Prevacid

Browse PDR's full list of drug information

Prevacid

Classes

Proton Pump Inhibitors/PPIs

Administration

For storage information, see specific product information within the How Supplied section.

Oral Administration

All oral dosage forms: Administer on an empty stomach, 30—60 minutes before meals. If given once daily, administer before the first meal of the day. Antacids were used concomitantly with lansoprazole in clinical trials.

Oral Solid Formulations

Delayed-release capsules: Swallow delayed-release capsules intact; do not chew or crush. For patients with difficulty swallowing, the capsules may be opened and the contents sprinkled on 1 tablespoonful (15 ml) of either applesauce, Ensure pudding, yogurt, cottage cheese, or strained pears. Do not crush the capsule contents into the food. Swallow immediately. Do not chew the medication. Do not prepare doses before the time of administration. Alternatively, the capsule may be emptied into a small volume of either apple juice, orange juice, or tomato juice (60 ml, approximately 2 ounces), mixed briefly and swallowed immediately. To ensure complete delivery of the dose, the glass should be rinsed with two or more volumes of juice and the contents swallowed immediately. The granules have been shown in vitro to remain intact when exposed to apple, cranberry, grape, orange, pineapple, prune, tomato, and V-8 vegetable juice and stored for up to 30 minutes.
Delayed-release disintegrating tablets: Place on the tongue and allow to disintegrate until the particles can be swallowed. The tablet will disintegrate rapidly (< 1 minute). Do not cut, chew, or crush the tablets. For administration via an oral syringe, the tablet can be dissolved in water (4 ml for 15 mg tablet, 10 ml for 30 mg tablet) and should be administered within 15 minutes.
Patients with a nasogastric tube: Prevacid capsules or disintegrating tablets can be administered via a nasogastric tube. Capsules: Open the capsule and mix the intact granules in 40 ml of apple juice and inject through the nasogastric tube into the stomach. After administration, flush the nasogastric tube with additional apple juice to clear the tube. Disintegrating tablets: Dissolve tablet in water (4 ml for 15 mg tablet, 10 ml for 30 mg tablet) and administer within 15 minutes. After administration, flush the tube to clear it.

Oral Liquid Formulations

Delayed-release oral suspension: Packets containing the enteric-coated granules (15 or 30 mg doses) are mixed with 2 tablespoonfuls (30 ml) of water to form a strawberry-flavored suspension intended for immediate administration after mixing. Do not use with other liquids or foods. Stir well and drink immediately. Do not crush or chew the granules. If any material remains after drinking, add more water, stir, and drink immediately.

Extemporaneous Compounding-Oral

Extemporaneous preparation of oral suspension ('simplified lansoprazole suspension' or SLS):
NOTE: The extemporaneous preparation of lansoprazole suspension is not approved by the FDA.
Empty the contents of one 30 mg lansoprazole capsule into an empty 15 ml syringe with needle in place (plunger removed). Then, replace the plunger and uncap the needle. Withdraw 10 ml of sodium bicarbonate 8.4% (1 mEq/ml) solution from a sodium bicarbonate vial. Gently shake syringe for 10 to 15 minutes, until the granules dissolve and a white suspension of lansoprazole is obtained.
Extended stability data are not available; it is recommended that SLS be used immediately following preparation.

Injectable Administration

Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit.

Intravenous Administration

Administer as an intravenous (IV) infusion. Do NOT administer by IV push or other parenteral routes.
 
Reconstitution of vial
Reconstitute each 30 mg vial with 5 ml of Sterile Water for Injection, USP only. NOTE: Lansoprazole IV must be reconstituted with 5 ml of Sterile Water for Injection, USP. Failure to reconstitute with Sterile Water may result in formation of precipitation/particulates.
Mix gently by swirling. The resulting solution will contain lansoprazole 6 mg/ml.
The reconstituted solution can be held for 1 hour when stored at 25 degrees C (77 degrees F) prior to further dilution.
Reconstituted vials and admixtures do not need to be protected from light. Do not freeze.
Preparation and Administration of IV infusion
Dilute the reconstituted vial in either 50 ml of 0.9% Sodium Chloride Injection (NS), Lactated Ringer's Injection (LR), or 5% Dextrose Injection (D5W). Store the admixture at 25 degrees C (77 degrees F). No refrigeration is required.
If reconstituted with NS or LR, solution must be administered within 24 hours. If reconstituted with D5W, solution must be administered within 12 hours.
Administer using the in-line filter provided. The filter MUST be used to remove precipitate.
Administered either through a dedicated line or a Y-site. A dedicated line is not required; however, the IV line should be flushed before and after administration. When administered via a Y-site, immediately stop use if a precipitation or discoloration occurs.
Infuse over 30 minutes.

Adverse Reactions
Severe

hematemesis / Delayed / 0-1.0
esophageal ulceration / Delayed / 0-1.0
GI bleeding / Delayed / 0-1.0
bezoar / Delayed / 0-1.0
seizures / Delayed / 0-1.0
bronchospasm / Rapid / 0-1.0
hearing loss / Delayed / 0-1.0
stroke / Early / 0-1.0
myocardial infarction / Delayed / 0-1.0
bradycardia / Rapid / 0-1.0
arrhythmia exacerbation / Early / 0-1.0
pancreatitis / Delayed / Incidence not known
hemolytic anemia / Delayed / Incidence not known
pancytopenia / Delayed / Incidence not known
aplastic anemia / Delayed / Incidence not known
agranulocytosis / Delayed / Incidence not known
thrombotic thrombocytopenic purpura (TTP) / Delayed / Incidence not known
acute generalized exanthematous pustulosis (AGEP) / Delayed / Incidence not known
Stevens-Johnson syndrome / Delayed / Incidence not known
erythema multiforme / Delayed / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
toxic epidermal necrolysis / Delayed / Incidence not known
Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) / Delayed / Incidence not known
interstitial nephritis / Delayed / Incidence not known
lupus-like symptoms / Delayed / Incidence not known
bone fractures / Delayed / Incidence not known
hyperkalemia / Delayed / Incidence not known
C. difficile-associated diarrhea / Delayed / Incidence not known

