs). When concurrent use cannot be avoided, monitor the patient for reduced galantamine efficacy, and consider use of secondary TCAs (e.g., desipramine, nortriptyline), which generally have less potent anticholinergic effects than tertiary TCAs (e.g., amitriptyline, clomipramine).
Ganirelix: (Moderate) In the absence of relevant data and as a precaution, drugs that cause hyperprolactinemia, such as phenothiazines, should not be administered concomitantly with ganirelix since hyperprolactinemia downregulates the number of pituitary GnRH receptors.
Gemifloxacin: (Minor) Due to an increased risk for QT prolongation and torsade de pointes (TdP), caution is advised when administering perphenazine with gemifloxacin. Perphenazine is associated with a possible risk for QT prolongation. Gemifloxacin may also prolong the QT interval in some patients, with the maximal change in the QTc interval occurring approximately 5 to 10 hours following oral administration. The likelihood of QTc prolongation may increase with increasing dose of gemifloxacin; therefore, the recommended dose should not be exceeded especially in patients with renal or hepatic impairment where the Cmax and AUC are slightly higher.
Gemtuzumab Ozogamicin: (Minor) Coadministration of gemtuzumab ozogamicin with perphenazine may increase the potential for additive QT prolongation and risk of torsade de pointes (TdP). Although QT interval prolongation has not been reported with gemtuzumab, it has been reported with other drugs that contain calicheamicin. Perphenazine is associated with a possible risk for QT prolongation.
Gentamicin: (Minor) When used for the treatment of nausea and vomiting, antiemetic phenothiazines may effectively mask symptoms that are associated with ototoxicity induced by the aminoglycosides.
Gilteritinib: (Minor) Use caution and monitor for additive QT prolongation if concurrent use of gilteritinib and perphenazine is necessary. Gilteritinib has been associated with QT prolongation. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Givosiran: (Major) Avoid concomitant use of givosiran and amitriptyline due to the risk of increased amitriptyline-related adverse reactions. If use is necessary, consider reducing the amitriptyline dose. Amitriptyline is a CYP2D6 substrate. Givosiran may moderately reduce hepatic CYP2D6 enzyme activity because of its pharmacological effects on the hepatic heme biosynthesis pathway. (Major) Avoid concomitant use of givosiran and perphenazine due to the risk of increased perphenazine-related adverse reactions. If use is necessary, consider decreasing the perphenazine dose. Perphenazine is a sensitive CYP2D6 substrate. Givosiran may moderately reduce hepatic CYP2D6 enzyme activity because of its pharmacological effects on the hepatic heme biosynthesis pathway.
Glasdegib: (Minor) Consider increased frequency of ECG monitoring if glasdegib and perphenazine are coadministered due to the potential for additive effects on the QT interval. Glasdegib therapy may result in QT prolongation and ventricular arrhythmias including ventricular fibrillation and ventricular tachycardia. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Glimepiride: (Moderate) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. Also, concomitant use may increase the risk for phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure.
Glipizide: (Moderate) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. Also, concomitant use may increase the risk for phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure.
Glipizide; Metformin: (Moderate) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. Also, concomitant use may increase the risk for phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Glyburide: (Moderate) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. Also, concomitant use may increase the risk for phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure.
Glyburide; Metformin: (Moderate) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. Also, concomitant use may increase the risk for phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Glycopyrrolate: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and glycopyrrolate use. Concomitant use may result in additive anticholinergic adverse effects.
Glycopyrrolate; Formoterol: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and glycopyrrolate use. Concomitant use may result in additive anticholinergic adverse effects.
Goserelin: (Major) Avoid coadministration of goserelin with perphenazine due to the risk of reduced efficacy of goserelin; QT prolongation may also occur. Perphenazine can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; goserelin is a GnRH analog. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Androgen deprivation therapy (i.e., goserelin) may also prolong the QT/QTc interval.
Granisetron: (Moderate) Use granisetron with caution in combination with tricyclic antidepressants due to increased risk for QT prolongation, torsade de pointes (TdP), and serotonin syndrome. Discontinue all serotonergic agents and initiate supportive therapy if serotonin syndrome is suspected. Granisetron has been associated with QT prolongation. Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). (Minor) Use granisetron with caution in combination with perphenazine due to increased risk for QT prolongation and torsade de pointes (TdP). Granisetron has been associated with QT prolongation. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation.
Guaifenesin; Hydrocodone: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Guaifenesin; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Guaifenesin; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines.
Guanfacine: (Major) Tricyclic antidepressants (TCAs) can inhibit the hypotensive effects of guanfacine, causing an increase in blood pressure if given concomitantly. Consider alternatives to TCAs in patients established on guanfacine therapy for hypertension when possible; it is not clear the effect the combination may have when used in patients treated with guanfacine for attention-deficit, but other options to TCAs should be considered. Increased dosages of guanfacine may be required to control blood pressure in patients who are receiving TCAs concurrently. In addition, concurrent TCAs may enhance the potential for serious rebound hypertension following guanfacine discontinuation, regardless of the indication for treatment. If guanfacine therapy is withdrawn, guanfacine should be tapered gradually and the patient should be monitored for potential hypertension.
Guanidine: (Moderate) Tricyclic antidepressants (TCAs) may antagonize some of the effects of parasympathomimetics (e.g., cholinesterase inhibitors) due to their anticholinergic activity. However, parasympathomimetics like bethanechol have occasionally been used historically to offset some of the adverse peripheral antimuscarinic (anticholinergic) effects of TCAs, such as dry mouth, constipation, or urinary retention. For years, physostigmine was used as an adjunct to the treatment of TCA overdose; however, its efficacy was limited to addressing anticholinergic effects. Additionally, case reports suggest that harmful effects such as seizures and bradyarrhythmias progressing to asystole, especially in patients with cardiac conduction abnormalities at baseline, are possible. For these reasons, physostigmine is no longer considered a standard of care in the treatment of TCA overdose. (Minor) Bone marrow suppression is associated with guanidine therapy. Avoid concomitant use of other drugs known to cause bone marrow suppression such as phenothiazines.
Guselkumab: (Moderate) Clinically relevant drug interactions may occur when guselkumab is administered with sensitive substrates of CYP2D6, such as tricyclic antidepressants (TCA). Monitor TCA concentrations if guselkumab is initiated or discontinued; the TCA dose may need to be adjusted. During chronic inflammation, increased levels of certain cytokines can alter the formation of CYP450 enzymes. Thus, the formation of CYP2D6 could be normalized during guselkumab administration.
Halobetasol; Tazarotene: (Moderate) The manufacturer states that tazarotene should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as phenothiazines, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Halogenated Anesthetics: (Minor) Halogenated anesthetics should be used cautiously and with close monitoring with perphenazine. Halogenated anesthetics can prolong the QT interval. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. In addition, Phenothiazines can potentiate the CNS-depressant action of halogenated anesthetics. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects. (Minor) Tricyclic antidepressants (TCAs) should be used cautiously and with close monitoring with halogenated anesthetics. Halogenated anesthetics can prolong the QT interval. Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). In addition, general anesthetics may produce additive CNS depression when used in patients taking tricyclic antidepressants.
Haloperidol: (Moderate) Caution is advisable when combining haloperidol concurrently with perphenazine as concurrent use may increase the risk of QT prolongation and other antipsychotic-related adverse effects including drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation, such as haloperidol. The likelihood of pharmacodynamic interactions varies based upon the individual properties of the coadministered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone. (Moderate) Haloperidol can potentiate the actions of other CNS depressants such as tricyclic antidepressants (TCAs). Caution should be exercised with simultaneous use of these agents due to potential excessive CNS effects. Limited data suggest that haloperidol may inhibit the metabolism of some tricyclic antidepressants, however, the clinical significance of this interaction is uncertain. Haloperidol is an inhibitor of hepatic CYP2D6, and coadministration with many TCAs (which are CYP2D6 substrates) may lead to elevated TCA serum concentrations, potentiating toxicity. Haloperidol has also been associated with a possible risk for QT prolongation and/or torsades de pointes, particularly when excessive doses are used or in overdose. Haloperidol should be used cautiously with other agents that may have this effect (e.g., tricyclic antidepressants).
Histrelin: (Major) Avoid coadministration of histrelin with perphenazine due to the risk of reduced efficacy of histrelin; QT prolongation may also occur. Perphenazine can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; histrelin is a GnRH analog. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Androgen deprivation therapy (i.e., histrelin) may also prolong the QT/QTc interval.
Homatropine; Hydrocodone: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and homatropine use. Concomitant use may result in additive anticholinergic adverse effects.
Hydantoins: (Moderate) Tricyclic antidepressants (TCA), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. Monitor patients on anticonvulsants carefully when a TCA is used concurrently. In addition, hydantoins may increase TCA metabolism.
Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Many references caution against the combined use of tricyclic antidepressants (TCAs) and methyldopa. Although reports exist of loss of blood pressure control when TCAs are added to methyldopa, the interaction is not well documented. Nevertheless, if use of these drugs together is not avoidable, monitor the patient's blood pressure for the desired response. (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Hydrocodone: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hydrocodone; Ibuprofen: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hydrocodone; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. Avoid prescribing opioid cough medication in patients taking tricyclic antidepressants. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking perphenazine. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hydromorphone: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Hydroxychloroquine: (Major) Concomitant use of perphenazine and hydroxychloroquine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Hydroxyzine: (Moderate) Caution is recommended if hydroxyzine is administered with perphenazine due to the potential for additive QT prolongation and risk of torsade de pointes (TdP). In addition, additive anticholinergic effects and CNS depression may also occur. Postmarketing data indicate that hydroxyzine causes QT prolongation and TdP. Perphenazine is associated with a possible risk for QT prolongation. (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of hydroxyzine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Hyoscyamine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Contraindicated) Per the manufacturer, treatment initiation with amitriptyline is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than amitriptyline (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving amitriptyline and requiring urgent treatment with IV methylene blue, amitriptyline should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Amitriptyline may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Ibuprofen; Oxycodone: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Ibuprofen; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines.
Ibutilide: (Minor) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation and should be used cautiously with ibutilide. Ibutilide administration can cause QT prolongation and TdP; proarrhythmic events should be anticipated. The potential for proarrhythmic events with ibutilide increases with the coadministration of other drugs that prolong the QT interval.
Idelalisib: (Major) Avoid concomitant use of idelalisib, a strong CYP3A inhibitor, with amitriptyline, a CYP3A substrate, as amitriptyline toxicities may be significantly increased. The AUC of a sensitive CYP3A substrate was increased 5.4-fold when coadministered with idelalisib.
Iloperidone: (Moderate) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation. According to the manufacturer, iloperidone should be avoided in combination with other drugs having an association with QT prolongation. Co-administration of perphenazine with atypical agents (e.g., lurasidone and others) may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Imatinib: (Major) Imatinib is a potent inhibitor of CYP2D6 and may increase concentrations of other drugs metabolized by this enzyme, such as the tricyclic antidepressants (TCAs). An increase in serum concentrations may increase the risk for TCA-related side effects, such as constipation, dizziness, difficulty with urination, xerostomia, fast or irregular heartbeat, and very rarely, QT prolongation. (Moderate) Imatinib is a potent inhibitor of cytochrome P4502D6 and might decrease perphenazine metabolism leading to increased adverse reactions.
Imipramine: (Moderate) During coadministration of tricyclic antidepressants (TCAs) and perphenazine, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Phenothiazines have been reported to prolong the QT interval. Because tricyclic antidepressants are associated with a possible risk for QT prolongation and torsade de pointes when given in excessive doses or overdosage, concurrent use with phenothiazines should be approached with caution. Additive anticholinergic effects or sedation may also occur.
Incretin Mimetics: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Indacaterol; Glycopyrrolate: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and glycopyrrolate use. Concomitant use may result in additive anticholinergic adverse effects.
Indapamide: (Moderate) Indapamide may cause electrolyte disturbances, which may increase the potential for proarrhythmic effects of selected phenothiazines.
Inotuzumab Ozogamicin: (Minor) Coadministration of inotuzumab ozogamicin with perphenazine may increase the potential for additive QT prolongation and risk of torsade de pointes (TdP). Inotuzumab has been associated with QT interval prolongation. Perphenazine is also associated with a possible risk for QT prolongation.
Insulins: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Iobenguane I 123: (Major) Discontinue medications that decrease norepinephrine uptake, such as tricyclic antidepressants, for at least 5 biological half-lives prior to iobenguane I 123 administration. Consider medication tapering or additional supportive therapy as appropriate to minimize the risk for precipitating tricyclic antidepressant withdrawal symptoms. Medications that decrease the uptake of norepinephrine can cause false negative imaging results. Increasing the dose of iobenguane I 123 will not overcome any potential uptake limiting effect of this medication.
Iobenguane I 131: (Major) Discontinue tricyclic antidepressants for at least 5 half-lives before the administration of the dosimetry dose or a therapeutic dose of iobenguane I-131. Do not restart tricyclic antidepressants until at least 7 days after each iobenguane I-131 dose. Drugs that reduce catecholamine uptake or deplete catecholamine stores, such as tricyclic antidepressants, may interfere with iobenguane I-131 uptake into cells and interfere with dosimetry calculations resulting in altered iobenguane I-131 efficacy.
Iodixanol: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering the use of intrathecal radiopaque contrast agents. Phenothiazines should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours postprocedure.
Iohexol: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering the use of intrathecal radiopaque contrast agents. Phenothiazines should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours postprocedure.
Iomeprol: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering the use of intrathecal radiopaque contrast agents. Phenothiazines should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours postprocedure.
Iopamidol: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering the use of intrathecal radiopaque contrast agents. Phenothiazines should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours postprocedure.
Iopromide: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering the use of intrathecal radiopaque contrast agents. Phenothiazines should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours postprocedure.
Ioversol: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering the use of intrathecal radiopaque contrast agents. Phenothiazines should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours postprocedure.
Ipecac: (Major) Phenothiazines, especially in large quantities, can cause a dystonic reaction. Due to the aspiration risk associated with emesis for a person with acute dystonia of the head or neck, avoid emesis induction for phenothiazine overdose.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Isavuconazonium: (Moderate) Concomitant use of isavuconazonium with amitriptyline may result in increased serum concentrations of amitriptyline. Amitriptyline is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are used together.
Isocarboxazid: (Moderate) Concurrent use of MAOIs and phenothiazines may prolong or intensify the hypotensive, anticholinergic, or sedative effects of either agent. Due to the potential for additive CNS and cardiovascular effects, MAOIs and phenothiazines should be used together cautiously.
Isoflurane: (Minor) Halogenated anesthetics should be used cautiously and with close monitoring with perphenazine. Halogenated anesthetics can prolong the QT interval. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. In addition, Phenothiazines can potentiate the CNS-depressant action of halogenated anesthetics. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects. (Minor) Tricyclic antidepressants (TCAs) should be used cautiously and with close monitoring with halogenated anesthetics. Halogenated anesthetics can prolong the QT interval. Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). In addition, general anesthetics may produce additive CNS depression when used in patients taking tricyclic antidepressants.
Isoniazid, INH: (Major) Due to the risk of serotonin syndrome, concurrent use of amitriptyline and medications with MAO-like activity, such as isoniazid, INH, should be avoided if possible. Isoniazid is chemically related to iproniazid, a drug that was known to possess MAO inhibiting activity. Although isoniazid does not inhibit mitochondrial MAO, it does appear to inhibit plasma MAO and may possess enough MAO inhibiting activity to produce clinical symptoms consistent with serotonergic excess. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. If serotonin syndrome is suspected, amitriptyline and concurrent serotonergic agents should be discontinued.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) Due to the risk of serotonin syndrome, concurrent use of amitriptyline and medications with MAO-like activity, such as isoniazid, INH, should be avoided if possible. Isoniazid is chemically related to iproniazid, a drug that was known to possess MAO inhibiting activity. Although isoniazid does not inhibit mitochondrial MAO, it does appear to inhibit plasma MAO and may possess enough MAO inhibiting activity to produce clinical symptoms consistent with serotonergic excess. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. If serotonin syndrome is suspected, amitriptyline and concurrent serotonergic agents should be discontinued. (Major) Rifamycins can increase the metabolism or reduce the bioavailability of phenothiazines. Dosage increases of phenothiazines may be necessary following the addition of rifampin or another rifamycin. (Moderate) It may be necessary to adjust the dosage of tricyclic antidepressants if given concurrently with rifampin. Rifampin may induce the metabolism of tricyclic antidepressants; coadministration may result in decreased tricyclic antidepressant plasma concentrations.
Isoniazid, INH; Rifampin: (Major) Due to the risk of serotonin syndrome, concurrent use of amitriptyline and medications with MAO-like activity, such as isoniazid, INH, should be avoided if possible. Isoniazid is chemically related to iproniazid, a drug that was known to possess MAO inhibiting activity. Although isoniazid does not inhibit mitochondrial MAO, it does appear to inhibit plasma MAO and may possess enough MAO inhibiting activity to produce clinical symptoms consistent with serotonergic excess. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. If serotonin syndrome is suspected, amitriptyline and concurrent serotonergic agents should be discontinued. (Major) Rifamycins can increase the metabolism or reduce the bioavailability of phenothiazines. Dosage increases of phenothiazines may be necessary following the addition of rifampin or another rifamycin. (Moderate) It may be necessary to adjust the dosage of tricyclic antidepressants if given concurrently with rifampin. Rifampin may induce the metabolism of tricyclic antidepressants; coadministration may result in decreased tricyclic antidepressant plasma concentrations.
Isoproterenol: (Moderate) Monitor hemodynamic parameters during concomitant isoproterenol and tricyclic antidepressant use; dosage adjustments may be necessary. Tricyclic antidepressants may potentiate the effects of isoproterenol.
Isosulfan Blue: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering the use of intrathecal radiopaque contrast agents. Phenothiazines should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours postprocedure.
Itraconazole: (Minor) Use itraconazole with caution in combination with perphenazine as concurrent use may increase the risk of QT prolongation. Itraconazole has been associated with prolongation of the QT interval. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. (Minor) Use itraconazole with caution in combination with tricyclic antidepressants as concurrent use may increase the risk of QT prolongation. Itraconazole has been associated with prolongation of the QT interval. TCAs share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). CYP2C19 and CYP3A4 may be partially involved in the metabolism of TCAs; itraconazole may increase TCA concentrations via inhibition of CYP3A4. In at least one case, an increased incidence of TCA-related side effects, such as dizziness and syncope has occurred in combination with an azole antifungal. In another case, QT-prolongation and torsades de pointes occurred.