Moderate

constipation / Delayed / 1.0-5.0
dysphagia / Delayed / 0-1.0
melena / Delayed / 0-1.0
esophagitis / Delayed / 0-1.0
stomatitis / Delayed / 0-1.0
glossitis / Early / 0-1.0
gastritis / Delayed / 0-1.0
amblyopia / Delayed / 0-1.0
hypertonia / Delayed / 0-1.0
migraine / Early / 0-1.0
depression / Delayed / 0-1.0
hallucinations / Early / 0-1.0
hostility / Early / 0-1.0
confusion / Early / 0-1.0
amnesia / Delayed / 0-1.0
cholelithiasis / Delayed / 0-1.0
lymphadenopathy / Delayed / 0-1.0
hemolysis / Early / 0-1.0
anemia / Delayed / 0-1.0
contact dermatitis / Delayed / 0-1.0
colitis / Delayed / 0-1.0
hemoptysis / Delayed / 0-1.0
dyspnea / Early / 0-1.0
dysuria / Early / 0-1.0
impotence (erectile dysfunction) / Delayed / 0-1.0
urethral pain / Early / 0-1.0
urinary retention / Early / 0-1.0
synovitis / Delayed / 0-1.0
myasthenia / Delayed / 0-1.0
dehydration / Delayed / 0-1.0
hypoglycemia / Early / 0-1.0
goiter / Delayed / 0-1.0
blepharitis / Early / 0-1.0
diabetes mellitus / Delayed / 0-1.0
blurred vision / Early / 0-1.0
hypothyroidism / Delayed / 0-1.0
hyperglycemia / Delayed / 0-1.0
cataracts / Delayed / 0-1.0
candidiasis / Delayed / 0-1.0
gout / Delayed / 0-1.0
conjunctivitis / Delayed / 0-1.0
photophobia / Early / 0-1.0
chest pain (unspecified) / Early / 0-1.0
angina / Early / 0-1.0
sinus tachycardia / Rapid / 0-1.0
peripheral edema / Delayed / 0-1.0
hypertension / Early / 0-1.0
edema / Delayed / 0-1.0
hypotension / Rapid / 0-1.0
palpitations / Early / 0-1.0
vaginitis / Delayed / 0-1.0
elevated hepatic enzymes / Delayed / 0.4-0.4
hyperbilirubinemia / Delayed / Incidence not known
vitamin B12 deficiency / Delayed / Incidence not known
hyperuricemia / Delayed / Incidence not known
thrombocytopenia / Delayed / Incidence not known
neutropenia / Delayed / Incidence not known
pernicious anemia / Delayed / Incidence not known
leukopenia / Delayed / Incidence not known
eosinophilia / Delayed / Incidence not known
glycosuria / Early / Incidence not known
hematuria / Delayed / Incidence not known
crystalluria / Delayed / Incidence not known
proteinuria / Delayed / Incidence not known
nephrolithiasis / Delayed / Incidence not known
hypokalemia / Delayed / Incidence not known
hypomagnesemia / Delayed / Incidence not known
hyponatremia / Delayed / Incidence not known
hypocalcemia / Delayed / Incidence not known
hyperlipidemia / Delayed / Incidence not known
pseudomembranous colitis / Delayed / Incidence not known

Mild

diarrhea / Early / 0-7.4
headache / Early / 1.0-7.0
abdominal pain / Early / 0-2.1
nausea / Early / 1.3-1.3
dysgeusia / Early / 0-1.0
tenesmus / Delayed / 0-1.0
xerostomia / Early / 0-1.0
stool discoloration / Delayed / 0-1.0
halitosis / Early / 0-1.0
vomiting / Early / 0-1.0
flatulence / Early / 0-1.0
appetite stimulation / Delayed / 0-1.0
eructation / Early / 0-1.0
anorexia / Delayed / 0-1.0
dyspepsia / Early / 0-1.0
hypersalivation / Early / 0-1.0
vertigo / Early / 0-1.0
diplopia / Early / 0-1.0
drowsiness / Early / 0-1.0
libido decrease / Delayed / 0-1.0
paresthesias / Delayed / 0-1.0
hyperkinesis / Delayed / 0-1.0
dizziness / Early / 0-1.0
tremor / Early / 0-1.0
agitation / Early / 0-1.0
anxiety / Delayed / 0-1.0
hypoesthesia / Delayed / 0-1.0
libido increase / Delayed / 0-1.0
parosmia / Delayed / 0-1.0
emotional lability / Early / 0-1.0
insomnia / Early / 0-1.0
pruritus / Rapid / 0-1.0
xerosis / Delayed / 0-1.0
rash / Early / 0-1.0
alopecia / Delayed / 0-1.0
urticaria / Rapid / 0-1.0
maculopapular rash / Early / 0-1.0
acne vulgaris / Delayed / 0-1.0
diaphoresis / Early / 0-1.0
injection site reaction / Rapid / 1.0-1.0
rhinitis / Early / 0-1.0
cough / Delayed / 0-1.0
epistaxis / Delayed / 0-1.0
sinusitis / Delayed / 0-1.0
pharyngitis / Delayed / 0-1.0
hiccups / Early / 0-1.0
dysmenorrhea / Delayed / 0-1.0
increased urinary frequency / Early / 0-1.0
leukorrhea / Delayed / 0-1.0
menorrhagia / Delayed / 0-1.0
menstrual irregularity / Delayed / 0-1.0
polyuria / Early / 0-1.0
pelvic pain / Delayed / 0-1.0
arthralgia / Delayed / 0-1.0
myalgia / Early / 0-1.0
back pain / Delayed / 0-1.0
muscle cramps / Delayed / 0-1.0
musculoskeletal pain / Early / 0-1.0
gynecomastia / Delayed / 0-1.0
malaise / Early / 0-1.0
weight loss / Delayed / 0-1.0
xerophthalmia / Early / 0-1.0
chills / Rapid / 0-1.0
ocular pain / Early / 0-1.0
asthenia / Delayed / 0-1.0
fever / Early / 0-1.0
ptosis / Delayed / 0-1.0
weight gain / Delayed / 0-1.0
breast enlargement / Delayed / 0-1.0
mastalgia / Delayed / 0-1.0
tinnitus / Delayed / 0-1.0
syncope / Early / 0-1.0
gastric polyps / Delayed / Incidence not known
infection / Delayed / Incidence not known
urinary urgency / Early / Incidence not known
fatigue / Early / Incidence not known
hoarseness / Early / Incidence not known