Ivosidenib: (Minor) Coadministration of ivosidenib with perphenazine may increase the risk of QT prolongation. If concomitant use is necessary, monitor ECGs for QTc prolongation and monitor electrolytes; correct any electrolyte abnormalities as clinically appropriate. An interruption of therapy and dose reduction of ivosidenib may be necessary if QT prolongation occurs. Prolongation of the QTc interval and ventricular arrhythmias have been reported in patients treated with ivosidenib. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Ketamine: (Moderate) General anesthetics, including ketamine, may generally produce additive CNS depression when used in patients taking tricyclic antidepressants (TCAs). Specific interactions between ketamine and TCAs are not certain.
Ketoconazole: (Contraindicated) Avoid concomitant use of ketoconazole and perphenazine due to an increased risk for torsade de pointes (TdP) and QT/QTc prolongation.
Labetalol: (Moderate) Monitor for an increase in the incidence and severity of tremor and tricyclic antidepressant (TCA)-related adverse effects during concomitant use of labetalol and TCAs. An increase in the incidence of tremor has been observed during concomitant use of labetalol with tricyclic antidepressants; the mechanism of interaction is unknown. Concomitant use may also increase TCA exposure; TCAs are CYP2D6 substrates and labetalol is a weak CYP2D6 inhibitor.
Lacosamide: (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions.
Lamotrigine: (Moderate) Consider ECG monitoring before and during concomitant use of lamotrigine with other sodium channel blockers known to impair atrioventricular and/or intraventricular cardiac conduction, such as tricyclic antidepressants. Concomitant use of tricyclic antidepressants with lamotrigine may increase the risk of proarrhythmia, especially in patients with clinically important structural or functional heart disease. In vitro testing showed that lamotrigine exhibits class IB antiarrhythmic activity at therapeutically relevant concentrations.
Lansoprazole; Amoxicillin; Clarithromycin: (Minor) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering clarithromycin with perphenazine. Clarithromycin is associated with an established risk for QT prolongation and TdP, while perphenazine (a phenothiazine) is associated with a possible risk for QT prolongation.
Lapatinib: (Minor) Monitor for evidence of QT prolongation if lapatinib is administered with perphenazine. Lapatinib has been associated with concentration-dependent QT prolongation; ventricular arrhythmias and torsade de pointes (TdP) have been reported in postmarketing experience with lapatinib. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Lasmiditan: (Moderate) Monitor for excessive sedation and somnolence during coadministration of lasmiditan and perphenazine. Concurrent use may result in additive CNS depression. (Moderate) Monitor for excessive sedation, somnolence, and serotonin syndrome during coadministration of lasmiditan and tricyclic antidepressants. Inform patients taking this combination of the risks and symptoms of excessive CNS depression and serotonin syndrome, particularly after a dose increase or the addition of other serotonergic medications to an existing regimen. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Lefamulin: (Minor) Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation, such as lefamulin.
Lemborexant: (Moderate) Monitor for excessive sedation and somnolence during coadministration of lemborexant and phenothiazines. Dosage adjustments of lemborexant and the phenothiazine may be necessary when administered together because of potentially additive CNS effects. The risk of next-day impairment, including impaired driving, is increased if lemborexant is taken with other CNS depressants. (Moderate) Monitor for excessive sedation and somnolence during coadministration of lemborexant and tricyclic antidepressants. Dosage adjustments of lemborexant and the tricyclic antidepressant may be necessary when administered together because of potentially additive CNS effects. The risk of next-day impairment, including impaired driving, is increased if lemborexant is taken with other CNS depressants.
Lenvatinib: (Minor) Use caution if coadministration of perphenazine with lenvatinib is necessary. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation such as lenvatinib.
Leuprolide: (Major) Avoid coadministration of leuprolide with perphenazine due to the risk of reduced efficacy of leuprolide; QT prolongation may also occur. Perphenazine can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; leuprolide is a GnRH analog. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Androgen deprivation therapy (i.e., leuprolide) may also prolong the QT/QTc interval.
Leuprolide; Norethindrone: (Major) Avoid coadministration of leuprolide with perphenazine due to the risk of reduced efficacy of leuprolide; QT prolongation may also occur. Perphenazine can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; leuprolide is a GnRH analog. Perphenazine is associated with a p ossible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Androgen deprivation therapy (i.e., leuprolide) may also prolong the QT/QTc interval.
Levocetirizine: (Moderate) Monitor for unusual drowsiness and sedation, urinary retention, and reduced gastric motility during coadministration of cetirizine and tricyclic antidepressants. Concomitant use may result in additive CNS depression or anticholinergic effects.
Levodopa: (Major) Avoid concurrent use if possible and consider an atypical antipsychotic as an alternative to the phenothiazine. If coadministration cannot be avoided, monitor for changes in movement, moods, or behaviors. Due to opposing effects on central dopaminergic activity, phenothiazines and levodopa may interfere with the effectiveness of each other. (Moderate) Monitor blood pressure and for symptoms of dyskinesia during concomitant levodopa and tricyclic antidepressant use. There have been rare reports of adverse reactions, including hypertension and dyskinesia, resulting from the concomitant use.
Levofloxacin: (Minor) QT/QTc prolongation can occur with concomitant use of levofloxacin and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Levoketoconazole: (Contraindicated) Avoid concomitant use of ketoconazole and perphenazine due to an increased risk for torsade de pointes (TdP) and QT/QTc prolongation.
Levomilnacipran: (Major) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering serotonin norepinephrine reuptake inhibitors (SNRIs) with other drugs that have serotonergic properties such as tricyclic antidepressants. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. If serotonin syndrome is suspected, the tricyclic antidepressant and concurrent serotonergic agents should be discontinued.
Levonorgestrel; Ethinyl Estradiol: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Levorphanol: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Reduce the initial dose of levorphanol by approximately 50% or more. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Levothyroxine: (Minor) Thyroid hormones may increase receptor sensitivity and enhance the effects of tricyclic antidepressants. Although this drug combination appears to be safe, be aware of the possibility of exaggerated cardiovascular side effects such as arrhythmias and CNS stimulation.
Levothyroxine; Liothyronine (Porcine): (Minor) Thyroid hormones may increase receptor sensitivity and enhance the effects of tricyclic antidepressants. Although this drug combination appears to be safe, be aware of the possibility of exaggerated cardiovascular side effects such as arrhythmias and CNS stimulation.
Levothyroxine; Liothyronine (Synthetic): (Minor) Thyroid hormones may increase receptor sensitivity and enhance the effects of tricyclic antidepressants. Although this drug combination appears to be safe, be aware of the possibility of exaggerated cardiovascular side effects such as arrhythmias and CNS stimulation.
Lidocaine: (Major) If epinephrine is added to lidocaine for the purpose of infiltration and nerve block or spinal anesthesia, receipt of the product to a patient taking tricyclic antidepressants (TCA) may lead to severe, prolonged hypertension. In general, concurrent use of a local anesthetic solution containing epinephrine and a TCA should be avoided. If coadministration is necessary, careful patient monitoring is essential.
Lidocaine; Epinephrine: (Major) Avoid use of epinephrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the vasopressor effects of epinephrine. (Major) If epinephrine is added to lidocaine for the purpose of infiltration and nerve block or spinal anesthesia, receipt of the product to a patient taking tricyclic antidepressants (TCA) may lead to severe, prolonged hypertension. In general, concurrent use of a local anesthetic solution containing epinephrine and a TCA should be avoided. If coadministration is necessary, careful patient monitoring is essential. (Moderate) Monitor blood pressure during concomitant epinephrine and phenothiazine use. Phenothiazines antagonize the pressor effects of epinephrine. Do not use epinephrine to counteract hypotension caused by a phenothiazine, as a reversal of the pressor effect of epinephrine may result in paradoxical further lowering of blood pressure.
Lidocaine; Prilocaine: (Major) If epinephrine is added to lidocaine for the purpose of infiltration and nerve block or spinal anesthesia, receipt of the product to a patient taking tricyclic antidepressants (TCA) may lead to severe, prolonged hypertension. In general, concurrent use of a local anesthetic solution containing epinephrine and a TCA should be avoided. If coadministration is necessary, careful patient monitoring is essential. (Major) Use prilocaine and tricyclic antidepressants together with caution. If epinephrine is added to prilocaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient. Administration of a phenothiazine or a butyrophenone may reduce or reverse the pressor effect of epinephrine.
Linagliptin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Linagliptin; Metformin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Linezolid: (Contraindicated) Treatment with tricyclic antidepressants (TCAs) is contraindicated in patients currently receiving linezolid due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than tricyclic antidepressant therapy (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving a TCA and requiring urgent treatment with linezolid, the TCA should be discontinued immediately and linezolid therapy initiated only if acceptable alternatives are not available and the potential benefits of linezolid outweigh the risks. The patient should be monitored for serotonin syndrome for two weeks or until 24 hours after the last dose of linezolid, whichever comes first. The TCA may be re-initiated 24 hours after the last dose of linezolid. Linezolid is an antibiotic that is also a non-selective monoamine oxidase (MAO) inhibitor. Since monoamine oxidase type A deaminates serotonin, administration of a non-selective MAO inhibitor concurrently with a TCA can lead to serious reactions including serotonin syndrome or neuroleptic malignant syndrome-like reactions. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Liothyronine: (Minor) Thyroid hormones may increase receptor sensitivity and enhance the effects of tricyclic antidepressants. Although this drug combination appears to be safe, be aware of the possibility of exaggerated cardiovascular side effects such as arrhythmias and CNS stimulation.
Lisdexamfetamine: (Moderate) Monitor blood pressure, heart rate, and for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant amphetamine and tricyclic antidepressant use. Adjust doses or use alternative therapy based on clinical response. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for potentiation of cardiovascular effects and serotonin syndrome. Amphetamines may enhance the activity of tricyclic antidepressants causing significant and sustained increases in amphetamine concentrations in the brain.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Lithium: (Moderate) Monitor for serotonin syndrome, particularly during lithium initiation, during concomitant tricyclic antidepressant use. If serotonin syndrome occurs, consider discontinuation of lithium and/or the tricyclic antidepressant. (Moderate) Some atypical antipsychotics are considered first-line adjunctive therapy to mood stabilizers such as lithium. Because both perphenazine and lithium have been associated with QT prolongation, coadminister cautiously and with close monitoring. It is also advisable to monitor patients for neurotoxicity during co-administration. Neuroleptic malignant syndrome (NMS) has been observed occasionally during concurrent use of lithium and either atypical or conventional antipsychotics. Additive extrapyramidal effects have also been noted. Early case reports described an encephalopathic syndrome consisting of delirium, tremulousness, dyskinesia, seizures, leukocytosis, weakness, hyperpyrexia, confusion, extrapyramidal symptoms, elevations in laboratory values (e.g., liver function tests, blood urea nitrogen, fasting blood sugar) and, in some cases, irreversible brain damage, during use of lithium and conventional antipsychotics, particularly haloperidol. Subsequent rare reports of NMS or NMS-like reactions have been described during co-administration of lithium and atypical antipsychotics (e.g., aripiprazole, risperidone, olanzapine, clozapine). Following resolution of NMS, there are isolated instances of re-emergence of symptoms following re-initiation of lithium as monotherapy. Lithium may be a risk factor for antipsychotic-induced NMS; however, this hypothesis has not been confirmed. In many reported cases, confounding factors have been present (e.g., previous history of NMS, high dose therapy). The ability of antipsychotics alone to precipitate NMS and the rarity of the condition further complicate assessment of lithium as a risk factor.
Lofexidine: (Moderate) Monitor for excessive hypotension and sedation during coadministration of lofexidine and tricyclic antidepressants. Lofexidine can potentiate the effects of CNS depressants. Additionally, monitor ECG during coadministration due to the potential risk for additive QT prolongation. Lofexidine prolongs the QT interval. In addition, there are postmarketing reports of torsade de pointes. Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). (Moderate) Monitor the ECG for QT prolongation and monitor for excessive sedation during concurrent use of lofexidine and perphenazine. Lofexidine may prolong the QT interval, and torsade de pointes (TdP) has been reported during postmarketing use. Perphenazine is associated with a possible risk for QT prolongation. In addition, lofexidine can potentiate the effects of CNS depressants, including perphenazine.
Loperamide: (Minor) QT/QTc prolongation can occur with concomitant use of loperamide and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Loperamide; Simethicone: (Minor) QT/QTc prolongation can occur with concomitant use of loperamide and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Lopinavir; Ritonavir: (Major) Avoid coadministration of lopinavir with perphenazine due to the potential for additive QT prolongation. If use together is necessary, obtain a baseline ECG to assess initial QT interval and determine frequency of subsequent ECG monitoring, avoid any non-essential QT prolonging drugs, and correct electrolyte imbalances. Lopinavir is associated with QT prolongation. Perphenazine is associated with a possible risk for QT prolongation. (Moderate) Monitor for an increase in tricyclic antidepressant (TCA)-related adverse reactions if coadministration with ritonavir is necessary; a dose reduction of the TCA may be necessary. Concurrent use may increase exposure of the TCA. TCAs are CYP2D6 substrates and ritonavir is a CYP2D6 inhibitor.
Loratadine; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines.
Lorazepam: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Lorcaserin: (Moderate) Based on the mechanism of action of lorcaserin and the theoretical potential for serotonin syndrome, use with extreme caution in combination with other drugs that may affect the serotonergic neurotransmitter systems, including, tricyclic antidepressants. Patients receiving this combination should be monitored for the emergence of serotonin syndrome or Neuroleptic Malignant Syndrome (NMS) like signs and symptoms.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Loxapine: (Moderate) Caution is advisable during concurrent use of antipsychotics, including loxapine and perphenazine. Coadministration may increase the risk of drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, and seizures. (Moderate) Use caution when combining tricyclic antidepressants (TCAs) with loxapine, which both exhibit anticholinergic activity and may cause CNS effects. Some TCAs may be more likely to cause side effects than others. Because secondary amines, such as desipramine, are generally less likely than tertiary amines (e.g., amitriptyline) to cause sedation, orthostatic hypotension, and anticholinergic effects, TCAs such as desipramine may be preferred for use with antipsychotics.
Lumacaftor; Ivacaftor: (Moderate) Lumacaftor; ivacaftor may reduce the efficacy of amitriptyline by decreasing its systemic exposure. If used together, monitor patients closely for amitriptyline efficacy; an amitriptyline dosage adjustment may be required to obtain the desired therapeutic effect. Do not exceed recommended maximum doses. Amitriptyline is primarily metabolized by CYP2C19 (and CYP2D6) and is also a substrate of CYP3A4 and CYP2C9. Lumacaftor is a strong CYP3A inducer; in vitro data also suggest that lumacaftor; ivacaftor may induce CYP2C19 and induce and/or inhibit CYP2C9.
Lumacaftor; Ivacaftor: (Moderate) Lumacaftor; ivacaftor may reduce the efficacy of amitriptyline by decreasing its systemic exposure. If used together, monitor patients closely for amitriptyline efficacy; an amitriptyline dosage adjustment may be required to obtain the desired therapeutic effect. Do not exceed recommended maximum doses. Amitriptyline is primarily metabolized by CYP2C19 (and CYP2D6) and is also a substrate of CYP3A4 and CYP2C9. Lumacaftor is a strong CYP3A inducer; in vitro data also suggest that lumacaftor; ivacaftor may induce CYP2C19 and induce and/or inhibit CYP2C9.
Lumateperone: (Moderate) Coadministration of antipsychotics, such as lumateperone and perphenazine, may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from antipsychotic combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone. (Moderate) Monitor for excessive sedation and somnolence during coadministration of lumateperone and tricyclic antidepressants. Concurrent use may result in additive CNS depression.
Lurasidone: (Moderate) Lurasidone administration has been associated with drowsiness, dizziness, orthostatic hypotension, extrapyramidal symptoms, neuroleptic malignant syndrome, and seizures. The risk of these adverse effects may be increased during concurrent use of lurasidone with other antipsychotics. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Macimorelin: (Minor) Concurrent use of macimorelin and perphenazine may increase the risk of developing torsade de pointes-type ventricular tachycardia. Sufficient washout time of drugs that are known to prolong the QT interval prior to administration of macimorelin is recommended. Treatment with macimorelin has been associated with an increase in the corrected QT (QTc) interval. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Maprotiline: (Contraindicated) The use of maprotiline with tricyclic antidepressants (TCAs) is not generally recommended, due to the duplicative nature of therapy and the risk for side effects. Additive cardiac effects (e.g., prolonged QT interval), CNS effects, or antimuscarinic effects may occur. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously with perphenazine include maprotiline. In addition to additive cardiac effects, additive anticholinergic effects are also possible. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
Meclizine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with meclizine. Patients should be informed to read non-prescription product labels carefully for additional interacting motion sickness medications.
Mefloquine: (Minor) Mefloquine should be used with caution in patients receiving perphenazine as concurrent use may increase the risk of QT prolongation. There is evidence that the use of halofantrine after mefloquine causes significant lengthening of the QTc interval. Mefloquine alone has not been reported to cause QT prolongation. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation.
Meglitinides: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Melatonin: (Moderate) Monitor for unusual drowsiness and excessive duration during coadministration of melatonin and phenothiazines due to the risk for additive CNS depression. (Moderate) Monitor for unusual drowsiness and sedation during coadministration of melatonin and tricyclic antidepressants due to the risk for additive CNS depression.
Meperidine: (Major) Concomitant use of meperidine with tricyclic antidepressants (TCAs) may cause excessive sedation and somnolence. Limit the use of opioid pain medications with TCAs to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome or signs of urinary retention or reduced gastric motility. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. The concomitant use of anticholinergic drugs may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. (Major) Phenothiazines can potentiate the CNS-depressant action of other drugs such as meperidine. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension.
Mepivacaine: (Major) Use mepivacaine and tricyclic antidepressants together with caution. If epinephrine is added to mepivacaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient. Administration of a phenothiazine or a butyrophenone may reduce or reverse the pressor effect of epinephrine.
Meprobamate: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered with other CNS depressant drugs and they should be used cautiously with anxiolytic, sedative, and hypnotics. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of hypnotics and other CNS depressants than with use of a hypnotic alone. (Moderate) The CNS-depressant effects of meprobamate can be potentiated with concomitant administration of other drugs known to cause CNS depression, including tricyclic antidepressants. If used together, a reduction in the dose of one or both drugs may be needed.
Metaxalone: (Moderate) Coadministration of tricyclic antidepressants (TCAs) with metaxalone may result in additive CNS-depressant effects, such as sedation, and may increase the risk for serotonin syndrome. Use with caution and monitor for the emergence of excessive sedation or serotonin syndrome. If serotonin syndrome is suspected, serotonergic agents should be discontinued and appropriate medical treatment instituted. (Moderate) Phenothiazines can potentiate the CNS-depressant action of skeletal muscle relaxants like metaxalone. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects.
Metformin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Metformin; Repaglinide: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Metformin; Rosiglitazone: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Metformin; Saxagliptin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Metformin; Sitagliptin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Methadone: (Major) Concomitant use of methadone with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of methadone with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. The need to coadminister methadone with drugs known to prolong the QT interval should be done with extreme caution and a careful assessment of treatment risks vs. benefits. Methadone is associated with an increased risk for QT prolongation and torsade de pointes (TdP), especially at higher doses (more than 200 mg/day but averaging approximately 400 mg/day in adult patients). Most cases involve patients being treated for pain with large, multiple daily doses of methadone, although cases have been reported in patients receiving doses commonly used for maintenance treatment of opioid addiction. Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose therapy (elevated serum concentrations). Monitor patients closely for cardiac conduction changes. Also monitor patients for the emergence of serotonin syndrome and for signs of urinary retention or reduced gastric motility. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. The concomitant use of opioids with anticholinergic drugs may increase risk of urinary retention or severe constipation, which may lead to paralytic ileus. (Minor) Perphenazine should be used cautiously and with close monitoring with methadone. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. The need to coadminister methadone with drugs known to prolong the QT interval should be done with extreme caution and a careful assessment of treatment risks versus benefits. Methadone is considered to be associated with an increased risk for QT prolongation and torsades de pointes (TdP), especially at higher doses (> 200 mg/day but averaging approximately 400 mg/day in adult patients). In addition, methadone is a substrate for CYP2D6. Concurrent use of methadone with inhibitors of this enzyme, such as perphenazine, may result in increased serum concentrations of methadone Phenothiazines can also potentiate the CNS-depressant action of methadone. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension.