Common Brand Names

Heartburn Relief, Prevacid, Prevacid Solutab

Dea Class

Rx, OTC

Description

Proton-pump inhibitor (PPI), gastric antisecretory agent
Used for treatment of duodenal and gastric ulcers, erosive esophagitis, GERD, heartburn, ZE syndrome, and NSAID-induced ulcers; combined with antibiotics for eradication of H. pylori
Associated with increased risk of Clostridium difficile-associated diarrhea

Dosage And Indications
For the short-term treatment of frequent dyspepsia or pyrosis (heartburn) that occurs 2 or more times per week. Oral dosage (capsules, disintegrating tablets†, or oral suspension†) Adults

15 mg PO once daily for up to 14 days. Full relief may take 1 to 4 days. Reassess if heartburn returns after 14-day treatment regimen. For non-prescription use (self care) patient should not take for more than 14 days or more often than every 4 months unless directed by a physician.

For the treatment of non-erosive gastroesophageal reflux disease (GERD). Oral dosage Adults

15 mg PO once daily for 4 to 8 weeks. May increase the dose up to 30 mg PO twice daily in persons with partial response to once daily therapy. Continue maintenance therapy at the lowest effective dose, including on demand or intermittent therapy, in persons who continue to have symptoms after discontinuation.

Children and Adolescents 12 years and older

15 mg PO once daily for up to 8 weeks.

Children 1 to 11 years weighing 30 kg or more

30 mg PO once daily for up to 12 weeks. Initial doses of 1.4 to 1.5 mg/kg/day PO have been reported in medical literature. The dose was increased (Max: 30 mg PO twice daily) in some children who were symptomatic after 2 weeks in trials ; however, the usual maximum adult dose for most indications is 30 mg/day.

Children 1 to 11 years weighing less than 30 kg

15 mg PO once daily for up to 12 weeks. Alternatively, 0.7 to 3 mg/kg/day PO. Initial doses of 1.4 to 1.5 mg/kg/day PO have also been suggested.

Infants older than 10 weeks†

Limited data are available; an initial dose of 1 to 2 mg/kg/day PO has been studied. In a phase I trial, 24 infants received lansoprazole 1 or 2 mg/kg/day for 5 days. It was well tolerated and a decrease in the frequency of gastroesophageal reflux symptoms was observed. In a retrospective analysis, the medical charts of 158 infants who received lansoprazole were reviewed. The median lansoprazole dose was 1.74 mg/kg/day PO. This study did not evaluate clinical outcomes or safety. In a double-blind, placebo-controlled trial of 162 infants (aged 1 to 12 months), lansoprazole was not found to be effective as defined by a more than 50% reduction in either the percent of feedings with a crying/fussing/irritability episode or the duration of a crying/fussing/irritability episode within 1 hour of feeding. Infants received lansoprazole suspension 1 to 1.5 mg/kg/day PO. A study of 30 infants (aged 3 to 7 months) compared 15 mg/day given once daily PO to 7.5 mg/dose given twice daily. The twice-daily regimen produced faster symptom response, but both regimens produced significant improvement in symptoms, compared to the control group. PPIs are not recommended as first-line therapy for symptomatic GERD in otherwise healthy infants (1 to 11 months); nonpharmacologic measures such as diet modification and positioning strategies are recommended. Reserve pharmacologic treatment for use in infants with disease diagnosed by endoscopy (e.g., esophageal erosion).

Infants 10 weeks and younger†

Limited data are available. A dose of 0.2 to 0.3 mg/kg/day PO given 30 minutes before a meal for 4 weeks was used in a randomized, placebo controlled trial (n = 52); however, no difference in symptoms was noted between lansoprazole and placebo. Doses up to 2 mg/kg/day PO have been reported. Pharmacokinetic data suggest that infants 10 weeks and younger achieve similar drug exposure after smaller doses compared to older infants due to slower clearance. In a phase I trial, 24 infants (older than 4 weeks) received lansoprazole 1 or 2 mg/kg/day PO for 5 days. It was well tolerated and a decrease in the frequency of gastroesophageal reflux symptoms was observed. PPIs are not recommended as first-line therapy for symptomatic GERD in otherwise healthy infants (1 to 11 months); nonpharmacologic measures such as diet modification and positioning strategies are recommended. Reserve pharmacologic treatment for use in infants with disease diagnosed by endoscopy (e.g., esophageal erosion).

Neonates†

Limited data are available describing use in neonates; dosing has not been established. A dose of 0.2 to 0.3 mg/kg/day PO for 4 weeks was used in patients 10 weeks and younger in a randomized, placebo controlled trial (n = 52); however, no difference in symptoms was noted between lansoprazole and placebo. Larger doses of 0.5 to 1.5 mg/kg/day PO given in 1 or 2 doses per day have been used in smaller, short-term case series (n = 10 to 24). In one study, 10 premature neonates (mean weight = 1.27 kg, mean postnatal age = 2 weeks) received lansoprazole 1.5 mg/kg/day PO divided into 2 doses. After 7 days of treatment, gastric pH increased but not above 2 in any patient. Based on pharmacokinetic data from 24 neonates and infants, it appears that infants 10 weeks and younger achieve similar drug exposure after smaller doses compared to older infants due to slower clearance.