Methamphetamine: (Moderate) Monitor blood pressure, heart rate, and for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant amphetamine and tricyclic antidepressant use. Adjust doses or use alternative therapy based on clinical response. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for potentiation of cardiovascular effects and serotonin syndrome. Amphetamines may enhance the activity of tricyclic antidepressants causing significant and sustained increases in amphetamine concentrations in the brain.
Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Contraindicated) Per the manufacturer, treatment initiation with amitriptyline is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than amitriptyline (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving amitriptyline and requiring urgent treatment with IV methylene blue, amitriptyline should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Amitriptyline may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects.
Methocarbamol: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of methocarbamol and phenothiazines due to the risk for additive CNS depression; dosage adjustments may be necessary. (Moderate) Monitor for unusual drowsiness and sedation during coadministration of methocarbamol and tricyclic antidepressants due to the risk for additive CNS depression.
Methohexital: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Methoxsalen: (Moderate) Use methoxsalen and phenothiazines together with caution; the risk of severe burns/photosensitivity may be additive. If concurrent use is necessary, closely monitor patients for signs or symptoms of skin toxicity.
Methscopolamine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and methscopolamine use. Concomitant use may result in additive anticholinergic adverse effects.
Methsuximide: (Major) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added. (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. Monitor patients on anticonvulsants carefully when a TCA is used concurrently.
Methyclothiazide: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Methyldopa: (Moderate) Many references caution against the combined use of tricyclic antidepressants (TCAs) and methyldopa. Although reports exist of loss of blood pressure control when TCAs are added to methyldopa, the interaction is not well documented. Nevertheless, if use of these drugs together is not avoidable, monitor the patient's blood pressure for the desired response.
Methylene Blue: (Contraindicated) Per the manufacturer, treatment initiation with amitriptyline is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than amitriptyline (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving amitriptyline and requiring urgent treatment with IV methylene blue, amitriptyline should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Amitriptyline may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving serotonergic agents. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma.
Methylphenidate Derivatives: (Moderate) Caution should be observed when coadministering methylphenidate derivatives and tricyclic antidepressants (TCAs). There are postmarketing reports of serotonin syndrome occurring during use of methylphenidate derivatives and other serotonergic medications. Patients receiving this combination should be monitored for the emergence of serotonin syndrome. If serotonin syndrome occurs, all serotonergic agents should be discontinued and appropriate medical management should be implemented.
Metoclopramide: (Contraindicated) Avoid metoclopramide in patients receiving phenothiazine antipsychotics due to potential for additive effects, including increased frequency and severity of tardive dyskinesia (TD), other extrapyramidal symptoms (EPS), and neuroleptic malignant syndrome (NMS). Also avoid the use of metoclopramide with phenothiazine antiemetics if possible due to these risks. Some manufacturer labels for metoclopramide contraindicate the use of these drugs together, while others state avoidance is necessary. If these agents must be used together, monitor closely for movement disorders and additive CNS effects. Discontinue these medications at the first signs of dyskinesia. Metoclopramide is a central dopamine antagonist and may cause EPS (e.g., acute dystonic reactions, pseudo-parkinsonism, akathisia, tardive dyskinesia). Tardive dyskinesia (TD) is a syndrome of potentially irreversible and disfiguring involuntary movements of the face or tongue, and sometimes of the trunk and/or extremities. Movements may be choreoathetotic in appearance. Phenothiazines are also central dopamine antagonists. In addition, both phenothiazines and metoclopramide can cause sedation, seizures, or increased prolactin levels.
Metolazone: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Metoprolol: (Moderate) Monitor for metoprolol-related adverse reactions, including bradycardia and hypotension, during coadministration with perphenazine. Concomitant use may increase metoprolol serum concentrations which would decrease the cardioselectivity of metoprolol. Metoprolol is a CYP2D6 substrate and perphenazine is a CYP2D6 inhibitor.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines. (Moderate) Monitor for metoprolol-related adverse reactions, including bradycardia and hypotension, during coadministration with perphenazine. Concomitant use may increase metoprolol serum concentrations which would decrease the cardioselectivity of metoprolol. Metoprolol is a CYP2D6 substrate and perphenazine is a CYP2D6 inhibitor.
Metronidazole: (Minor) QT/QTc prolongation can occur with concomitant use of metronidazole and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Metyrapone: (Moderate) Metyrapone may cause dizziness and/or drowsiness. Other drugs that may also cause drowsiness, such as phenothiazines, should be used with caution. Additive drowsiness and/or dizziness is possible. (Moderate) Metyrapone may cause dizziness and/or drowsiness. Other drugs that may also cause drowsiness, such as tricyclic antidepressants, should be used with caution. Additive drowsiness and/or dizziness is possible.
Metyrosine: (Moderate) Because it also blocks central dopamine receptors, metyrosine should be avoided or used cautiously in patients receiving a phenothiazine to minimize the risk of additive adverse CNS effects. A dose reduction may be required if combination therapy is necessary. (Moderate) The concomitant administration of metyrosine with sedating H1-blockers can result in additive sedative effects.
Mexiletine: (Moderate) Mexiletine is significantly metabolized by CYP2D6 isoenzymes. CYP2D6 inhibitors, such as perphenazine, could theoretically impair mexiletine metabolism; the clinical significance of such interactions is unknown.
Midazolam: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Midostaurin: (Minor) The concomitant use of midostaurin and perphenazine may lead to additive QT interval prolongation. If these drugs are used together, consider electrocardiogram monitoring. In clinical trials, QT prolongation has been reported in patients who received midostaurin as single-agent therapy or in combination with cytarabine and daunorubicin. Additionally, perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Mifepristone: (Minor) Due to a possible risk for QT prolongation and torsade de pointes (TdP), mifepristone and perphenazine should be used together cautiously. Mifepristone has been associated with dose-dependent prolongation of the QT interval. There is no experience with high exposure or concomitant use with other QT prolonging drugs. To minimize the risk of QT prolongation, the lowest effective dose should always be used. Drugs with a possible risk for QT prolongation and torsades de pointes that should be used cautiously with mifepristone include perphenazine.
Miglitol: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Milnacipran: (Major) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering serotonin norepinephrine reuptake inhibitors (SNRIs) with other drugs that have serotonergic properties such as tricyclic antidepressants. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. If serotonin syndrome is suspected, the tricyclic antidepressant and concurrent serotonergic agents should be discontinued.
Minocycline: (Minor) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as antidepressants. Caution should be exercised when using these agents concurrently. (Minor) Injectable minocycline contains magnesium sulfate heptahydrate. Because of the CNS-depressant effects of magnesium sulfate, additive central-depressant effects can occur following concurrent administration with CNS depressants such as phenothiazines. Caution should be exercised when using these agents concurrently.
Mirabegron: (Moderate) Mirabegron is a moderate CYP2D6 inhibitor. Exposure of drugs metabolized by CYP2D6 such as perphenazine may be increased when co-administered with mirabegron. Perphenazine is primarily metabolized by CYP2D6. Therefore, appropriate monitoring and dose adjustment may be necessary. (Moderate) Mirabegron is a moderate CYP2D6 inhibitor. Exposure of tricyclic antidepressants (TCAs), which are CYP2D6 substrates, may be increased when co-administered with mirabegron. In drug interaction studies, mirabegron increased the Cmax of desipramine by 79% and desipramine AUC by 241% after multiple dose administration of 100 mg mirabegron once daily for 18 days and a single dose of 50 mg desipramine before and concomitantly with mirabegron. It is difficult to predict the magnitude of the interaction with each TCA due to differences in the role of CYP2D6 in the metabolism of these drugs. Therefore, appropriate monitoring and dose adjustment may be necessary.
Mirtazapine: (Moderate) Coadministration may increase the risk of QT prolongation, torsade de pointes, and CNS depression. Due to the possibility of additive effects on the QT interval, caution is advisable during concurrent use of mirtazapine and perphenazine. Cases of QT prolongation, TdP, ventricular tachycardia, and sudden death have been reported during postmarketing use of mirtazapine. The majority of reports have occurred in the setting of mirtazapine overdose or in patients with other risk factors for QT prolongation, including concomitant use of other medications associated with QT prolongation. Perphenazine is associated with a possible risk for QT prolongation, particularly in overdose settings. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Because both mirtazapine and perphenazine have CNS depressant properties, patients should be advised to avoid engaging in activities requiring mental alertness until they are aware of the effects of the combination. (Moderate) Monitor for unusual drowsiness, sedation, and serotonin syndrome during coadministration due to the risk for additive CNS depression and serotonin syndrome. If serotonin syndrome occurs, consider discontinuation of therapy.
Mitotane: (Major) Use caution if mitotane and amitriptyline are used concomitantly, and monitor for decreased efficacy of amitriptyline and a possible change in dosage requirements. Mitotane is a strong CYP3A4 inducer and amitriptyline is a CYP3A4 substrate; coadministration may result in decreased plasma concentrations of amitriptyline. Additionally, mitotane can cause sedation, lethargy, vertigo, and other CNS adverse reactions; additive CNS effects may occur initially when mitotane is given concurrently with amitriptyline. (Moderate) Mitotane can cause sedation, lethargy, vertigo, and other CNS side effects. Concomitant administration of mitotane and CNS depressants, including opiate agonists, may cause additive CNS effects.
Mobocertinib: (Minor) QT/QTc prolongation can occur with concomitant use of mobocertinib and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Molindone: (Major) Close monitoring is advisable during concurrent use of molindone with other antipsychotics. Because molindone shares certain pharmacological properties with other antipsychotics, additive cardiac effects (e.g., hypotension), CNS effects (e.g., drowsiness), or anticholinergic effects (e.g., constipation, xerostomia) may occur. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Antipsychotics are associated with anticholinergic effects; therefore, additive effects may be seen during concurrent use of molindone and other drugs having anticholinergic activity such as tricyclic antidepressants. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other CNS effects may also occur.
Monoamine oxidase inhibitors: (Contraindicated) Due to the risk of serotonin syndrome, monoamine oxidase inhibitors (MAOIs) intended to treat psychiatric disorders are contraindicated for use with tricyclic antidepressants (TCAs) or within 14 days of discontinuing treatment with a TCA. Conversely, TCAs should not be initiated within 14 days of stopping an MAOI. Monitor for serotonin-related side effects during therapy transitions. (Moderate) Concurrent use of MAOIs and phenothiazines may prolong or intensify the hypotensive, anticholinergic, or sedative effects of either agent. Due to the potential for additive CNS and cardiovascular effects, MAOIs and phenothiazines should be used together cautiously.
Morphine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. For extended-release morphine tablets (MS Contin and Morphabond), start with 15 mg every 12 hours. Morphine; naltrexone should be initiated at one-third to one-half the recommended starting dosage. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Morphine; Naltrexone: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. For extended-release morphine tablets (MS Contin and Morphabond), start with 15 mg every 12 hours. Morphine; naltrexone should be initiated at one-third to one-half the recommended starting dosage. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Moxifloxacin: (Minor) Concurrent use of perphenazine and moxifloxacin should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Moxifloxacin has also been associated with prolongation of the QT interval. Additionally, post-marketing surveillance has identified very rare cases of ventricular arrhythmias including TdP, usually in patients with severe underlying proarrhythmic conditions. The likelihood of QT prolongation may increase with increasing concentrations of moxifloxacin; therefore, the recommended dose or infusion rate should not be exceeded.
Nabilone: (Moderate) Concomitant use of nabilone with other CNS depressants, including phenothiazines, can potentiate the effects of nabilone on respiratory depression. (Moderate) Nabilone should be combined cautiously with tricyclic antidepressants. Tachycardia, hypertension, drowsiness or other CNS effects may occur.
Nafarelin: (Moderate) Antipsychotics may cause hyperprolactinemia and should not be administered concomitantly with nafarelin since hyperprolactinemia down-regulates the number of pituitary GnRH receptors.
Nalbuphine: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Concomitant use of nalbuphine with other CNS depressants, such as phenothiazines, can potentiate the effects of nalbuphine on respiratory depression, CNS depression, and sedation.
Naltrexone: (Moderate) Patients receiving phenothiazines and naltrexone concomitantly have had symptoms of somnolence and lethargy.
Naproxen; Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines.
Nefazodone: (Major) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering tricyclic antidepressants (TCAs) with other drugs that have serotonergic properties such as nefazodone. Both nefazodone and TCAs inhibit the central reuptake of serotonin. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Cases of serotonin syndrome or serotonin-related adverse events have been observed during concurrent use of serotonergic antidepressants and nefazodone. If serotonin syndrome is suspected, tricyclic antidepressants and concurrent serotonergic agents should be discontinued.
Neostigmine: (Moderate) Tricyclic antidepressants (TCAs) may antagonize some of the effects of parasympathomimetics (e.g., cholinesterase inhibitors) due to their anticholinergic activity. However, parasympathomimetics like bethanechol have occasionally been used historically to offset some of the adverse peripheral antimuscarinic (anticholinergic) effects of TCAs, such as dry mouth, constipation or urinary retention. For years, physostigmine was used as an adjunct to the treatment of TCA overdose; however, its efficacy was limited to addressing anticholinergic effects. Additionally, case reports suggest that harmful effects such as seizures and bradyarrhythmias progressing to asystole, especially in patients with cardiac conduction abnormalities at baseline, are possible. For these reasons, physostigmine is no longer considered a standard of care in the treatment of TCA overdose.
Neostigmine; Glycopyrrolate: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and glycopyrrolate use. Concomitant use may result in additive anticholinergic adverse effects. (Moderate) Tricyclic antidepressants (TCAs) may antagonize some of the effects of parasympathomimetics (e.g., cholinesterase inhibitors) due to their anticholinergic activity. However, parasympathomimetics like bethanechol have occasionally been used historically to offset some of the adverse peripheral antimuscarinic (anticholinergic) effects of TCAs, such as dry mouth, constipation or urinary retention. For years, physostigmine was used as an adjunct to the treatment of TCA overdose; however, its efficacy was limited to addressing anticholinergic effects. Additionally, case reports suggest that harmful effects such as seizures and bradyarrhythmias progressing to asystole, especially in patients with cardiac conduction abnormalities at baseline, are possible. For these reasons, physostigmine is no longer considered a standard of care in the treatment of TCA overdose.
Nilotinib: (Minor) QT interval prolongation may be additive if nilotinib and perphenazine are coadministered. Sudden death and QT prolongation have been reported in patients who received nilotinib therapy. Perphenazine, a phenothiazine, is associated wit h a possible risk for QT prolongation.
Niraparib; Abiraterone: (Moderate) Closely monitor for an increase in perphenazine-related adverse reactions if coadministration with abiraterone is necessary; reduce the dose of perphenazine if clinically appropriate. Perphenazine is a CYP2D6 substrate and abiraterone is a moderate CYP2D6 inhibitor. Concomitant administration may acutely increase plasma concentrations of perphenazine. (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with abiraterone is necessary; a dose reduction of amitriptyline may be necessary. Amitriptyline is a CYP2D6 substrate and abiraterone is a moderate CYP2D6 inhibitor. Patients who are stable on a given dose of amitriptyline may become abruptly toxic when given abiraterone is concomitant therapy.
Nirmatrelvir; Ritonavir: (Moderate) Monitor for an increase in tricyclic antidepressant (TCA)-related adverse reactions if coadministration with ritonavir is necessary; a dose reduction of the TCA may be necessary. Concurrent use may increase exposure of the TCA. TCAs are CYP2D6 substrates and ritonavir is a CYP2D6 inhibitor.
Nitroglycerin: (Minor) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as antidepressants. Patients should be monitored more closely for hypotension if nitroglycerin is used concurrently with antidepressants. (Minor) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as phenothiazines. Patients should be monitored more closely for hypotension if nitroglycerin is used concurrently with phenothiazines.
Non-Ionic Contrast Media: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering the use of intrathecal radiopaque contrast agents. Phenothiazines should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours postprocedure. (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering the use of intrathecal radiopaque contrast agents. Tricyclic antidepressants should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours postprocedure.
Norepinephrine: (Major) Avoid coadministration of norepinephrine with tricyclic antidepressants as concurrent use can cause severe, prolonged hypertension. If administration of norepinephrine cannot be avoided in these patients, monitor for hypertension. (Minor) The alpha-adrenergic effects of norepinephrine can be blocked during concurrent administration of phenothiazines. This blockade can lead to severe hypotension, tachycardia, and, potentially, myocardial infarction. Patients taking phenothiazines can possibly have reduced pressor response to ephedrine, phenylephrine, or norepinephrine, but these drugs are preferred over epinephrine if a vasopressor agent is required. According to the manufacturers of the various phenothiazines, norepinephrine or phenylephrine may be used if a vasopressor is needed.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Norethindrone; Ethinyl Estradiol: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Norgestimate; Ethinyl Estradiol: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Nortriptyline: (Moderate) During coadministration of tricyclic antidepressants (TCAs) and perphenazine, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Phenothiazines have been reported to prolong the QT interval. Because tricyclic antidepressants are associated with a possible risk for QT prolongation and torsade de pointes when given in excessive doses or overdosage, concurrent use with phenothiazines should be approached with caution. Additive anticholinergic effects or sedation may also occur.
Ofloxacin: (Minor) QT/QTc prolongation can occur with concomitant use of ofloxacin and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Olanzapine: (Moderate) Olanzapine or tricyclic antidepressants, at elevated serum concentrations, may prolong the QTc interval. In addition, anticholinergic effects and sedation may be seen when tricyclic antidepressants are used with olanzapine. (Moderate) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation, such as olanzapine. Coadministration may also increase the risk of drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Olanzapine; Fluoxetine: (Moderate) Monitor for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant amitriptyline and fluoxetine use. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for serotonin syndrome. (Moderate) Olanzapine or tricyclic antidepressants, at elevated serum concentrations, may prolong the QTc interval. In addition, anticholinergic effects and sedation may be seen when tricyclic antidepressants are used with olanzapine. (Moderate) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation, such as olanzapine. Coadministration may also increase the risk of drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone. (Moderate) Use fluoxetine with caution in combination with perphenazine. Coadministration may increase the risk for QT prolongation and torsade de pointes (TdP). Additionally, fluoxetine is a potent inhibitor of CYP2D6 and may result in increases in serum perphenazine concentrations, leading to side effects. QT prolongation and TdP have been reported in patients treated with fluoxetine. Perphenazine is associated with a possible risk for QT prolongation.
Olanzapine; Samidorphan: (Moderate) Olanzapine or tricyclic antidepressants, at elevated serum concentrations, may prolong the QTc interval. In addition, anticholinergic effects and sedation may be seen when tricyclic antidepressants are used with olanzapine. (Moderate) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation, such as olanzapine. Coadministration may also increase the risk of drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Oliceridine: (Major) Concomitant use of oliceridine with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of oliceridine with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Concomitant use of oliceridine with perphenazine may cause excessive sedation and somnolence. Limit the use of oliceridine with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Monitor patients closely for respiratory depression and sedation at frequent intervals and base subsequent doses on the patient's severity of pain and response to treatment if concomitant administration of oliceridine and perphenazine is necessary; less frequent dosing of oliceridine may be required. Concomitant use of oliceridine and perphenazine may increase the plasma concentration of oliceridine, resulting in increased or prolonged opioid effects. If perphenazine is discontinued, consider increasing the oliceridine dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oliceridine is a CYP2D6 substrate and perphenazine is a moderate CYP2D6 inhibitor.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Omeprazole; Amoxicillin; Rifabutin: (Major) Rifamycins can increase the metabolism or reduce the bioavailability of phenothiazines. Dosage increases of phenothiazines may be necessary following the addition of rifampin or another rifamycin.
Ondansetron: (Minor) Due to a possible risk for QT prolongation and torsade de pointes (TdP), ondansetron and perphenazine should be used together cautiously. Ondansetron has been associated with QT prolongation and post-marketing reports of torsade de pointes (TdP). Among 42 patients receiving a 4 mg bolus dose of intravenous ondansetron for the treatment of postoperative nausea and vomiting, the mean maximal QTc interval prolongation was 20 +/- 13 msec at the third minute after antiemetic administration (p < 0.0001). If ondansetron and another drug that prolongs the QT interval must be coadministered, ECG monitoring is recommended. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation.
Opicapone: (Major) COMT inhibitors should be given cautiously with other agents that cause CNS depression, including tricyclic antidepressants, due to the possibility of additive sedation. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. Patients should be advised to avoid driving or other tasks requiring mental alertness until they know how the combination affects them.
Oritavancin: (Moderate) Coadministration of oritavancin and amitriptyline may result in increases or decreases in amitriptyline exposure and may increase side effects or decrease efficacy of amitriptyline. Amitriptyline is metabolized by CYP3A4, CYP2D6, CYP2C19, and CYP2C9. Oritavancin weakly induces CYP3A4 and CYP2D6, while weakly inhibiting CYP2C9 and CYP2C19. If these drugs are administered concurrently, monitor the patient for signs of toxicity or lack of efficacy. (Moderate) Perphenazine is metabolized by CYP2D6; oritavancin is a weak CYP2D6 inducer. Plasma concentrations and efficacy of perphenazine may be reduced if these drugs are administered concurrently.
Orphenadrine: (Moderate) Additive anticholinergic effects may be seen when perphenazine is used concomitantly with other drugs having antimuscarinic activity such as orphenadrine. Additive sedation may also occur. (Moderate) Orphenadrine should be combined cautiously with tricyclic antidepressants due to the potential for additive anticholinergic and CNS depressant effects. Antimuscarinic effects might be seen on GI smooth muscle, bladder function, the eye, and temperature regulation. Consider an alternative skeletal muscle relaxant.
Osilodrostat: (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with osilodrostat is necessary; a dose reduction of amitriptyline may be necessary. Concurrent use may increase exposure of amitriptyline. Additionally, consider more frequent ECG monitoring due to the risk of additive QT prolongation. Amitriptyline is a CYP2D6 substrate that may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). Osilodrostat is a CYP2D6 inhibitor that is associated with dose-dependent QT prolongation. (Minor) Monitor ECGs in patients receiving osilodrostat with perphenazine. Osilodrostat is associated with dose-dependent QT prolongation. Perphenazine is associated with a possible risk for QT prolongation.
Osimertinib: (Minor) Use osimertinib and perphenazine together with caution due to the risk of QT prolongation. The manufacturer of osimertinib recommends avoiding coadministration with other drugs that prolong the QT, if possible; if unavoidable, periodically monitor ECGs for QT prolongation and monitor electrolytes. An interruption of osimertinib therapy with dose reduction or discontinuation of therapy may be necessary if QT prolongation occurs. Concentration-dependent QTc prolongation occurred during clinical trials of osimertinib. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Oxaliplatin: (Minor) Monitor electrolytes and ECGs for QT prolongation if coadministration of perphenazine with oxaliplatin is necessary; correct electrolyte abnormalities prior to administration of oxaliplatin. QT prolongation and ventricular arrhythmias including fatal torsade de pointes have been reported with oxaliplatin use in postmarketing experience. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Oxazepam: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Oxcarbazepine: (Moderate) Use amitriptyline with caution in patients with a history of seizures; amitriptyline may lower the seizure threshold and thus potentially interfere with the ability of antiepileptics to control seizures. In addition, concomitant use of amitriptyline and oxcarbazepine may result in additive CNS depression. Oxcarbazepine, a CYP2C19 inhibitor, can increase plasma concentrations of amitriptyline, a substrate of CYP2C19.
Oxybutynin: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and oxybutynin use. Concomitant use may result in additive anticholinergic adverse effects.
Oxycodone: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Major) Concomitant use of oxycodone with phenothiazines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with phenothiazines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor for signs of hypotension after starting or titrating the dosage of oxycodone. There is an increased risk of severe hypotension in patients whose ability to maintain blood pressure has already been compromised by concurrent administration of phenothiazines.
Oxymorphone: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Reduce the initial oxymorphone dosage by 1/3 to 1/2. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome. Monitor for signs of urinary retention and reduced gastric motility. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Ozanimod: (Contraindicated) Do not use tricyclic antidepressants (TCAs) in patients taking MAOIs or within 14 days of stopping them. An active metabolite of ozanimod inhibits MAO-B, and interactions with TCAs may manifest as serotonin syndrome, hypertensive crisis, QT prolongation or other serious side effects. Hyperpyretic crises, severe convulsions, and deaths have occurred in patients receiving TCAs and MAO inhibiting drugs simultaneously. Consider an alternative to the TCA. Ozanimod is a monoamine oxidase inhibitor that may result in a transient decrease in heart rate and atrioventricular conduction delays. Ozanimod has not been studied in patients taking concurrent QT prolonging drugs; however, QT prolonging drugs have been associated with TdP in patients with bradycardia. TCAs are serotonergic drugs that share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). (Minor) Coadministration of ozanimod with perphenazine may increase the potential for additive QT prolongation. Ozanimod initiation may result in a transient decrease in heart rate and atrioventricular conduction delays. Ozanimod has not been studied in patients taking concurrent QT prolonging drugs; however, QT prolonging drugs have been associated with torsade de pointes in patients with bradycardia. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Pacritinib: (Minor) QT/QTc prolongation can occur with concomitant use of pacritinib and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Paliperidone: (Major) Coadministration of antipsychotics, including paliperidone and perphenazine, should be avoided if possible. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation. Paliperidone has been associated with QT prolongation; torsade de pointes (TdP) and ventricular fibrillation have been reported in the setting of overdose. According to the manufacturer, paliperidone should be avoided in combination with other drugs having an association with QT prolongation. In addition, coadministration of antipsychotics may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone. (Moderate) Concurrent use of paliperidone and tricyclic antidepressants should be avoided if possible. Paliperidone has a risk for QT prolongation and torsade de pointes, and tricyclic antidepressants, primarily at elevated serum concentrations, may produce clinically significant prolongation of the QTc interval. In addition, there is a potential for other pharmacodynamic interactions, such as augmentation of CNS impairment.
Panobinostat: (Major) The co-administration of panobinostat and perphenazine is not recommended. If concomitant use cannot be avoided, closely monitor patients for signs and symptoms of perphenazine toxicity. Panobinostat is a CYP2D6 inhibitor and perphenazine is a CYP2D6-sensitive substrate. When a single-dose of a CYP2D6-sensitive substrate was administered after 3 doses of panobinostat (20 mg given on days 3, 5, and 8), the CYP2D6 substrate Cmax increased by 20% to 200% and the AUC value increased by 20% to 130% in 14 patients with advanced cancer; exposure was highly variable (coefficient of variance > 150%). (Major) The co-administration of panobinostat with tricyclic antidepressants such as amitriptyline is not recommended; QT prolongation has been reported with both of these agents. If concomitant use cannot be avoided, closely monitor patients for signs and symptoms of tricyclic antidepressant toxicity, including QT prolongation and cardiac arrhythmias. Panobinostat is a CYP2D6 inhibitor and tricyclic antidepressants are CYP2D6 substrates. When a single-dose of a CYP2D6-sensitive substrate was administered after 3 doses of panobinostat (20 mg given on days 3, 5, and 8), the CYP2D6 substrate Cmax increased by 20% to 200% and the AUC value increased by 20% to 130% in 14 patients with advanced cancer; exposure was highly variable (coefficient of variance > 150%).
Paromomycin: (Minor) When used for the treatment of nausea and vomiting, antiemetic phenothiazines may effectively mask symptoms that are associated with ototoxicity induced by the aminoglycosides.
Paroxetine: (Major) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering selective serotonin reuptake inhibitors (SSRIs) with other drugs that have serotonergic properties such as tricyclic antidepressants. Additionally, monitor for an increase in amitriptyline-related adverse reactions if coadministration with paroxetine is necessary; a dose reduction of amitriptyline may be necessary. Concurrent use may increase the plasma concentrations of amitriptyline. Amitriptyline is a CYP2D6 substrate and paroxetine is a CYP2D6 inhibitor. Paroxetine and amitriptyline both exhibit significant anticholinergic effects that may be additive during concurrent use. (Moderate) Monitor for an increase in paroxetine- and perphenazine-related adverse reactions, including serotonin syndrome, extrapyramidal symptoms, and somnolence, if coadministration is necessary. Concomitant use may increase the exposure of both drugs. Both drugs are CYP2D6 substrates; paroxetine is a strong CYP2D6 inhibitor and perphenazine is a weak CYP2D6 inhibitor.
Pasireotide: (Minor) Use caution when using pasireotide in combination with perphenazine as concurrent use may increase the risk of QT prolongation. QT prolongation has occurred with pasireotide at therapeutic and supra-therapeutic doses. Perphenazine is associated with a possible risk for QT prolongation.
Pazopanib: (Minor) Coadministration of pazopanib and other drugs that prolong the QT interval is not advised; pazopanib has been reported to prolong the QT interval. If pazopanib and the other drug must be continued, closely monitor the patient for QT interval prolongation. Drugs with a possible risk for QT prolongation and TdP that should be avoided with pazopanib include perphenazine. (Minor) Coadministration of pazopanib and other drugs that prolong the QT interval, such as tricyclic antidepressants is not advised; pazopanib has been reported to prolong the QT interval. If pazopanib and the other drug must be continued, closely monitor the patient for QT interval prolongation. In addition, pazopanib is a weak inhibitor of CYP3A4. Amitriptyline, clomipramine and imipramine are CYP3A4 substrates. Coadministration of pazopanib may cause an increase in systemic concentrations of the tricyclic antidepressant. Use caution when administering these drugs concomitantly.
Peginterferon Alfa-2b: (Moderate) Caution is warranted with the use of perphenazine and peginterferon alfa-2b. Perphenazine is a substrate of CYP2D6, while peginterferon alfa-2b inhibits this enzyme. The pharmacologic effects of CYP2D6 substrates may be increased when administered with peginterferon alfa-2b. (Moderate) Monitor for adverse effects associated with increased exposure to amitriptyline if peginterferon alfa-2b is coadministered. Peginterferon alfa-2b is a CYP2D6 inhibitor, while amitriptyline is a CYP2D6 substrate.
Pentamidine: (Minor) Pentamidine has been associated with QT prolongation. Drugs with a possible risk for QT prolongation and torsades de pointes (TdP) that should be used cautiously with pentamidine include perphenazine.
Pentazocine: (Moderate) Concomitant use of pentazocine with other CNS depressants, such as phenothiazines, can potentiate respiratory depression, CNS depression, and sedation. Pentazocine should be used cautiously with phenothiazines. (Moderate) Pain medications such as pentazocine should be combined cautiously with tricyclic antidepressants due to the possibility of additive CNS depression, respiratory depression, hypotension, or decreased intestinal motility. Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering tricyclic antidepressants with other drugs that have serotonergic properties such as pentazocine. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. If serotonin syndrome is suspected, tricyclic antidepressant and concurrent serotonergic agents should be discontinued.
Pentazocine; Naloxone: (Moderate) Concomitant use of pentazocine with other CNS depressants, such as phenothiazines, can potentiate respiratory depression, CNS depression, and sedation. Pentazocine should be used cautiously with phenothiazines. (Moderate) Pain medications such as pentazocine should be combined cautiously with tricyclic antidepressants due to the possibility of additive CNS depression, respiratory depression, hypotension, or decreased intestinal motility. Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering tricyclic antidepressants with other drugs that have serotonergic properties such as pentazocine. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. If serotonin syndrome is suspected, tricyclic antidepressant and concurrent serotonergic agents should be discontinued.
Pentobarbital: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Perampanel: (Moderate) Co-administration of perampanel with CNS depressants, including ethanol, may increase CNS depression. The combination of perampanel (particularly at high doses) with ethanol has led to decreased mental alertness and ability to perform complex tasks (such as driving), as well as increased levels of anger, confusion, and depression; similar reactions should be expected with concomitant use of other CNS depressants, such as amitriptyline. In addition, tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, may also lower the seizure threshold. Monitor patients for changes in efficacy of perampanel. (Moderate) Co-administration of perampanel with CNS depressants, including ethanol, may increase CNS depression. The combination of perampanel (particularly at high doses) with ethanol has led to decreased mental alertness and ability to perform complex tasks (such as driving), as well as increased levels of anger, confusion, and depression; similar reactions should be expected with concomitant use of other CNS depressants, such as phenothiazines.
Phendimetrazine: (Major) Avoid use of tricyclic antidepressants with phendimetrazine whenever possible. Tricyclic antidepressants (TCAs) may potentiate the pressor response to sympathomimetic agents, such as phendimetrazine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience side effects like hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. Patients should be closely monitored if use together is unavoidable.
Phenelzine: (Moderate) Concurrent use of MAOIs and phenothiazines may prolong or intensify the hypotensive, anticholinergic, or sedative effects of either agent. Due to the potential for additive CNS and cardiovascular effects, MAOIs and phenothiazines should be used together cautiously.
Phenobarbital: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and hyoscyamine use. Concomitant use may result in additive anticholinergic adverse effects. (Moderate) Monitor for unusual drowsiness or excess sedation and for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and atropine use. Concomitant use may result in additive CNS depression or anticholinergic adverse effects. (Moderate) Monitor for unusual drowsiness or excess sedation and for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and scopolamine use. Concomitant use may result in additive CNS depression or anticholinergic adverse effects. (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Phentermine: (Moderate) Monitor blood pressure and heart rate during concomitant phentermine and tricyclic antidepressant use. Adjust doses or use alternative therapy based on clinical response. Concomitant use increases the risk for potentiation of cardiovascular effects. Amphetamines may enhance the activity of tricyclic antidepressants causing significant and sustained increases in amphetamine concentrations in the brain.
Phentermine; Topiramate: (Moderate) Monitor blood pressure and heart rate during concomitant phentermine and tricyclic antidepressant use. Adjust doses or use alternative therapy based on clinical response. Concomitant use increases the risk for potentiation of cardiovascular effects. Amphetamines may enhance the activity of tricyclic antidepressants causing significant and sustained increases in amphetamine concentrations in the brain. (Moderate) Monitor for unusual drowsiness and excess sedation during coadministration of phenothiazines and topiramate due to the risk for additive CNS depression. (Moderate) Monitor for unusual drowsiness or excess sedation and for increased amitriptyline-related adverse events during concomitant topiramate use. Concomitant use resulted in an increase in amitriptyline exposure by 12% and may increase the risk for additive CNS depression.
Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Phenytoin: (Moderate) Monitor phenytoin concentrations during concomitant therapy with phenytoin and phenothiazines; a phenytoin dosage decrease may be necessary. Phenothiazines may inhibit the metabolism of phenytoin.
Photosensitizing agents (topical): (Moderate) Phenothiazines may increase the photosensitizing effects of photosensitizing agents used in photodynamic therapy. Patients should limit ultra-violet exposure.
Physostigmine: (Moderate) Tricyclic antidepressants may antagonize some of the effects of cholinesterase inhibitors due to their anticholinergic activity. It may be helpful to choose an alternative antidepressant with lower propensity for anticholinergic activity.
Pilocarpine: (Moderate) Avoid using pilocarpine in combination with other drugs known to have anticholinergic effects as the therapeutic efficacy of either agent may be reduced. (Moderate) Tricyclic antidepressants (TCAs) may antagonize some of the effects of parasympathomimetics (e.g., cholinesterase inhibitors) due to their anticholinergic activity. However, parasympathomimetics like bethanechol have occasionally been used historically to offset some of the adverse peripheral antimuscarinic (anticholinergic) effects of TCAs, such as dry mouth, constipation, or urinary retention. For years, physostigmine was used as an adjunct to the treatment of TCA overdose; however, its efficacy was limited to addressing anticholinergic effects. Additionally, case reports suggest that harmful effects such as seizures and bradyarrhythmias progressing to asystole, especially in patients with cardiac conduction abnormalities at baseline, are possible. For these reasons, physostigmine is no longer considered a standard of care in the treatment of TCA overdose.
Pimavanserin: (Minor) Pimavanserin may cause QT prolongation and should be avoided in patients receiving other medications known to prolong the QT interval. Fluphenazine, perphenazine, prochlorperazine, and trifluoperazine are associated with a possible risk for QT prolongation. Theoretically, these phenothiazines may increase the risk of QT prolongation if coadministered with drugs with a risk of QT prolongation.
Pimozide: (Contraindicated) Pimozide is associated with a well-established risk of QT prolongation and torsade de pointes (TdP). Because of the potential for TdP, use of tricyclic antidepressants with pimozide is contraindicated. (Contraindicated) Pimozide is associated with a well-established risk of QT prolongation and torsade de pointes (TdP). Due to the risk of additive QT prolongation and potential for serious arrhythmias, the concurrent use of pimozide with perphenazine is contraindicated. Concurrent use of pimozide with phenothiazines may increase the risk of adverse effects such as drowsiness, sedation, dizziness, orthostatic hypotension, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone. Many phenothiazines are inhibitors of CYP2D6, one of the metabolic pathways of pimozide.
Pioglitazone: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Pioglitazone; Glimepiride: (Moderate) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. Also, concomitant use may increase the risk for phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Pioglitazone; Metformin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. When such drugs are administered to a patient receiving metformin, observe the patient closely for loss of blood glucose control. When such drugs are withdrawn from a patient receiving metformin, observe the patient closely for hypoglycemia.
Pitolisant: (Major) Avoid coadministration of pitolisant with tricyclic antidepressants (TCAs) as the effect of pitolisant may be decreased; concurrent use may also increase the risk of QT prolongation. Pitolisant increases histamine concentrations in the brain; therefore, H1-receptor antagonists like TCAs, may reduce pitolisant efficacy. Pitolisant prolongs the QT interval. TCAs share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). (Minor) Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation, such as pitolisant.
Plazomicin: (Minor) When used for the treatment of nausea and vomiting, antiemetic phenothiazines may effectively mask symptoms that are associated with ototoxicity induced by the aminoglycosides.
Ponesimod: (Minor) Concomitant use of ponesimod and perphenazine may increase the risk of additive bradycardia, QT prolongation, and torsade de pointes (TdP). If treatment initiation is considered, seek advice from a cardiologist. Ponesimod initiation may result in a transient decrease in heart rate and atrioventricular conduction delays. Ponesimod has not been studied in patients taking concurrent QT prolonging drugs; however, QT prolonging drugs have been associated with TdP in patients with bradycardia. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Porfimer: (Major) Avoid coadministration of porfimer with phenothiazines due to the risk of increased photosensitivity. Porfimer is a light-activated drug used in photodynamic therapy; all patients treated with porfimer will be photosensitive. Concomitant use of other photosensitizing agents like phenothiazines may increase the risk of a photosensitivity reaction. (Major) Avoid coadministration of porfimer with tricyclic antidepressants due to the risk of increased photosensitivity. All patients treated with porfimer will be photosensitive. Concomitant use of other photosensitizing agents like tricyclic antidepressants may increase the risk of a photosensitivity reaction.