For the long-term treatment of pathological hypersecretory conditions, including Zollinger-Ellison syndrome. Oral dosage (capsules, disintegrating tablets, or oral suspension) Adults

Initially, 60 mg PO once daily in the morning at least 30 minutes before a meal. Individualize dosage and continue treatment for as long as clinically indicated. Some patients with Z-E syndrome have been treated continuously for more than four years. Doses up to 90 mg PO twice daily have been used. If the total dosage is greater than 120 mg/day, give in divided doses.

For Helicobacter pylori (H. pylori) eradication. For Helicobacter pylori (H. pylori) eradication as part of clarithromycin-based triple therapy. Oral dosage Adults

30 or 60 mg PO twice daily in combination with clarithromycin and either amoxicillin or metronidazole for 14 days. The FDA-approved labeling suggests a 10 to 14 day treatment duration.

Children† and Adolescents†

1.5 to 2.5 mg/kg/day PO divided twice daily (Max: 30 mg/dose) in combination with clarithromycin and either amoxicillin or metronidazole for 14 days.

For Helicobacter pylori (H. pylori) eradication† as part of clarithromycin-based hybrid therapy. Oral dosage Adults

30 mg PO twice daily in combination with amoxicillin for 7 days, followed by 30 mg PO twice daily in combination with clarithromycin, amoxicillin, and a nitroimidazole for 7 days.

For Helicobacter pylori (H. pylori) eradication† as part of clarithromycin-based quadruple/concomitant therapy. Oral dosage Adults

30 mg PO twice daily in combination with clarithromycin, amoxicillin, and a nitroimidazole for 10 to 14 days.

Children and Adolescents

1.5 to 2.5 mg/kg/day PO divided twice daily (Max: 30 mg/dose) in combination with clarithromycin, amoxicillin, and metronidazole for 14 days.

For Helicobacter pylori (H. pylori) eradication as part of amoxicillin-based dual therapy. Oral dosage Adults

Not recommended by guidelines. The FDA-approved dosage is 30 mg PO 3 times daily in combination with amoxicillin for 14 days.

For Helicobacter pylori (H. pylori) eradication† as part of metronidazole-based triple therapy. Oral dosage Children and Adolescents

1.5 to 2.5 mg/kg/day PO divided twice daily (Max: 30 mg/dose) in combination with metronidazole and amoxicillin for 14 days.

For Helicobacter pylori (H. pylori) eradication† as part of clarithromycin-based sequential therapy. Oral dosage Adults

30 PO twice daily in combination with amoxicillin for 5 to 7 days, followed by 30 mg PO twice daily in combination with clarithromycin and a nitroimidazole for 5 to 7 days.

Children and Adolescents

1.5 to 2.5 mg/kg/day PO divided twice daily (Max: 30 mg/dose) in combination with amoxicillin for 5 days, followed by 1.5 to 2.5 mg/kg/day PO divided twice daily (Max: 30 mg/dose) in combination with clarithromycin and metronidazole for 5 days.

For Helicobacter pylori (H. pylori) eradication† as part of initial levofloxacin-based triple therapy. Oral dosage Adults

30 mg PO twice daily in combination with levofloxacin and amoxicillin for 10 to 14 days.

For Helicobacter pylori (H. pylori) eradication† as part of salvage levofloxacin-based triple therapy. Oral dosage Adults

30 mg PO twice daily in combination with levofloxacin and amoxicillin for 14 days.

For Helicobacter pylori (H. pylori) eradication† as part of initial bismuth-based quadruple therapy. Oral dosage Adults

30 mg PO twice daily in combination with bismuth subsalicylate, metronidazole, and tetracycline for 10 to 14 days.

Children and Adolescents 9 to 17 years

1.5 to 2.5 mg/kg/day PO divided twice daily (Max: 30 mg/dose) in combination with bismuth subsalicylate, metronidazole, and tetracycline for 14 days.

Children 1 to 8 years

1.5 to 2.5 mg/kg/day PO divided twice daily (Max: 30 mg/dose) in combination with bismuth subsalicylate, metronidazole, and amoxicillin for 14 days.

For Helicobacter pylori (H. pylori) eradication† as part of rifabutin-based triple therapy. Oral dosage Adults

30 mg PO twice daily in combination with rifabutin and amoxicillin for 10 days.

For Helicobacter pylori (H. pylori) eradication† as part of high-dose dual salvage therapy. Oral dosage Adults

30 or 60 mg PO 3 or 4 times daily in combination with high-dose amoxicillin for 14 days.

For Helicobacter pylori (H. pylori) eradication† as part of salvage bismuth-based quadruple therapy. Oral dosage Adults

30 mg PO twice daily in combination with bismuth subsalicylate, metronidazole, and tetracycline for 14 days.

Children and Adolescents 9 to 17 years

1.5 to 2.5 mg/kg/day PO divided twice daily (Max: 30 mg/dose) in combination with bismuth subsalicylate, metronidazole, and tetracycline for 14 days.

Children 1 to 8 years

1.5 to 2.5 mg/kg/day PO divided twice daily (Max: 30 mg/dose) in combination with bismuth subsalicylate, metronidazole, and amoxicillin for 14 days.

For Helicobacter pylori (H. pylori) eradication† as part of levofloxacin-based sequential therapy. Oral dosage Adults

30 or 60 mg PO twice daily in combination with amoxicillin for 5 to 7 days, followed by 30 or 60 mg PO twice daily in combination with levofloxacin and a nitroimidazole for 5 to 7 days.

For Helicobacter pylori (H. pylori) eradication† as part of levofloxacin-based quadruple therapy. Oral dosage Adults

60 mg PO once daily in combination with levofloxacin, nitazoxanide, and doxycycline for 7 to 10 days.