Posaconazole: (Minor) Posaconazole is associated with QT prolongation. Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). In addition, posaconazole inhibits CYP3A4, CYP2C19, and CYP3A4 may be partially involved in the metabolism of TCAs. Fluconazole has been reported to increase the effects of amitriptyline, perhaps through inhibition of the hepatic microsomal CYP2C19 or CYP3A4 isoenzymes. In at least one case, the interaction resulted in an increased incidence of TCA-related side effects, such as dizziness and syncope. In another case, QT-prolongation and torsades de pointes occurred. Monitor for an increased response to amitriptyline if fluconazole, posaconazole, or voriconazole are coadministered. (Minor) Use posaconazole with caution in combination with perphenazine as concurrent use may increase the risk of QT prolongation. Posaconazole has been associated with prolongation of the QT interval as well as rare cases of torsade de pointes. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Pralidoxime: (Moderate) Tricyclic antidepressants (TCAs) may antagonize some of the effects of parasympathomimetics (e.g., cholinesterase inhibitors) due to their anticholinergic activity. However, parasympathomimetics like bethanechol have occasionally been used historically to offset some of the adverse peripheral antimuscarinic (anticholinergic) effects of TCAs, such as dry mouth, constipation, or urinary retention. For years, physostigmine was used as an adjunct to the treatment of TCA overdose; however, its efficacy was limited to addressing anticholinergic effects. Additionally, case reports suggest that harmful effects such as seizures and bradyarrhythmias progressing to asystole, especially in patients with cardiac conduction abnormalities at baseline, are possible. For these reasons, physostigmine is no longer considered a standard of care in the treatment of TCA overdose.
Pramipexole: (Major) Due to opposing effects on central dopaminergic activity, phenothiazines and pramipexole may interfere with the effectiveness of each other. Avoid concurrent use if possible and consider an atypical antipsychotic as an alternative to the phenothiazine. If coadministration cannot be avoided, monitor for changes in movement, moods, or behaviors. In addition, coadministration may result in additive sedation. (Moderate) Pramipexole may cause additive drowsiness when combined with tricyclic antidepressants.
Pramlintide: (Major) Pramlintide slows gastric emptying and the rate of nutrient delivery to the small intestine. Medications with the potential to slow GI motility, such as tricyclic antidepressants, should be used with caution, if at all, with pramlintide until more data are available from the manufacturer. Monitor blood glucose. (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Pregabalin: (Major) Initiate pregabalin at the lowest recommended dose and monitor patients for symptoms of sedation and somnolence during coadministration of pregabalin and tricyclic antidepressants. Concomitant use of pregabalin with tricyclic antidepressants may cause additive CNS depression. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Monitor for excessive sedation and somnolence during coadministration of perphenazine and pregabalin. Concurrent use may result in additive CNS depression.
Prilocaine: (Major) Use prilocaine and tricyclic antidepressants together with caution. If epinephrine is added to prilocaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient. Administration of a phenothiazine or a butyrophenone may reduce or reverse the pressor effect of epinephrine.
Prilocaine; Epinephrine: (Major) Avoid use of epinephrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the vasopressor effects of epinephrine. (Major) Use prilocaine and tricyclic antidepressants together with caution. If epinephrine is added to prilocaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient. Administration of a phenothiazine or a butyrophenone may reduce or reverse the pressor effect of epinephrine. (Moderate) Monitor blood pressure during concomitant epinephrine and phenothiazine use. Phenothiazines antagonize the pressor effects of epinephrine. Do not use epinephrine to counteract hypotension caused by a phenothiazine, as a reversal of the pressor effect of epinephrine may result in paradoxical further lowering of blood pressure.
Primaquine: (Minor) Exercise caution when administering primaquine in combination with perphenazine as concurrent use may increase the risk of QT prolongation. Primaquine is associated with QT prolongation. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, this phenothiazine may increase the risk of QT prolongation if coadministered with drugs with a risk of QT prolongation.
Primidone: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Procainamide: (Minor) Perphenazine should be used cautiously and with close monitoring with procainamide. Procainamide administration is associated with QT prolongation and torsades de pointes (TdP). Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation.
Procarbazine: (Major) In general, drugs with MAOI activity, such as procarbazine, should not be used with tricyclic antidepressants. Severe hypertensive crises, serotonin syndrome, or increased anticholinergic effects can result from concomitant use. Tricyclic antidepressants can, in some cases, be used concomitantly with MAOIs if tricyclic antidepressant therapy is in effect prior to beginning therapy with a MAOI; tricyclic antidepressants should never be added to an existing MAOI regime. Under careful monitoring for signs or symptoms of hypertension, add the MAOI gradually, starting at a low dose. Patients should also be monitored closely for signs or symptoms of serotonin syndrome (characterized by hyperthermia, diaphoresis, shivering, tremor, myoclonus, seizures, ataxia, delirium, restlessness). Strict adherence to diet restrictions should be emphasized and the patient should not be receiving other sympathomimetics. Most references suggest avoiding this drug interaction entirely if clomipramine or imipramine are being administered. (Moderate) CNS depressants, such as phenothiazines, can potentiate the CNS depression caused by procarbazine therapy, so these drugs should be used together cautiously.
Prochlorperazine: (Moderate) Perphenazine and prochlorperazine are associated with a possible risk for QT prolongation; this risk may theoretically be increased during concurrent use. Coadministration of antipsychotics may also increase the risk of drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, tardive dyskinesia, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. (Moderate) When prescribing tricyclic antidepressants (TCAs) to patients already receiving phenothiazine therapy, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Phenothiazines have been reported to prolong the QT interval. Because tricyclic antidepressants are associated with a possible risk for QT prolongation and TdP when given in excessive doses or overdosage, concurrent use with phenothiazines should be approached with caution. Lower doses than usually prescribed for either the phenothiazine or the TCA may be required. Additive anticholinergic effects and sedation may also occur.
Promethazine: (Moderate) Monitor for unusual drowsiness or excess sedation and for signs or symptoms of anticholinergic toxicity during concomitant promethazine and tricyclic antidepressant use. Concomitant use may result in additive CNS depression or anticholinergic adverse effects. (Moderate) The use of promethazine, a phenothiazine antiemetic, with phenothiazine antipsychotics such as perphenazine should be avoided if possible. Promethazine is associated with QT prolongation and perphenazine is associated with a possible risk of QT prolongation. Concomitant administration would increase the risk of QT prolongation. Coadministration may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures.
Promethazine; Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with tricyclic antidepressants. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustments. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Monitor for unusual drowsiness or excess sedation and for signs or symptoms of anticholinergic toxicity during concomitant promethazine and tricyclic antidepressant use. Concomitant use may result in additive CNS depression or anticholinergic adverse effects. (Moderate) The use of promethazine, a phenothiazine antiemetic, with phenothiazine antipsychotics such as perphenazine should be avoided if possible. Promethazine is associated with QT prolongation and perphenazine is associated with a possible risk of QT prolongation. Concomitant administration would increase the risk of QT prolongation. Coadministration may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures.
Promethazine; Phenylephrine: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat. (Moderate) Monitor for unusual drowsiness or excess sedation and for signs or symptoms of anticholinergic toxicity during concomitant promethazine and tricyclic antidepressant use. Concomitant use may result in additive CNS depression or anticholinergic adverse effects. (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension. (Moderate) The use of promethazine, a phenothiazine antiemetic, with phenothiazine antipsychotics such as perphenazine should be avoided if possible. Promethazine is associated with QT prolongation and perphenazine is associated with a possible risk of QT prolongation. Concomitant administration would increase the risk of QT prolongation. Coadministration may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures.
Propafenone: (Minor) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering perphenazine with propafenone. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Propafenone, a Class IC antiarrhythmic, also increases the QT interval, but largely due to prolongation of the QRS interval. (Minor) Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). This pharmacologic property of the TCAs is of concern in patients with significant cardiac histories or treated with selected cardiac agents. Cases of long QT syndrome and torsade de pointes (TdP) tachycardia have been described with TCA use, but rarely occur when TCAs are used alone in normal prescribed doses and in the absence of other known risk factors for QT prolongation. Limited data are available regarding the safety of TCAs in combination with other QT-prolonging drugs. One study reported the common occurrence of overlapping prescriptions for 2 or more drugs with potential for QT-prolonging effects; antidepressants were involved in nearly 50% of the cases, but there are little data to document safety of the combined therapies. Certain cardiac drugs prolong repolarization at therapeutic or elevated plasma concentrations, and the addition of other drugs may increase the risk of QT prolongation and TdP via pharmacokinetic or pharmacodynamic interactions. TCAs should be used cautiously and with close monitoring in combination with cardiac drugs known to prolong the QT interval such as propafenone. The need to coadminister TCAs with propafenone should be done with a careful assessment of risk versus benefit; consider alternative therapy to the TCA.
Propantheline: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and propantheline use. Concomitant use may result in additive anticholinergic adverse effects.
Propofol: (Moderate) General anesthetics like propofol may produce additive CNS depression when used in patients taking tricyclic antidepressants.
Propranolol: (Moderate) Monitor for increased propranolol adverse reactions, including bradycardia and hypotension, during coadministration of perphenazine as concurrent use may increase propranolol exposure. Propranolol is a CYP2D6 substrate and perphenazine is weak CYP2D6 inhibitor.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines. (Moderate) Monitor for increased propranolol adverse reactions, including bradycardia and hypotension, during coadministration of perphenazine as concurrent use may increase propranolol exposure. Propranolol is a CYP2D6 substrate and perphenazine is weak CYP2D6 inhibitor.
Protriptyline: (Moderate) During coadministration of tricyclic antidepressants (TCAs) and perphenazine, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Phenothiazines have been reported to prolong the QT interval. Because tricyclic antidepressants are associated with a possible risk for QT prolongation and torsade de pointes when given in excessive doses or overdosage, concurrent use with phenothiazines should be approached with caution. Additive anticholinergic effects or sedation may also occur.
Pseudoephedrine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines.
Pseudoephedrine; Triprolidine: (Major) Avoid use of pseudoephedrine and tricyclic antidepressants as tricyclic antidepressants may potentiate the effects of catecholamines. (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as triprolidine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Pyridostigmine: (Moderate) Tricyclic antidepressants may antagonize some of the effects of parasympathomimetics, such as pyridostigmine, due to their anticholinergic activity.
Pyrilamine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as pyrilamine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Quazepam: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Quetiapine: (Moderate) Avoid coadministration of perphenazine and quetiapine due to the potential for additive effects on the QT interval. Both quetiapine and perphenazine may be associated with QT prolongation. Concurrent use may increase this risk. Coadministration of perphenazine with atypical agents (e.g., quetiapine) may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Quinidine: (Contraindicated) Quinidine administration is associated with QT prolongation and torsade de pointes (TdP). Quinidine inhibits CYP2D6 and has QT-prolonging actions. Quinidine is contraindicated with other drugs that prolong the QT interval and are metabolized by CYP2D6 as the effects on the QT interval may be increased during concurrent use of these agents. Tricyclic antidepressants are associated with a possible risk of QT prolongation, particularly at high dosages or in overdose, and are substrates for CYP2D6. (Contraindicated) Quinidine administration is associated with QT prolongation and torsades de pointes (TdP). Quinidine inhibits CYP2D6 and has QT-prolonging actions; quinidine is contraindicated with other drugs that prolong the QT interval and are metabolized by CYP2D6 as the effects on the QT interval may be increased during concurrent use of these agents. Drugs that prolong the QT and are substrates for CYP2D6 that are contraindicated with quinidine include perphenazine.
Quinine: (Major) Concurrent use of quinine and perphenazine should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Quinine has been associated with prolongation of the QT interval and rare cases of TdP. Perphenazine, a phenothiazine, is also associated with a possible risk for QT prolongation and/or TdP. In addition, concentrations of perphenazine may be increased with concomitant use of quinine. Perphenazine is a CYP2D6 substrate and quinine is a CYP2D6 inhibitor. (Major) Quinine has been associated with QT prolongation and rare cases of torsade de pointes (TdP). In addition, quinine is an inhibitor of CYP2D6. Avoid concurrent use of quinine with other drugs that prolong the QT and are CYP2D6 substrates. Coadministration may result in elevated plasma concentrations of the interacting drug, causing increased risk for adverse events, such as QT prolongation. Drugs that prolong the QT and are substrates for CYP2D6 include tricyclic antidepressants.
Quizartinib: (Minor) QT/QTc prolongation can occur with concomitant use of quizartinib and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Racepinephrine: (Major) Tricyclic antidepressants (TCAs) and maprotiline potentiate the effects of sympathomimetics including epinephrine. Enhanced cardiovascular effects including arrhythmias, severe hypertension, and/or hyperpyrexia are possible with combined use. Concomitant use of racepinephrine inhalations with these agents should be avoided when possible; use caution when concomitant use is not avoidable. If a patient is taking these antidepressants, then they should seek health care professional advice prior to the use of racepinephrine.
Ranolazine: (Major) Ranolazine is associated with dose- and plasma concentration-related increases in the QTc interval. The mean increase in QTc is about 6 milliseconds, measured at the tmax of the maximum dosage (1000 mg PO twice daily). However, in 5% of the population studied, increases in the QTc of at least 15 milliseconds have been reported. Although there are no studies examining the effects of ranolazine in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation. In addition, ranolazine and/or metabolites are moderate inhibitors of CYP2D6 isoenzymes. Based on drug interaction studies with metoprolol, a CYP2D6 substrate, ranolazine may theoretically increase plasma concentrations of CYP2D6 substrates and could lead to toxicity for drugs that have a narrow therapeutic range. The manufacturer for ranolazine suggests that lower doses of CYP2D6 substrates may be required during ranolazine treatment. Drugs that are CYP2D6 substrates that also have a possible risk for QT prolongation and TdP that should be used cautiously with ranolazine include tricyclic antidepressants. (Minor) Ranolazine is associated with dose- and plasma concentration-related increases in the QTc interval. The mean increase in QTc is about 6 milliseconds, measured at the tmax of the maximum dosage (1000 mg PO twice daily). However, in 5% of the population studied, increases in the QTc of at least 15 milliseconds have been reported. Although there are no studies examining the effects of ranolazine in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation. In addition, ranolazine is metabolized mainly by CYP3A and to a lesser extent by CYP2D6. Coadministration of ranolazine with inhibitors of CYP2D6 may result in increased plasma concentrations of ranolazine. The manufacturer specifies that no dosage adjustment of ranolazine is necessary when coadministering CYP2D6 inhibitors. Until further data are available, it is prudent to cautiously monitor the concurrent use of ranolazine and significant CYP2D6 inhibitors since potential increases in plasma concentrations of ranolazine may result in adverse effects. Drugs that are CYP2D6 inhibitors that also have a possible risk for QT prolongation and TdP that should be used cautiously with ranolazine include perphenazine.
Rasagiline: (Major) Due to opposing effects on central dopaminergic activity, phenothiazines and rasagiline may interfere with the effectiveness of each other. Avoid concurrent use if possible and consider an atypical antipsychotic to the phenothiazine, if appropriate. If coadministration cannot be avoided, monitor for changes in movement, moods, or behaviors. (Major) It is recommended to avoid concurrent use of rasagiline and antidepressants, including tricyclic antidepressants or related compounds (e.g., amoxapine, maprotiline). Severe CNS toxicity with hyperpyrexia has been reported during concurrent use of antidepressants and selective or non-selective MAOIs. During post-marketing use of rasagiline, non-fatal cases of serotonin syndrome have been reported during concomitant antidepressant administration. At least 2 weeks should elapse between stopping rasagiline treatment and beginning therapy with any tricyclic antidepressants or related compounds. Conversely, when discontinuing a tricyclic or related compound, it is advisable to wait the length of 4-5 half lives of the individual agent being discontinued prior to initiation with rasagiline.
Relugolix: (Minor) Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Androgen deprivation therapy (i.e., relugolix) may also prolong the QT/QTc interval.
Relugolix; Estradiol; Norethindrone acetate: (Minor) Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Androgen deprivation therapy (i.e., relugolix) may also prolong the QT/QTc interval. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Remifentanil: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome. Monitor for signs of urinary retention and reduced gastric motility. (Moderate) Phenothiazines can potentiate the CNS depressant action of other drugs such as opiate agonists. A dose reduction of one or both drugs may be warranted.
Remimazolam: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Ribociclib: (Minor) Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation, such as ribociclib.
Ribociclib; Letrozole: (Minor) Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation, such as ribociclib.
Rifabutin: (Major) Rifamycins can increase the metabolism or reduce the bioavailability of phenothiazines. Dosage increases of phenothiazines may be necessary following the addition of rifampin or another rifamycin.
Rifampin: (Major) Rifamycins can increase the metabolism or reduce the bioavailability of phenothiazines. Dosage increases of phenothiazines may be necessary following the addition of rifampin or another rifamycin. (Moderate) It may be necessary to adjust the dosage of tricyclic antidepressants if given concurrently with rifampin. Rifampin may induce the metabolism of tricyclic antidepressants; coadministration may result in decreased tricyclic antidepressant plasma concentrations.
Rifamycins: (Major) Rifamycins can increase the metabolism or reduce the bioavailability of phenothiazines. Dosage increases of phenothiazines may be necessary following the addition of rifampin or another rifamycin.
Rifapentine: (Major) Rifamycins can increase the metabolism or reduce the bioavailability of phenothiazines. Dosage increases of phenothiazines may be necessary following the addition of rifampin or another rifamycin. (Major) Rifapentine induces hepatic isoenzymes CYP3A4 and CYP2C8/9. Tricyclic antidepressants are metabolized by CYP3A4 and CYP2C8/9 and may require dosage adjustments when administered concurrently with rifapentine.
Rilpivirine: (Minor) Caution is advised when administering rilpivirine with perphenazine as concurrent use may increase the risk of QT prolongation. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Risperidone: (Moderate) Use risperidone and perphenazine together with caution due to the potential for additive QT prolongation and risk of torsade de pointes (TdP). In addition, coadministration may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Risperidone has been associated with a possible risk for QT prolongation and/or TdP, primarily in the overdose setting. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. (Moderate) Use risperidone and tricyclic antidepressants together with caution due to the potential for additive QT prolongation and risk of torsade de pointes (TdP). Additionally, coadministration may result in additive CNS effects. Risperidone has been associated with a possible risk for QT prolongation and/or TdP, primarily in the overdose setting. Tricyclic antidepressants share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations).
Ritonavir: (Moderate) Monitor for an increase in tricyclic antidepressant (TCA)-related adverse reactions if coadministration with ritonavir is necessary; a dose reduction of the TCA may be necessary. Concurrent use may increase exposure of the TCA. TCAs are CYP2D6 substrates and ritonavir is a CYP2D6 inhibitor.
Rivastigmine: (Moderate) Concurrent use of tricyclic antidepressants and rivastigmine should be avoided if possible. Rivastigmine inhibits acetylcholinesterase, the enzyme responsible for the degradation of acetylcholine, and improves the availability of acetylcholine. Tricyclic antidepressants with significant anticholinergic activity, such as amitriptyline, imipramine, doxepin, and clomipramine, are more likely to interfere with the therapeutic effect of rivastigmine than other tricyclics.
Rolapitant: (Major) Monitor for increased serum concentrations of amitriptyline and for amitriptyline-related adverse effects, such as nausea, dizziness, hypotension, syncope, and QT prolongation, if coadministered with rolapitant. Lower doses of either drug may be required with coadministration. When rolapitant is withdrawn from co-therapy, an increased dose of amitriptyline may be required. Amitriptyline is a CYP2D6 substrate, and rolapitant is a moderate CYP2D6 inhibitor; the inhibitory effect of rolapitant is expected to persist beyond 28 days for an unknown duration. Exposure to another CYP2D6 substrate, following a single dose of rolapitant increased about 3-fold on Days 8 and Day 22. The inhibition of CYP2D6 persisted on Day 28 with a 2.3-fold increase in the CYP2D6 substrate concentrations, the last time point measured. (Major) Monitor for perphenazine-related adverse effects, including QT prolongation, if coadministered with rolapitant. Increased exposure to perphenazine may occur. Perphenazine is a CYP2D6 substrate that is individually dose-titrated, and rolapitant is a moderate CYP2D6 inhibitor; the inhibitory effect of rolapitant is expected to persist beyond 28 days for an unknown duration. Exposure to another CYP2D6 substrate, following a single dose of rolapitant increased about 3-fold on Days 8 and Day 22. The inhibition of CYP2D6 persisted on Day 28 with a 2.3-fold increase in the CYP2D6 substrate concentrations, the last time point measured.
Romidepsin: (Minor) Consider monitoring electrolytes and ECGs at baseline and periodically during treatment if romidepsin is administered with perphenazine as concurrent use may increase the risk of QT prolongation. Romidepsin has been reported to prolong the QT interval. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Ropinirole: (Major) Due to opposing effects on central dopaminergic activity, phenothiazines and ropinirole may interfere with the effectiveness of each other. Avoid concurrent use if possible and consider an atypical antipsychotic as an alternative to the phenothiazine. If coadministration cannot be avoided, monitor for changes in movement, moods, or behaviors. (Moderate) Ropinirole may cause additive drowsiness when combined with tricyclic antidepressants.
Rosiglitazone: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Rotigotine: (Major) Due to opposing effects on central dopaminergic activity, phenothiazines and rotigotine may interfere with the effectiveness of each other. Avoid concurrent use if possible and consider an atypical antipsychotic as an alternative to the phenothiazine. If coadministration cannot be avoided, monitor for changes in movement, moods, or behaviors. In addition, coadministration may result in additive sedation.
Rucaparib: (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with rucaparib is necessary; a dose reduction of amitriptyline may be necessary. Concurrent use may increase the plasma concentrations of amitriptyline. Amitriptyline is a CYP2D6 substrate and rucaparib is a CYP2D6 inhibitor.
Rufinamide: (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. Monitor patients on anticonvulsants carefully when a TCA is used concurrently.
Safinamide: (Contraindicated) Safinamide is contraindicated for use with tricyclic antidepressants (TCAs) due to the risk of serotonin syndrome. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. At least 14 days should elapse between the discontinuation of safinamide and the initiation of a TCA. (Major) Due to opposing effects on central dopaminergic activity, phenothiazines and safinamide may interfere with the effectiveness of each other. Avoid concurrent use if possible and consider an atypical antipsychotic as an alternative to the phenothiazine if appropriate. If coadministration cannot be avoided, monitor for changes in movements, moods, or behaviors.
Saquinavir: (Contraindicated) Concurrent use of perphenazine and saquinavir is contraindicated due to an increased risk for QT prolongation and torsade de pointes (TdP). Saquinavir boosted with ritonavir increases the QT interval in a dose-dependent fashion, which may increase the risk for serious arrhythmias such as TdP. Perphenazine, a phenothiazine, is also associated with a possible risk for QT prolongation. (Minor) The concurrent use of saquinavir boosted with ritonavir and tricyclic antidepressants should be avoided if possible due to the potential for increased tricyclic antidepressant serum concentrations and the potential for QT prolongation. Saquinavir boosted with ritonavir is a potent inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of many tricyclic antidepressants. During coadministration, elevated serum concentrations of the tricyclic antidepressant can occur; thus, monitoring of therapeutic concentrations is recommended by the manufacturer of saquinavir. Additionally, saquinavir boosted with ritonavir causes dose-dependent QT and PR prolongation; if possible, avoid use with other drugs that may prolong the QT or PR interval, such as tricyclic antidepressants. If no alternative therapy is acceptable, perform a baseline ECG prior to initiation of concomitant therapy and follow recommended ECG monitoring.
Saxagliptin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Scopolamine: (Moderate) Monitor for unusual drowsiness or excess sedation and for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and scopolamine use. Concomitant use may result in additive CNS depression or anticholinergic adverse effects.
Secobarbital: (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered concurrently and they should be used cautiously with anxiolytic, sedative, and hypnotic type drugs, such as the barbiturates. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Phenothiazines can also lower the seizure threshold, which may be important in patients taking a barbiturate for the treatment of seizures. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of other CNS depressants than with the use of sedatives alone. Monitor for additive effects, unusual moods or behaviors, and warn about the potential effects to driving and other activities. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. In addition, pharmacokinetic interactions may occur. Barbiturates may increase TCA metabolism. Monitor patients during concurrent use.
Segesterone Acetate; Ethinyl Estradiol: (Minor) Oral contraceptives may also cause additive photosensitization with phenothiazines. (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Selegiline: (Contraindicated) Tricyclic antidepressants (TCAs) are contraindicated for use with selegiline, a selective monoamine oxidase type B inhibitor (MAO-B inhibitor). At least 14 days should elapse between discontinuation of selegiline and initiation of treatment with a TCA. After stopping treatment with a TCA, a time period equal to 4 to 5 half-lives of the TCA or any active metabolite should elapse before starting therapy with selegiline. Serotonin syndrome has occurred in patients receiving selective MAO-B inhibitors and such antidepressants simultaneously. (Moderate) Monitor for unusual drowsiness and sedation during coadministration of phenothiazines and selegiline due to the risk for additive CNS depression. It is also possible that dopamine antagonists, such as phenothiazines, could diminish the effectiveness of selegiline.
Selpercatinib: (Minor) Monitor ECGs more frequently for QT prolongation if coadministration of selpercatinib with perphenazine is necessary due to the risk of additive QT prolongation. Concentration-dependent QT prolongation has been observed with selpercatinib therapy. Perphenazine is associated with a possible risk for QT prolongation.
Serotonin-Receptor Agonists: (Moderate) Monitor for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant serotonin-receptor agonist and tricyclic antidepressant use. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for serotonin syndrome.
Sertraline: (Moderate) Monitor patients for signs and symptoms of serotonin syndrome during concomitant use of sertraline and amitriptyline, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. (Minor) Sertraline's FDA-approved labeling recommends avoiding concomitant use with drugs known to prolong the QTc interval, such as perphenazine; however, the risk of sertraline-induced QT prolongation is generally considered to be low in clinical practice. Its effect on QTc interval is minimal (typically less than 5 msec), and the drug has been used safely in patients with cardiac disease (e.g., recent myocardial infarction, unstable angina, chronic heart failure). If use together is necessary, use caution and monitor patients for QT prolongation. In addition, CYP2D6 substrates such as perphenazine may require lower doses during concurrent use with sertraline, due to CYP2D6 inhibition by sertraline and the potential for arrhythmias or other adverse reactions associated with antipsychotics such as extrapyramidal symptoms.
Sevoflurane: (Minor) Halogenated anesthetics should be used cautiously and with close monitoring with perphenazine. Halogenated anesthetics can prolong the QT interval. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. In addition, Phenothiazines can potentiate the CNS-depressant action of halogenated anesthetics. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects. (Minor) Tricyclic antidepressants (TCAs) should be used cautiously and with close monitoring with halogenated anesthetics. Halogenated anesthetics can prolong the QT interval. Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). In addition, general anesthetics may produce additive CNS depression when used in patients taking tricyclic antidepressants.
SGLT2 Inhibitors: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted.
Siponimod: (Minor) In general, do not initiate treatment with siponimod in patients receiving perphenazine due to the potential for QT prolongation. Consult a cardiologist regarding appropriate monitoring if siponimod use is required. Siponimod therapy prolonged the QT interval at recommended doses in a clinical study. Perphenazine is associated with a possible risk for QT prolongation.
Sitagliptin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Sodium Oxybate: (Major) Additive CNS depressant effects may be possible when sodium oxybate is used concurrently with phenothiazines.
Sodium picosulfate; Magnesium oxide; Anhydrous citric acid: (Minor) There have been reports of generalized tonic-clonic seizures with the use of bowel preparation products in patients with no prior history of seizures. While seizures have generally been associated with electrolyte abnormalities, such as hyponatremia, hypokalemia, hypocalcemia, and hypomagnesemia, and low serum osmolarity, patients receiving medications that lower the seizure threshold may be at an increased risk for experiencing seizures with bowel preparation products.
Sodium Stibogluconate: (Minor) QT/QTc prolongation can occur with concomitant use of sodium stibogluconate and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Solifenacin: (Moderate) Additive anticholinergic effects may be seen when drugs with antimuscarinic properties like solifenacin are used concomitantly with tricyclic antidepressants. Clinicians should note that additive antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the interacting agent. In addition, solifenacin is associated with dose-dependent QT prolongation, and torsades de pointes (TdP) has been reported with post-marketing use. Tricyclic antidepressants also are associated with QT prolongation and should be used cautiously and with close monitoring with solifenacin. (Moderate) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously with perphenazine include solifenacin. Additive anticholinergic effects may also be seen when phenothiazines are used concomitantly with any antimuscarinics. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Drowsiness or other additive CNS effects may also occur in some patients.
Sorafenib: (Minor) Use caution if coadministration of sorafenib with perphenazine is necessary due to the risk of additive QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Sorafenib is also associated with QTc prolongation.
Sotagliflozin: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should be closely monitored for worsening glycemic control when any of these antipsychotics is instituted.
Sotalol: (Minor) Use caution during concurrent administration of perphenazine and sotalol. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Sotalol administration is associated with QT prolongation and TdP. Proarrhythmic events should be anticipated after initiation of therapy and after each upward dosage adjustment.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
St. John's Wort, Hypericum perforatum: (Moderate) Monitor patients for the emergence of serotonin syndrome or for loss of tricyclic antidepressant (TCA) efficacy if concomitant use of TCAs and St. John's wort is warranted. The concomitant use of TCAs with other serotonergic drugs has resulted in serotonin syndrome. Also monitor patients for reduced efficacy of TCAs if used together. TCAs are metabolized by several hepatic isoenzymes, including CYP3A and CYP1A2 and St. John's wort is a strong inducer of these enzymes.
Stiripentol: (Moderate) Monitor for excessive sedation and somnolence during coadministration of stiripentol and perphenazine. CNS depressants can potentiate the effects of stiripentol. (Moderate) Monitor for excessive sedation and somnolence during coadministration of stiripentol and tricyclic antidepressants. CNS depressants can potentiate the effects of stiripentol.
Streptomycin: (Minor) When used for the treatment of nausea and vomiting, antiemetic phenothiazines may effectively mask symptoms that are associated with ototoxicity induced by the aminoglycosides.
Sufentanil: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation and somnolence. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Phenothiazines can potentiate the CNS depressant action of other drugs such as opiate agonists. A dose reduction of one or both drugs may be warranted.
Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Moderate) Monitor for loss of tricyclic antidepressant efficacy during concomitant sulfamethoxazole; trimethoprim use; adjust the tricyclic antidepressant dose if needed. The efficacy of tricyclic antidepressants can decrease during concomitant use. (Moderate) Monitor therapeutic response and adjust the tricyclic antidepressant dose, if needed, when use sulfamethoxazole; trimethoprim concomitantly. The efficacy of tricyclic antidepressants can decrease when administered with sulfamethoxazole; trimethoprim.
Sulfonylureas: (Moderate) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. Also, concomitant use may increase the risk for phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure.
Sunitinib: (Minor) Monitor for evidence of QT prolongation if sunitinib is administered with perphenazine. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Sunitinib can prolong the QT interval.
Suvorexant: (Moderate) The use of suvorexant with other CNS depressants (e.g., tricyclic antidepressants) increases the risk of CNS depression. Dosage adjustments of suvorexant and of concomitant CNS depressants may be necessary when administered together because of potentially additive effects. The use of suvorexant with other drugs to treat insomnia, such as tricyclic antidepressants used for insomnia, is not recommended.
Tacrolimus: (Minor) Consider ECG and electrolyte monitoring periodically during treatment if tacrolimus is administered with perphenazine. Tacrolimus may prolong the QT interval and cause torsade de pointes (TdP). Perphenazine is also associated with a possible risk for QT prolongation.
Tamoxifen: (Minor) Use caution if coadministration of perphenazine with tamoxifen is necessary. Tamoxifen has been reported to prolong the QT interval, usually in overdose or when used in high doses. Rare case reports of QT prolongation have been described when tamoxifen is used at lower doses. Perphenazine is also associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Tamsulosin: (Moderate) Use caution when administering tamsulosin with a moderate CYP2D6 inhibitor such as perphenazine. Tamsulosin is extensively metabolized by CYP2D6 hepatic enzymes. In clinical evaluation, concomitant treatment with a strong CYP2D6 inhibitor resulted in increases in tamsulosin exposure; interactions with moderate CYP2D6 inhibitors have not been evaluated. If concomitant use in necessary, monitor patient closely for increased side effects.
Tapentadol: (Major) Concomitant use of opioid agonists with tricyclic antidepressants may cause excessive sedation, somnolence, and increased risk of serotonin syndrome. The anticholinergic properties of tricyclic antidepressants may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Limit the use of opioid pain medications with tricyclic antidepressants to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression and serotonin syndrome. Monitor for signs of urinary retention and reduced gastric motility. (Moderate) Concomitant use of opioid agonists with perphenazine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with perphenazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
Tazarotene: (Moderate) The manufacturer states that tazarotene should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as phenothiazines, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Tedizolid: (Minor) Caution is warranted with the concurrent use of tedizolid and tricyclic antidepressants (TCAs) due to the theoretical risk of serotonin syndrome. Animal studies did not predict serontoneric effects with tedizolid. However, tedizolid is an antibiotic that is a weak reversible, non-selective MAO inhibitor and monoamine oxidase type A deaminates serotonin; therefore, coadministration theoretically could lead to serious reactions including serotonin syndrome or neuroleptic malignant syndrome-like reactions. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Telavancin: (Minor) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering telavancin with perphenazine. Telavancin has been associated with QT prolongation. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Temazepam: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Terbinafine: (Moderate) In vitro studies have shown systemic terbinafine to inhibit hepatic isoenzyme CYP2D6, and thus may inhibit the clearance of drugs metabolized by this isoenzyme, such as perphenazine. (Moderate) In vitro studies have shown systemic terbinafine to inhibit hepatic isoenzyme CYP2D6, and thus may inhibit the clearance of drugs metabolized by this isoenzyme, such as tricyclic antidepressants.
Tetrabenazine: (Major) Tetrabenazine causes a small increase in the corrected QT interval (QTc). The manufacturer recommends avoiding concurrent use of tetrabenazine with other drugs known to prolong QTc such as perphenazine. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. In addition, concurrent use of these medications and tetrabenazine should generally be avoided since the risk of adverse effects such as drowsiness, sedation, dizziness, orthostatic hypotension, neuroleptic malignant syndrome, or extrapyramidal symptoms may be increased. (Moderate) Tetrabenazine causes a small increase in the corrected QT interval (QTc). The manufacturer recommends avoiding concurrent use of tetrabenazine with other drugs known to prolong QTc such as tricyclic antidepressants. Tricyclic antidepressants (TCAs) share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). In addition, concurrent use of tricyclics and tetrabenazine should generally be avoided since the risk of adverse effects such as drowsiness, sedation, dizziness, or orthostatic hypotension may be increased.
Tetracaine: (Major) Use tetracaine and tricyclic antidepressants (TCAs) together with caution. If epinephrine is added to tetracaine, severe and prolonged hypertension may occur in a patient taking a TCA. Tricyclic antidepressants can increase the sensitivity to epinephrine by inhibiting epinephrine reuptake or metabolism. If concurrent therapy is necessary, carefully monitor the patient. Administration of a phenothiazine or a butyrophenone may reduce or reverse the pressor effect of epinephrine.
Thalidomide: (Major) Avoid the concomitant use of thalidomide with opiate agonists; antihistamines; antipsychotics; anxiolytics, sedatives, and hypnotics; and other central nervous system depressants due to the potential for additive sedative effects. (Major) Avoid the concomitant use of thalidomide with other central nervous system depressants such as tricyclic antidepressants (TCAs) due to the potential for additive sedative effects. Additionally, co-administration of thalidomide and other agents that slow cardiac conduction such as TCAs may increase the potential for additive bradycardia.
Thiazide diuretics: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Thiazolidinediones: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Thioridazine: (Contraindicated) Thioridazine is associated with a well-established risk of QT prolongation and torsade de pointes (TdP) and is contraindicated with other drugs that can prolong the QTc interval. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation and TdP. In addition, coadministration may increase the risk of drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures. (Contraindicated) Thioridazine is associated with a well-established risk of QT prolongation and torsades de pointes (TdP). Thioridazine is considered contraindicated for use along with agents that, when combined with a phenothiazine, may prolong the QT interval and increase the risk of TdP, and/or cause orthostatic hypotension, including tricyclic antidepressants (TCAs). In addition to additive effects on the cardiovascular system, additive anticholinergic effects and sedation may be observed.
Thiothixene: (Major) Caution is advisable during concurrent use of thiothixene and the phenothiazine antipsychotics. Thiothixene use has been associated with adverse events such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, and seizures. These effects may be potentiated during concurrent use of phenothiazines and other antipsychotics. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone. Administration of thiothixene with antipsychotics that are metabolized by CYP2D6, such as phenothiazines, should be approached with great caution. Thiothixene has been shown to inhibit CYP2D6 in vitro and serum concentrations of phenothiazines may increase. (Moderate) Concurrent use of thiothixene and tricyclic antidepressants (TCAs) may result in additive anticholinergic effects, sedation, and orthostatic hypotension. Additive effects may be more pronounced when thiothixene is used with tertiary TCAs including amitriptyline, clomipramine, doxepin, imipramine, and trimipramine versus secondary TCAs such as desipramine, nortriptyline, and protriptyline.
Thyroid hormones: (Minor) Thyroid hormones may increase receptor sensitivity and enhance the effects of tricyclic antidepressants. Although this drug combination appears to be safe, be aware of the possibility of exaggerated cardiovascular side effects such as arrhythmias and CNS stimulation.
Tiagabine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added. (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold.
Tobacco: (Major) Advise patients to avoid smoking tobacco while taking phenothiazines. Tobacco smoking may increase the clearance of phenothiazines, which may reduce their efficacy. (Major) Advise patients to avoid smoking tobacco while taking tricyclic antidepressants (TCAs). Tobacco smoking may increase the clearance of TCAs, which may reduce their efficacy.
Tobramycin: (Minor) When used for the treatment of nausea and vomiting, antiemetic phenothiazines may effectively mask symptoms that are associated with ototoxicity induced by the aminoglycosides.
Tolazamide: (Moderate) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. Also, concomitant use may increase the risk for phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure.
Tolbutamide: (Moderate) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted. Also, concomitant use may increase the risk for phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure.
Tolcapone: (Major) COMT inhibitors should be given cautiously with other agents that cause CNS depression, including tricyclic antidepressants, due to the possibility of additive sedation. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. Patients should be advised to avoid driving or other tasks requiring mental alertness until they know how the combination affects them.