For Helicobacter pylori (H. pylori) eradication† as part of an alternative bismuth-based quadruple therapy. Oral dosage Adults

30 mg PO twice daily in combination with bismuth subsalicylate plus 2 antibiotics for 10 to 14 days. Antibiotic combinations may include 2 of the following: amoxicillin, clarithromycin, levofloxacin, metronidazole, and tetracycline.

For the treatment of active duodenal ulcer. Oral dosage Adults

15 mg PO once daily in the morning at least 30 minutes before a meal, for up to 4 weeks. For maintenance of remission, 15 mg PO once daily in the morning at least 30 minutes before a meal may be continued; controlled studies did not extend beyond 12 months.

Children and Adolescents 12 years and older

15 mg PO once daily in the morning at least 30 minutes before a meal, for up to 4 weeks. For maintenance of remission, 15 mg PO once daily in the morning at least 30 minutes before a meal may be continued; controlled studies did not extend beyond 12 months.

For the treatment of active benign gastric ulcer. Oral dosage Adults

30 mg PO once daily in the morning at least 30 minutes before a meal, for up to 8 weeks.

Children and Adolescents 12 years and older

30 mg PO once daily in the morning at least 30 minutes before a meal, for up to 8 weeks.

For the treatment of erosive esophagitis (erosive GERD). Oral dosage Adults

30 mg PO once daily 30 to 60 minutes before first meal of the day for up to 8 weeks. If healing is incomplete or recurs, consider an additional 8 weeks of treatment. For maintenance of healing, 15 mg PO once daily 30 to 60 minutes before first meal of the day. Periodically reassess need for continued PPI therapy; controlled studies did not extend beyond 12 months.

Children and Adolescents 12 years and older

30 mg PO once daily 30 to 60 minutes before first meal of the day for up to 8 weeks. If healing is incomplete or recurs, consider an additional 8 weeks of treatment. For maintenance of healing, 15 mg PO once daily 30 to 60 minutes before first meal of the day. Periodically reassess need for continued PPI therapy; controlled studies did not extend beyond 12 months.

Children 1 to 11 years weighing 30 kg or more

30 mg PO once daily in the morning at least 30 minutes before a meal, for up to 12 weeks. Initial doses of 1.4 to 1.5 mg/kg/day PO have been reported in medical literature. The dosage was increased (Max: 30 mg PO twice daily) in some children who were symptomatic after 2 weeks in trials ; however, the usual maximum adult dosage for most indications is 30 mg/day.

Children 1 to 11 years weighing less than 30 kg

15 mg PO once daily in the morning at least 30 minutes before a meal, for up to 12 weeks. Alternatively, a dose range of 0.7 to 3 mg/kg/day PO is recommended by the American Academy of Pediatrics (AAP). Initial doses of 1.4 to 1.5 mg/kg/day PO have also been suggested in medical literature.

Infants older than 10 weeks†

Limited data are available; an initial dose of 1 to 2 mg/kg/day PO given 30 minutes before a meal has been studied. In a phase I trial, 24 infants received lansoprazole 1 or 2 mg/kg/day for 5 days. It was well tolerated and a decrease in the frequency of gastroesophageal reflux symptoms was observed. In a retrospective analysis, the medical charts of 158 infants who received lansoprazole were reviewed. The median lansoprazole dose was 1.74 mg/kg/day PO. This study did not evaluate clinical outcomes or safety. In a double-blind, placebo-controlled trial of 162 infants (aged 1 to 12 months), lansoprazole was not found to be effective as defined by a more than 50% reduction in either the percent of feedings with a crying/fussing/irritability episode or the duration of a crying/fussing/irritability episode within 1 hour of feeding. Infants received lansoprazole suspension 1 to 1.5 mg/kg/day PO. A study of 30 infants (aged 3 to 7 months) compared 15 mg/day given once daily PO to 7.5 mg/dose given twice daily. The twice-daily regimen produced faster symptom response, but both regimens produced significant improvement in symptoms, compared to the control group. PPIs are not recommended as first-line therapy for symptomatic GERD in otherwise healthy infants (1 to 11 months); nonpharmacologic measures such as diet modification and positioning strategies are recommended. Reserve pharmacologic treatment for use in infants with disease diagnosed by endoscopy (e.g., esophageal erosion).

Infants 10 weeks and younger†

Limited data are available. A dose of 0.2 to 0.3 mg/kg/day PO given 30 minutes before a meal for 4 weeks was used in a randomized, placebo controlled trial (n = 52); however, no difference in symptoms was noted between lansoprazole and placebo. Doses up to 2 mg/kg/day PO have been reported. Pharmacokinetic data suggest that infants 10 weeks and younger achieve similar drug exposure after smaller doses compared to older infants due to slower clearance. In a phase I trial, 24 infants (older than 4 weeks) received lansoprazole 1 or 2 mg/kg/day PO for 5 days. It was well tolerated and a decrease in the frequency of gastroesophageal reflux symptoms was observed. PPIs are not recommended as first-line therapy for symptomatic GERD in otherwise healthy infants (1 to 11 months); nonpharmacologic measures such as diet modification and positioning strategies are recommended. Reserve pharmacologic treatment for use in infants with disease diagnosed by endoscopy (e.g., esophageal erosion).

Neonates†

Limited data are available describing use in neonates; dosing has not been established. A dose of 0.2 to 0.3 mg/kg/day PO given 30 minutes before a meal for 4 weeks was used in patients 10 weeks and younger in a randomized, placebo controlled trial (n = 52); however, no difference in symptoms was noted between lansoprazole and placebo. Larger doses of 0.5 to 1.5 mg/kg/day PO given in 1 or 2 doses per day have been used in smaller, short-term case series (n = 10 to 24). In one study, 10 premature neonates (mean weight = 1.27 kg, mean postnatal age = 2 weeks) received lansoprazole 1.5 mg/kg/day PO divided into 2 doses. After 7 days of treatment, gastric pH increased but not above 2 in any patient. Based on pharmacokinetic data from 24 neonates and infants, it appears that infants 10 weeks and younger achieve similar drug exposure after smaller doses compared to older infants due to slower clearance.

Intravenous infusion dosage Adults

30 mg IV once daily infused over 30 minutes for up to 7 days. Switch to oral therapy when feasible. Oral and IV lansoprazole equally suppress acid production.

For NSAID-induced ulcer prophylaxis or healing. To treat an active NSAID-associated gastric ulcer in patients who continue NSAID use. Oral dosage Adults

30 mg PO once daily in the morning at least 30 minutes before a meal for 8 weeks.

To reduce the risk of NSAID-associated ulcers in patients with a prior documented gastric ulcer and who require NSAID therapy. Oral dosage Adults

15 mg PO once daily in the morning at least 30 minutes before a meal. A higher dosage of 30 mg once daily has been evaluated for risk-reduction of NSAID-induced ulcers in a large multicenter trial; the larger dose yielded no additional benefit compared to the 15 mg dose.

For stress gastritis prophylaxis† in critically-ill patients. Nasogastric dosage (lansoprazole oral capsule) Adults

30 mg lansoprazole once daily via nasogastric tube. May open capsule and pour one-quarter of the granules into a nasogastric feeding syringe with the plunger removed. Slowly add water through the plunger end and push the water and granules through the tube by depressing the plunger. Repeat the process until all the granules are administered; flush tube with 15 mL of water to administer any residual granules. The effect of daily nasogastric lansoprazole on acid suppression was evaluated via continuos intragastric pH-metry for 3 days in 15 critically ill patients. After 2 days of lansoprazole therapy, the mean percentage of intragastric pH measurements of 4 or greater increased from 25% (+/- 13%) at baseline to 84% (+/- 14%) (p = 0.001).

Nasogastric dosage (lansoprazole oral disintegrating tablet) Adults

30 mg lansoprazole orally disintegrating tablet (ODT) once daily via nasogastric tube. Mix a 30 mg ODT in 10 mL of water, administer via nasogastric tube; flush tube with 10 mL of sterile water and clamp for 60 minutes. The effect of daily enteral lansoprazole was compared to that of IV lansoprazole in a study including 19 critically ill patients requiring stress ulcer prophylaxis. Enteral LODT maintained gastric pH measurements of 4 or greated for a duration longer than IV lansoprazole at both 24 hours (7.4 vs. 5.9 hr; p = 0.039) and 72 hours (10.4 vs. 8.9 hr; p = 0.046).

For the treatment of eosinophilic esophagitis (EoE)†. Oral dosage Adults

A dosage range of 15 to 30 mg PO twice daily is suggested; treat for up to 8 weeks and continue until the time of the follow-up endoscopy and biopsy. The guidelines support the use of PPI therapy for EoE based on reports of reductions in histologic features of disease from 42% in observational studies.

†Indicates off-label use

Dosing Considerations
Hepatic Impairment

Consider dosage reduction in patients with severe hepatic disease; specific recommendations are not available. In patients with chronic hepatic impairment, an increase in the mean AUC of up to 500% was observed at steady state compared to healthy subjects.

Renal Impairment

Specific guidelines for dosage adjustments in renal impairment are not available; it appears that no dosage adjustments are needed.
 
Intermittent hemodialysis
Lansoprazole is not removed by hemodialysis.