Tolterodine: (Moderate) Tricyclic antidepressants (TCAs) should be used cautiously and with close monitoring with tolterodine. TCAs share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). Tolterodine is also associated with dose-dependent prolongation of the QT interval, especially in poor metabolizers of CYP2D6. In addition, additive anticholinergic effects may be seen when tricyclic antidepressants (TCAs) are used concomitantly with other antimuscarinics. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive CNS effects are also possible when tolterodine is combined with tricyclic antidepressants. (Moderate) Use caution if coadministration of tolterodine with perphenazine is necessary, and closely monitor for possible QT prolongation. Tolterodine has been associated with dose-dependent prolongation of the QT interval, especially in poor CYP2D6 metabolizers. Perphenazine is associated with a possible risk for QT prolongation and may theoretically increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Additive anticholinergic effects may also be seen when phenothiazines are used concomitantly with any antimuscarinics. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Drowsiness or other additive CNS effects may also occur in some patients.
Topiramate: (Moderate) Monitor for unusual drowsiness and excess sedation during coadministration of phenothiazines and topiramate due to the risk for additive CNS depression. (Moderate) Monitor for unusual drowsiness or excess sedation and for increased amitriptyline-related adverse events during concomitant topiramate use. Concomitant use resulted in an increase in amitriptyline exposure by 12% and may increase the risk for additive CNS depression.
Toremifene: (Minor) Use toremifene and perphenazine together with caution due to the risk of QT prolongation. The manufacturer of toremifene recommends avoiding toremifene with other drugs that prolong the QT, if possible. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Toremifene has also been shown to prolong the QTc interval in a dose- and concentration-related manner.
Tramadol: (Major) Concomitant use of tramadol with tricyclic antidepressants may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome, seizures, and anticholinergic effects. Limit the use of opioid pain medications to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. (Major) Seizures have been reported in patients receiving monotherapy with tramadol or antipsychotics at recommended doses. Concomitant use of tramadol and antipsychotics may increase the risk of seizures and result in other additive CNS effects. The manufacturer of tramadol cautions that serotonin syndrome may occur during use of drugs that impair the metabolism of tramadol such as CYP2D6 inhibitors, including antipsychotics like perphenazine. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. The analgesic activity of tramadol is due to the activity of both the parent drug and the O-desmethyltramadol metabolite (M1), and M1 formation is dependent on CYP2D6. Therefore, use of tramadol with a CYP2D6 inhibitor may in theory also decrease tramadol efficacy.
Tramadol; Acetaminophen: (Major) Concomitant use of tramadol with tricyclic antidepressants may cause respiratory depression, hypotension, profound sedation, and death and increase the risk for serotonin syndrome, seizures, and anticholinergic effects. Limit the use of opioid pain medications to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Monitor patients for serotonin syndrome if concomitant use is necessary, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Monitor for signs of urinary retention or reduced gastric motility during coadministration. The concomitant use of anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. (Major) Seizures have been reported in patients receiving monotherapy with tramadol or antipsychotics at recommended doses. Concomitant use of tramadol and antipsychotics may increase the risk of seizures and result in other additive CNS effects. The manufacturer of tramadol cautions that serotonin syndrome may occur during use of drugs that impair the metabolism of tramadol such as CYP2D6 inhibitors, including antipsychotics like perphenazine. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. The analgesic activity of tramadol is due to the activity of both the parent drug and the O-desmethyltramadol metabolite (M1), and M1 formation is dependent on CYP2D6. Therefore, use of tramadol with a CYP2D6 inhibitor may in theory also decrease tramadol efficacy.
Tranylcypromine: (Moderate) Concurrent use of MAOIs and phenothiazines may prolong or intensify the hypotensive, anticholinergic, or sedative effects of either agent. Due to the potential for additive CNS and cardiovascular effects, MAOIs and phenothiazines should be used together cautiously.
Trazodone: (Moderate) Monitor for unusual drowsiness and excess sedation and signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant trazodone and tricyclic antidepressant use. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for additive CNS depression and serotonin syndrome. (Minor) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, the risk of QT prolongation may be increased if coadministered with drugs with a possible risk for QT prolongation, such as trazodone. In addition, phenothiazines can potentiate the CNS-depressant action of other drugs such as trazodone. Clinicians should note that additive CNS effects (e.g., oversedation, respiratory depression, and hypotension) may occur if perphenazine is administered concomitantly with trazodone.
Tretinoin, ATRA: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as phenothiazines, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Tretinoin; Benzoyl Peroxide: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as phenothiazines, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Triazolam: (Major) Limit dosage and duration of benzodiazepines during concomitant phenothiazine use and monitor for unusual drowsiness and sedation due to the risk for additive CNS depression. (Major) Limit dosage and duration of benzodiazepines during concomitant use with tricyclic antidepressants, and monitor patients closely for respiratory depression and sedation. Additive CNS depression may occur.
Triclabendazole: (Minor) QT/QTc prolongation can occur with concomitant use of triclabendazole and perphenazine although the risk of developing torsade de pointes (TdP) is low. Additional steps to minimize the risk of QT/QTc interval prolongation and TdP, such as avoidance, electrolyte monitoring and repletion, and ECG monitoring, may be considered in patients with additional risk factors for TdP.
Tricyclic antidepressants: (Moderate) During coadministration of tricyclic antidepressants (TCAs) and perphenazine, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Phenothiazines have been reported to prolong the QT interval. Because tricyclic antidepressants are associated with a possible risk for QT prolongation and torsade de pointes w hen given in excessive doses or overdosage, concurrent use with phenothiazines should be approached with caution. Additive anticholinergic effects or sedation may also occur.
Trifluoperazine: (Moderate) Perphenazine and trifluoperazine are associated with a possible risk for QT prolongation and the risk of QT prolongation may theoretically be increased during combined use. Coadministration may increase the risk of drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures. (Moderate) Phenothiazines have been reported to prolong the QT interval. Because tricyclic antidepressants are associated with a possible risk for QT prolongation and TdP when given in excessive doses or overdosage, concurrent use with trifluoperazine should be approached with caution. If coadministration is considered necessary, and the patient has known risk factors for cardiac disease or arrhythmia, then close monitoring is essential. Additive anticholinergic effects or sedation may be seen when phenothiazines are used with tricyclic antidepressants.
Trihexyphenidyl: (Moderate) Monitor for signs or symptoms of anticholinergic toxicity during concomitant tricyclic antidepressant and trihexyphenidyl use. Concomitant use may result in additive anticholinergic adverse effects.
Trimethobenzamide: (Moderate) Trimethobenzamide has CNS depressant effects and may cause drowsiness. The concurrent use of trimethobenzamide with other medications that cause CNS depression such as the phenothiazines may potentiate drowsiness or other common side effects of either medication. In addition, the administration of trimethobenzamide to patients who have recently received CNS-depressive drugs has resulted in opisthotonus, seizures, coma, and extrapyramidal symptoms.
Trimethoprim: (Moderate) Monitor therapeutic response and adjust the tricyclic antidepressant dose, if needed, when use sulfamethoxazole; trimethoprim concomitantly. The efficacy of tricyclic antidepressants can decrease when administered with sulfamethoxazole; trimethoprim.
Trimipramine: (Moderate) During coadministration of tricyclic antidepressants (TCAs) and perphenazine, close monitoring is essential and dose reduction may become necessary to avoid toxicity. Phenothiazines have been reported to prolong the QT interval. Because tricyclic antidepressants are associated with a possible risk for QT prolongation and torsade de pointes when given in excessive doses or overdosage, concurrent use with phenothiazines should be approached with caution. Additive anticholinergic effects or sedation may also occur.
Triprolidine: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants are used concomitantly with sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. (Moderate) Additive anticholinergic and sedative effects may be seen when perphenazine is used with first generation antihistamines, such as triprolidine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
Triptorelin: (Major) Avoid coadministration of triptorelin with perphenazine due to the risk of reduced efficacy of triptorelin; QT prolongation may also occur. Perphenazine can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; triptorelin is a GnRH analog. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. Androgen deprivation therapy (i.e., triptorelin) may also prolong the QT/QTc interval.
Trospium: (Moderate) Additive anticholinergic and CNS effects may be seen when tricyclic antidepressants (TCAs) are used concomitantly with other antimuscarinics, such as trospium. Antimuscarinic effects might be seen on GI smooth muscle, bladder function, the eye, and temperature regulation. While CNS-related side effects such as drowsiness and blurred vision are not typically noted with trospium, they may occur in some patients. Monitor for anticholinergic effects such as such as confusion, constipation, dizziness, urinary retention, dry mouth and eyes, blurred vision, or rarely, fast, irregular heartbeat. (Moderate) Additive anticholinergic effects may be seen when phenothiazines are used concomitantly with other drugs with antimuscarinic activity, such as trospium.
Tryptophan, 5-Hydroxytryptophan: (Major) The concomitant use of tryptophan with tricyclic antidepressants should be avoided. Since tryptophan is converted to serotonin (5-hydroxytryptamine), the use of tryptophan in patients receiving drugs with serotonergic activity could lead to serotonin syndrome. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. If serotonin syndrome is suspected, the tricyclic antidepressant and concurrent serotonergic agents should be discontinued.
Valerian, Valeriana officinalis: (Moderate) Any substances that act on the CNS, including tricyclic antidepressants, may theoretically interact with valerian, Valeriana officinalis. The valerian derivative, dihydrovaltrate, binds at barbiturate binding sites; valerenic acid has been shown to inhibit enzyme-induced breakdown of GABA in the brain; the non-volatile monoterpenes (valepotriates) have sedative activity. Valerian is probably best avoided in combination with prescription antidepressants unless closely monitored by a health care professional.
Valproic Acid, Divalproex Sodium: (Moderate) The phenothiazines, when used concomitantly with various anticonvulsants, such as valproic acid, can increase CNS depression and also can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added; patients should be monitored for clinical evidence of loss of seizure control or the need for dosage adjustments of either the phenothiazine or the anticonvulsant. (Moderate) Tricyclic antidepressants, when used concomitantly with valproic acid, can increase CNS depression and may lower the seizure threshold. In addition, administration of a single oral 50 mg dose of amitriptyline to 15 normal volunteers who received valproate orally (500 mg twice daily) resulted in a 21% decrease in plasma clearance of amitriptyline and a 34% decrease in the net clearance of nortriptyline. Rare post-marketing reports of concurrent use of valproate and amitriptyline resulting in an increased amitriptyline level have been received; but, concurrent use has rarely been associated with toxicity. Monitoring of amitriptyline levels should be considered for patients taking valproate concomitantly with amitriptyline; a reduction in the dose of amitriptyline may be required.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant thiazide diuretic and phenothiazine use. Thiazide diuretics may potentiate the orthostatic hypotension that may occur with phenothiazines.
Vandetanib: (Minor) If concomitant use of vandetanib with perphenazine is necessary, monitor ECGs for QT prolongation and monitor electrolytes; correct hypocalcemia, hypomagnesemia, and/or hypomagnesemia prior to vandetanib administration. An interruption of vandetanib therapy or dose reduction may be necessary for QT prolongation. Vandetanib can prolong the QT interval in a concentration-dependent manner; TdP and sudden death have been reported in patients receiving vandetanib. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation.
Vardenafil: (Minor) Use vardenafil with caution in combination with perphenazine due to increased risk of QT prolongation. Both therapeutic and supratherapeutic doses of vardenafil produce an increase in QTc interval. Perphenazine is associated with a possible risk for QT prolongation.
Vasopressin, ADH: (Moderate) Monitor hemodynamics and adjust the dose of vasopressin as needed when used concomitantly with drugs suspected of causing syndrome of inappropriate antidiuretic hormone (SIADH), such as tricyclic antidepressants. Use together may increase the pressor and antidiuretic effects of vasopressin.
Vemurafenib: (Minor) Vemurafenib has been associated with QT prolongation. If vemurafenib and another drug, such as perphenazine, that is associated with a possible risk for QT prolongation must be coadministered, ECG monitoring is recommended; closely monitor the patient for QT interval prolongation. Also, perphenazine is a CYP2D6 substrate, while vemurafenib is a weak CYP2D6 inhibitor; therefore, increased concentrations of perphenazine may occur with concomitant use. Monitor patients for toxicity.
Venlafaxine: (Major) The combination of venlafaxine and tricyclic antidepressants may lead to serotonin syndrome and increased plasma concentrations of TCAs. Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering serotonin norepinephrine reuptake inhibitors (SNRIs) with other drugs that have serotonergic properties such as tricyclic antidepressants. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Venlafaxine is an inhibitor of CYP2D6, and many TCAs are metabolized by this isozyme. One case report documented a first-time seizure in a patient receiving venlafaxine and trimipramine at therapeutic dosages. (Moderate) Caution is advisable during concurrent use of perphenazine and serotonin norepinephrine reuptake inhibitors (SNRIs) since elevations in plasma concentrations of perphenazine may occur. Phenothiazines are CYP2D6 substrates, and SNRIs including duloxetine and venlafaxine are CYP2D6 inhibitors. In addition, both venlafaxine and perphenazine are associated with a possible risk of QT prolongation; therefore, additive cardiac effects are possible. Although clinical studies have shown that desvenlafaxine does not have a clinically relevant effect on CYP2D6 inhibition at doses of 100 mg/day, the manufacturer recommends that doses of medications that are primary substrates of CYP2D6 be reduced by one-half during co-administration of desvenlafaxine doses of 400 mg/day.
Verteporfin: (Moderate) Use caution if coadministration of verteporfin with phenothiazines is necessary due to the risk of increased photosensitivity. Verteporfin is a light-activated drug used in photodynamic therapy; all patients treated with verteporfin will be photosensitive. Concomitant use of other photosensitizing agents like phenothiazines may increase the risk of a photosensitivity reaction. (Moderate) Use caution if coadministration of verteporfin with tricyclic antidepressants is necessary due to the risk of increased photosensitivity. Verteporfin is a light-activated drug used in photodynamic therapy; all patients treated with verteporfin will be photosensitive. Concomitant use of other photosensitizing agents like antidepressants may increase the risk of a photosensitivity reaction.
Vigabatrin: (Major) Vigabatrin should not be used with phenothiazines, which is associated with serious ophthalmic effects (e.g., retinopathy or glaucoma) unless the benefit of treatment clearly outweighs the risks. (Moderate) Tricyclic antidepressants (TCAs), when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions.
Vilazodone: (Major) Vilazodone and Tricyclic antidepressants (TCAs) may cause additive CNS depression, including dizziness or drowsiness. These drugs can represent duplicate therapies and are not commonly prescribed together. In addition, because of the potential risk and severity of serotonin syndrome, caution should be observed. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Patients receiving vilazodone and a TCA should be monitored for the emergence of serotonin syndrome, particularly during treatment initiation and during dosage increases. Vilazodone and the TCA should be discontinued if serotonin syndrome occurs and supportive symptomatic treatment should be initiated.
Viloxazine: (Moderate) Monitor for an increase in perphenazine-related adverse effects if concomitant use of viloxazine is necessary. Concomitant use may increase perphenazine exposure; viloxazine is a weak CYP2D6 inhibitor and perphenazine is a CYP2D6 substrate. (Moderate) Monitor for an increase in tricyclic antidepressant (TCA)-related adverse reactions if coadministration with viloxazine is necessary; a dose reduction of TCA may be necessary. Concurrent use may increase the exposure of TCAs which are CYP2D6 substrates; viloxazine is a CYP2D6 inhibitor.
Voclosporin: (Minor) Concomitant use of voclosporin and perphenazine may increase the risk of QT prolongation. Consider interventions to minimize the risk of progression to torsades de pointes (TdP), such as ECG monitoring and correcting electrolyte abnormalities, particularly in patients with additional risk factors for TdP. Voclosporin has been associated with QT prolongation at supratherapeutic doses. Perphenazine is associated with a possible risk for QT prolongation.
Vonoprazan; Amoxicillin; Clarithromycin: (Minor) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering clarithromycin with perphenazine. Clarithromycin is associated with an established risk for QT prolongation and TdP, while perphenazine (a phenothiazine) is associated with a possible risk for QT prolongation.
Voriconazole: (Minor) Caution is advised when administering voriconazole with perphenazine as concurrent use may increase the risk of QT prolongation. Voriconazole has been associated with QT prolongation and rare cases of torsade de pointes. Perphenazine is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. (Minor) Due to the potential for QT prolongation and torsade de pointes (TdP), caution is advised when administering voriconazole with amitriptyline. Voriconazole has been associated with prolongation of the QT interval and rare cases of arrhythmias, including TdP. Tricyclic antidepressants (TCAs), such as amitriptyline, share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). In addition, voriconazole inhibits CYP3A4 and amitriptyline is partially metabolized by CYP3A4. Coadministration may result in elevated amitriptyline serum concentrations. Monitor for an increased response to amitriptyline if coadministered with voriconazole.
Vorinostat: (Minor) Vorinostat therapy is associated with a risk of QT prolongation. Drugs with a possible risk for QT prolongation and torsade de pointes (TdP) that should be used cautiously with vorinostat include perphenazine. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with other drugs with a possible risk for QT prolongation.
Vortioxetine: (Major) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering vortioxetine with other drugs that have serotonergic properties such as tricyclic antidepressants. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Patients receiving a tricyclic antidepressant in combination with vortioxetine should be monitored for the emergence of serotonin syndrome or other adverse effects. If serotonin syndrome is suspected, vortioxetine and concurrent serotonergic agents should be discontinued.
Zaleplon: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of tricyclic antidepressants and zaleplon due to the risk for additive CNS depression and next-day psychomotor impairment; dose adjustments may be necessary. Coadministration of single doses of a tricyclic antidepressant and zaleplon produced additive effects on decreased alertness and impaired psychomotor performance for 2 to 4 hours after administration. (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered with other CNS depressant drugs and they should be used cautiously with anxiolytic, sedative, and hypnotics. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of hypnotics and other CNS depressants than with use of a hypnotic alone.
Ziconotide: (Moderate) Due to potentially additive effects, dosage adjustments may be necessary if ziconotide is used with a drug that has CNS depressant effects such as phenothiazines. Coadministration of CNS depressants may increase drowsiness, dizziness, and confusion that are associated with ziconotide. (Moderate) Due to potentially additive effects, dosage adjustments may be necessary if ziconotide is used with a drug that has CNS depressant effects such as tricyclic antidepressants. Coadministration of CNS depressants may increase drowsiness, dizziness, and confusion that are associated with ziconotide.
Ziprasidone: (Major) Concomitant use of ziprasidone and perphenazine should be avoided if possible. Clinical trial data indicate that ziprasidone causes QT prolongation; there are postmarketing reports of torsade de pointes (TdP) in patients with multiple confounding factors. Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation and may theoretically increase the risk of QT prolongation if coadministered with other drugs that have a risk of QT prolongation. In addition, coadministration of ziprasidone with phenothiazines may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the coadministered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Zolpidem: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of tricyclic antidepressants and zolpidem due to the risk for additive CNS depression and next-day psychomotor impairment; dose adjustments may be necessary. Limit the dose of Intermezzo sublingual tablets to 1.75 mg/day. Coadministration of a tricyclic antidepressant and zolpidem resulted in a 20% decrease in the peak concentrations of the tricyclic antidepressant, but there was an additive effect of decreased alertness. (Moderate) Phenothiazines are CNS depressant drugs that may have cumulative effects when administered with other CNS depressant drugs and they should be used cautiously with anxiolytic, sedative, and hypnotics. Caution should be exercised during simultaneous use of these agents due to potential excessive CNS effects or additive hypotension. Additionally, sleep-related behaviors, such as sleep-driving, are more likely to occur during concurrent use of hypnotics and other CNS depressants than with use of a hypnotic alone.
Zonisamide: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added. Zonisamide may also cause decreased sweating (oligohidrosis), elevated body temperature (hyperthermia), heat intolerance, or heat stroke. The manufacturer recommends caution in using concurrent drug therapies that may predispose patients to heat-related disorders such as antipsychotic phenothiazines. Monitor patients for decreased efficacy of the anticonvulsant, heat intolerance, decreased sweating, or increased body temperature if zonisamide is used with any of these agents. (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold. Monitor patients on anticonvulsants carefully when a TCA is used concurrently.