Drug Interactions

Acalabrutinib: (Major) Avoid the concomitant use of acalabrutinib capsules and proton pump inhibitors (PPI), such as lansoprazole; decreased acalabrutinib exposure may occur resulting in decreased acalabrutinib effectiveness. Consider onsider using the acalabrutinib tablet formlation or use an antacid or H2-blocker if acid suppression therapy is needed. Separate the administration of acalabrutinib capsules and antacids by at least 2 hours; give acalabrutinib capsules 2 hours before a H2-blocker. Acalabrutinib capsule solubility decreases with increasing pH values. The AUC of acalabrutinib was decreased by 43% when acalabrutinib capsules were coadministered with another PPI for 5 days.
Adagrasib: (Moderate) Monitor for lansoprazole-related adverse effects during coadministration with adagrasib. Concurrent use may increase lansoprazole exposure. Lansoprazole is a CYP3A substrate and adagrasib is a strong CYP3A inhibitor.
Albuterol; Budesonide: (Minor) Enteric-coated budesonide granules dissolve at a pH greater than 5.5. Concomitant use of budesonide oral capsules and drugs that increase gastric pH levels can cause the coating of the granules to dissolve prematurely, possibly affecting release properties and absorption of the drug in the duodenum.
Alendronate: (Moderate) Proton pump inhibitors (PPIs) are widely used and are frequently coadministered in users of oral bisphosphonates. A national register-based, open cohort study of 38,088 elderly patients suggests that those who use proton pump inhibitors in conjunction with alendronate have a dose-dependent loss of protection against hip fracture. While causality was not investigated, the dose-response relationship noted during the study suggested that PPIs may reduce oral alendronate efficacy, perhaps through an effect on absorption or other mechanism, and therefore PPIs may not be optimal agents to control gastrointestinal complaints. It is not yet clear if all bisphosphonates would exhibit a loss of efficacy when PPIs are coadministered, but the results suggest that the interaction may occur across the class.
Alendronate; Cholecalciferol: (Moderate) Proton pump inhibitors (PPIs) are widely used and are frequently coadministered in users of oral bisphosphonates. A national register-based, open cohort study of 38,088 elderly patients suggests that those who use proton pump inhibitors in conjunction with alendronate have a dose-dependent loss of protection against hip fracture. While causality was not investigated, the dose-response relationship noted during the study suggested that PPIs may reduce oral alendronate efficacy, perhaps through an effect on absorption or other mechanism, and therefore PPIs may not be optimal agents to control gastrointestinal complaints. It is not yet clear if all bisphosphonates would exhibit a loss of efficacy when PPIs are coadministered, but the results suggest that the interaction may occur across the class.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Amobarbital: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Amphetamine: (Moderate) Use amphetamine; dextroamphetamine and proton pump inhibitors concomitantly with caution. Gastrointestinal alkalinizing agents may increase exposure to amphetamine; dextroamphetamine and exacerbate its actions.
Amphetamine; Dextroamphetamine Salts: (Moderate) Use amphetamine; dextroamphetamine and proton pump inhibitors concomitantly with caution. Gastrointestinal alkalinizing agents may increase exposure to amphetamine; dextroamphetamine and exacerbate its actions.
Amphetamine; Dextroamphetamine: (Moderate) Use amphetamine; dextroamphetamine and proton pump inhibitors concomitantly with caution. Gastrointestinal alkalinizing agents may increase exposure to amphetamine; dextroamphetamine and exacerbate its actions.
Ampicillin: (Major) Proton pump inhibitors (PPIs) have long-lasting effects on the secretion of gastric acid. For enteral ampicillin, whose bioavailability is influenced by gastric pH, the concomitant administration of PPIs can exert a significant effect on ampicillin absorption.
Ampicillin; Sulbactam: (Major) Proton pump inhibitors (PPIs) have long-lasting effects on the secretion of gastric acid. For enteral ampicillin, whose bioavailability is influenced by gastric pH, the concomitant administration of PPIs can exert a significant effect on ampicillin absorption.
Apalutamide: (Major) Avoid coadministration of lansoprazole with apalutamide due to decreased lansoprazole exposure. Lansoprazole is a CYP3A4 and CYP2C19 substrate. Apalutamide is a strong CYP3A4 and CYP2C19 inducer.
Aprepitant, Fosaprepitant: (Minor) Use caution if lansoprazole and aprepitant, fosaprepitant are used concurrently and monitor for an increase in lansoprazole-related adverse effects for several days after administration of a multi-day aprepitant regimen. Lansoprazole is a CYP3A4 substrate. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of lansoprazole. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Atazanavir: (Contraindicated) Coadministration of proton pump inhibitors (PPIs) with atazanavir in treatment-experienced patients is contraindicated. PPIs can be used with atazanavir in treatment-naive patients under specific administration restrictions. In treatment-naive patients >= 40 kg, the PPI dose should not exceed the equivalent of omeprazole 20 mg/day, and the PPI must be administered 12 hours before atazanavir and ritonavir; use the dosage regimen of atazanavir 300 mg boosted with ritonavir 100 mg given once daily with food. While data are insufficient to recommend atazanavir dosing in children < 40 kg receiving concomitant PPIs, the same recommendations regarding timing and maximum doses of concomitant PPIs should be followed. Closely monitor patients for antiretroviral therapeutic failure and resistance development during treatment with a PPI. A randomized, open-label, multiple-dose drug interaction study of atazanavir (300 mg) with ritonavir (100 mg) coadministered with omeprazole 40 mg found a reduction in atazanavir AUC and Cmin of 76% and 78%, respectively. Additionally, after multiple doses of omeprazole (40 mg/day) and atazanavir (400 mg/day, 2 hours after omeprazole) without ritonavir, the AUC of atazanavir was decreased by 94%, Cmax by 96%, and Cmin by 95%.
Atazanavir; Cobicistat: (Contraindicated) Coadministration of proton pump inhibitors (PPIs) with atazanavir in treatment-experienced patients is contraindicated. PPIs can be used with atazanavir in treatment-naive patients under specific administration restrictions. In treatment-naive patients >= 40 kg, the PPI dose should not exceed the equivalent of omeprazole 20 mg/day, and the PPI must be administered 12 hours before atazanavir and ritonavir; use the dosage regimen of atazanavir 300 mg boosted with ritonavir 100 mg given once daily with food. While data are insufficient to recommend atazanavir dosing in children < 40 kg receiving concomitant PPIs, the same recommendations regarding timing and maximum doses of concomitant PPIs should be followed. Closely monitor patients for antiretroviral therapeutic failure and resistance development during treatment with a PPI. A randomized, open-label, multiple-dose drug interaction study of atazanavir (300 mg) with ritonavir (100 mg) coadministered with omeprazole 40 mg found a reduction in atazanavir AUC and Cmin of 76% and 78%, respectively. Additionally, after multiple doses of omeprazole (40 mg/day) and atazanavir (400 mg/day, 2 hours after omeprazole) without ritonavir, the AUC of atazanavir was decreased by 94%, Cmax by 96%, and Cmin by 95%. (Minor) Use caution when administering cobicistat and lansoprazole concurrently. Cobicistat is an inhibitor of CYP3A. Coadministration of cobicistat with CYP3A substrates, such as lansoprazole, can increase lansoprazole exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