How Supplied

Amitriptyline Hydrochloride, Perphenazine/Amitriptyline, Perphenazine/Etrafon/Etrafon-A/Triavil Oral Tab: 10-2mg, 10-4mg, 25-2mg, 25-4mg, 50-4mg

Maximum Dosage
Adults

The usual maximum is 16 mg/day PO perphenazine and 200 mg/day PO amitriptyline.

Geriatric

16 mg/day PO perphenazine and 200 mg/day PO amitriptyline.

Adolescents

Safety and efficacy have not been established.

Children

Safety and efficacy have not been established.

Mechanism Of Action

Perphenazine and amitriptyline are combined in a single formulation for antipsychotic effects (perphenazine) and antidepressant effects (amitriptyline). The additive effects of these two drugs may help to control psychoses characterized by mixtures of agitation or anxiety with symptoms of depression.
Perphenazine: Perphenazine blocks postsynaptic dopamine receptors in the mesolimbic system and increases dopamine turnover by blockade of the dopamine D2 somatodendritic autoreceptor. After about 12 weeks of chronic therapy, depolarization blockade of the dopamine tracts occur. The decrease in dopamine neurotransmission has been found to correlate with antipsychotic effects. This D2 blockade is also responsible for the strong extrapyramidal effects observed with perphenazine. Dopamine blockade in the chemoreceptor trigger zone accounts for the antiemetic effects. Perphenazine possesses moderate anticholinergic and alpha-adrenergic receptor blocking effects. Blockade of Alpha-1 adrenergic receptors produces sedation, muscle relaxation, and cardiovascular effects such as hypotension, reflex tachycardia, and may cause changes in ECG patterns.
Amitriptyline: Although the exact mechanism is not known, amitriptyline appears to result in decreased reuptake of both norepinephrine and serotonin (5-HT). Down-regulation of limbic beta-receptors occurs about 5 to 7 days following attainment of therapeutic concentrations. Amitriptyline is metabolized to nortriptyline, which accounts for most of the norepinephrine-reuptake inhibition. Nortriptyline possesses antidepressant activity, and the hydroxy metabolites are active as well. Amitriptyline and nortriptyline do not result in monoamine oxidase inhibition and do not affect dopamine reuptake. Amitriptyline possesses strong anticholinergic activity. Sedation, which may be a useful therapeutic effect, may occur. The seizure threshold may be lowered. Cardiac dysrhythmias can result from the direct quinidine-like action on cardiac function combined with anticholinergic activity and norepinephrine potentiation. Changes in sex hormone concentrations and blood glucose can result from amitriptyline's effect on the endocrine system.

Pharmacokinetics

Perphenazine; amitriptyline combination products are administered orally.
 
Perphenazine: Perphenazine is highly plasma protein-bound (91—99%), predominantly to alpha1-acid glycoprotein. The drug crosses the blood-brain barrier, placenta and is excreted into breast milk. Perphenazine undergoes metabolism in the gastric mucosa and on first pass through the liver. Sulfoxidation, hydroxylation, dealkylation and glucuronidation result in a number of metabolites. Metabolites have not been shown to have pharmacological activity. Glucuronide and unconjugated metabolites account for the majority of the drug found in the urine. The half-life of perphenazine averages 9 hours but metabolites and unchanged drug can be detected for several months after discontinuation of the drug. There can be some excretion via the biliary tract and feces.
Amitriptyline:Tricyclic antidepressants are highly protein-bound (predominantly to alpha1-acid glycoprotein) in plasma and tissues. Amitriptyline is demethylated in the liver to its primary metabolite nortriptyline, which is lipophilic and crosses the blood-brain barrier. Amitriptyline and nortriptyline are distributed into the lungs, heart, brain, and liver. Nortriptyline is known to cross the placenta and is also distributed into breast milk. Both nortriptyline and amitriptyline undergo enterohepatic circulation. Lipophilic metabolites, such as nortriptyline, are most likely to be reabsorbed and further metabolized. Amitriptyline undergoes hepatic metabolism via 3A4, 2C9 and 2D6 isozymes and one unidentified enzyme. Both amitriptyline and nortriptyline undergo CYP 2D6 hydroxylation. Half-life values range from 10—50 hours (average value = 27 hours) for amitriptyline and 20—100 hours (average value = 33 hours) for nortriptyline. Between 25—50% of a single dose is excreted in urine as active metabolites within 24 hours. A small amount of excretion occurs in feces.
 
Affected cytochrome P450 isoenzymes and drug transporters: CYP2D6, CYP3A4, CYP2C9
Similar to most other phenothiazines, CYP2D6 is involved in the metabolism of perphenazine. In addition, in vitro data suggest that perphenazine is a relatively potent inhibitor of CYP2D6 compared to other phenothiazines and has the potential to decrease the metabolism of CYP2D6 substrates. Amitriptyline is a substrate of isoenzymes 3A4, 2C9, 2D6, and at least one unidentified isoenzyme.

Oral Route

Perphenazine: Perphenazine is rapidly absorbed following oral administration, but there is considerable individual patient variation in peak plasma concentrations. On average, peak concentrations occur within 4—8 hours. Antipsychotic effects are gradual and peak effects may not occur for 6 weeks to 6 months.
Amitriptyline: Amitriptyline is well absorbed from the GI tract, but individual response can vary considerably. The full antidepressant effect can take several weeks, although adverse effects can occur after the first dose. Peak plasma concentrations are obtained in roughly 4 hours following oral administration with steady-state achieved within 4 days.

Pregnancy And Lactation
Pregnancy

No well-controlled data are available to determine the safety and efficacy of perphenazine or amitriptyline during human pregnancy; therefore, perphenazine; amitriptyline should be used only when the benefits to the mother outweigh the potential risks to the fetus. Phenothiazines and tricyclic antidepressants (TCAs) cross the placenta. An increased risk of major malformations has not been established. In one retrospective analysis, investigators analyzed medical birth registry data from 576 infants exposed to antipsychotics in utero. Adverse effects such as extrapyramidal symptoms, agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, and feeding disorder have been reported after delivery in neonates exposed to antipsychotics during the third trimester, including self-limited cases and some requiring intensive care unit stays and prolonged hospitalization. Neonatal complications including hypoglycemia, respiratory diagnoses, developmental delays, jaundice, and withdrawal have been reported after in utero exposure to TCAs. Neonatal withdrawal symptoms have included lethargy, cyanosis, tachypnea with respiratory acidosis, jitteriness, tremors, hypertonia, hypotonia, feeding difficulties, and seizures. Neonates should be carefully monitored. The knowledge about long-term neurobehavioral effects is limited and requires further investigation. According to the American Psychiatric Association treatment guidelines for schizophrenia, consider pregnancy testing in women of childbearing potential prior to initiation of an antipsychotic. The National Pregnancy Registry for Psychiatric Medications is dedicated to evaluating the safety of psychiatric medications that may be taken by women during pregnancy to treat a wide range of mood, anxiety, or psychiatric disorders. One goal of this registry is to determine the frequency of major malformations, such as heart defects, cleft lip, or neural tube defects, in babies exposed to various psychiatric drugs during pregnancy; therefore, patient registration is encouraged. For more information, contact the registry at https://womensmentalhealth.org/research/pregnancyregistry or by phone 1-866-961-2388. It is not known if antipsychotics, through their effect on prolactin, affect labor or obstetric delivery. However, if perphenazine; amitriptyline is administered during labor and delivery, it is prudent to monitor heart rate and blood pressure to detect possible maternal hypotension or other effects. In addition, there is consistent evidence of an increased likelihood of preterm delivery associated with conventional antipsychotic use during pregnancy, with one study reporting an odds ratio of 2.46 following exposure to a conventional antipsychotic.