Atenolol; Chlorthalidone: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Azilsartan; Chlorthalidone: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Barbiturates: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Belumosudil: (Major) Increase the dosage of belumosudil to 200 mg PO twice daily when coadministered with a proton pump inhibitor (PPI). Concomitant use may result in decreased belumosudil exposure and reduced belumosudil efficacy. Coadministration with other PPIs has decreased belumosudil exposure by 47% to 80% in healthy subjects.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Bisacodyl: (Minor) The concomitant use of bisacodyl oral tablets with drugs that raise gastric pH like proton pump inhibitors can cause the enteric coating of the bisacodyl tablets to dissolve prematurely, leading to possible gastric irritation or dyspepsia. When taking bisacodyl tablets, it is advisable to avoid PPIs within 1 hour before or after the bisacodyl dosage.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Bosutinib: (Major) Concomitant use of bosutinib and lansoprazole resulted in decreased plasma exposure of bosutinib. Consider using a short-acting antacid or H2 blocker if acid suppression therapy is needed; separate the administration of bosutinib and antacids or H2-blockers by more than 2 hours. Bosutinib displays pH-dependent aqueous solubility. In a cross-over trial in 24 healthy volunteers, the Cmax and AUC values of bosutinib were decreased by 46% and 26%, respectively, following a single oral dose of bosutinib 400 mg administered after multiple oral doses of lansoprazole 60 mg.
Budesonide: (Minor) Enteric-coated budesonide granules dissolve at a pH greater than 5.5. Concomitant use of budesonide oral capsules and drugs that increase gastric pH levels can cause the coating of the granules to dissolve prematurely, possibly affecting release properties and absorption of the drug in the duodenum.
Budesonide; Formoterol: (Minor) Enteric-coated budesonide granules dissolve at a pH greater than 5.5. Concomitant use of budesonide oral capsules and drugs that increase gastric pH levels can cause the coating of the granules to dissolve prematurely, possibly affecting release properties and absorption of the drug in the duodenum.
Budesonide; Glycopyrrolate; Formoterol: (Minor) Enteric-coated budesonide granules dissolve at a pH greater than 5.5. Concomitant use of budesonide oral capsules and drugs that increase gastric pH levels can cause the coating of the granules to dissolve prematurely, possibly affecting release properties and absorption of the drug in the duodenum.
Bumetanide: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and loop diuretic use due to risk for hypomagnesemia.
Butalbital; Acetaminophen: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Butalbital; Acetaminophen; Caffeine: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Cabotegravir; Rilpivirine: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Carbamazepine: (Moderate) Some manufacturers recommend avoiding the coadministration of hepatic cytochrome P-450 enzyme inducers and proton pump inhibitors (PPIs). Carbamazepine induces hepatic cytochrome P-450 enzymes, including those responsible for the metabolism of PPIs. A reduction in PPI concentrations may increase the risk of gastrointestinal (GI) adverse events such as GI bleeding. If carbamazepine and PPIs must be used together, monitor the patient closely for signs and symptoms of GI bleeding or other signs and symptoms of reduced PPI efficacy.
Cefpodoxime: (Moderate) Cefpodoxime proxetil requires a low gastric pH for dissolution; therefore, concurrent administration with medications that increase gastric pH, such as proton pump inhibitors (PPIs) may decrease the bioavailability of cefpodoxime. When cefpodoxime was administered with high doses of antacids and H2-blockers, peak plasma concentrations were reduced by 24% and 42% and the extent of absorption was reduced by 27% and 32%, respectively. The rate of absorption is not affected.
Cefuroxime: (Major) Avoid the concomitant use of proton pump inhibitors (PPIs) and cefuroxime. Drugs that reduce gastric acidity, such as PPIs, can interfere with the oral absorption of cefuroxime axetil and may result in reduced antibiotic efficacy.
Chlorothiazide: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Chlorthalidone: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Clobazam: (Moderate) A dosage reduction of clobazam may be necessary during co-administration of lansoprazole. Metabolism of N-desmethylclobazam, the active metabolite of clobazam, occurs primarily through CYP2C19 and lansoprazole is an inhibitor of CYP2C19 in vitro. Extrapolation from pharmacogenomic data indicates that concurrent use of clobazam with moderate or potent inhibitors of CYP2C19 may result in up to a 5-fold increase in exposure to N-desmethylclobazam. Adverse effects, such as sedation, lethargy, ataxia, or insomnia may be potentiated.
Cobicistat: (Minor) Use caution when administering cobicistat and lansoprazole concurrently. Cobicistat is an inhibitor of CYP3A. Coadministration of cobicistat with CYP3A substrates, such as lansoprazole, can increase lansoprazole exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
Cysteamine: (Major) Monitor white blood cell (WBC) cystine concentration closely when administering delayed-release cysteamine (Procysbi) with proton pump inhibitors (PPIs). Drugs that increase the gastric pH may cause the premature release of cysteamine from delayed-release capsules, leading to an increase in WBC cystine concentration. Concomitant administration of omeprazole 20 mg did not alter the pharmacokinetics of delayed-release cysteamine when administered with orange juice; however, the effect of omeprazole on the pharmacokinetics of delayed-release cysteamine when administered with water have not been studied.
Dacomitinib: (Major) Avoid coadministration of lansoprazole with dacomitinib due to decreased plasma concentrations of dacomitinib which may impact efficacy. Coadministration with another proton pump inhibitor decreased the dacomitinib Cmax and AUC by 51% and 39%, respectively.
Darunavir; Cobicistat: (Minor) Use caution when administering cobicistat and lansoprazole concurrently. Cobicistat is an inhibitor of CYP3A. Coadministration of cobicistat with CYP3A substrates, such as lansoprazole, can increase lansoprazole exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Minor) Use caution when administering cobicistat and lansoprazole concurrently. Cobicistat is an inhibitor of CYP3A. Coadministration of cobicistat with CYP3A substrates, such as lansoprazole, can increase lansoprazole exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
Dasatinib: (Major) Do not administer proton pump inhibitors with dasatinib due to the potential for decreased dasatinib exposure and reduced efficacy. Consider using an antacid if acid suppression therapy is needed. Administer the antacid at least 2 hours prior to or 2 hours after the dose of dasatinib. Concurrent use of an proton pump inhibitor reduced the mean Cmax and AUC of dasatinib by 42% and 43%, respectively.
Delavirdine: (Major) Because proton pump inhibitors (PPIs) increase gastric pH, decreased delavirdine absorption may occur. However, since these agents affect gastric pH for an extended period, separation of doses may not eliminate the interaction. Chronic use of PPIs with delavirdine is not recommended.
Dextroamphetamine: (Moderate) Use amphetamine; dextroamphetamine and proton pump inhibitors concomitantly with caution. Gastrointestinal alkalinizing agents may increase exposure to amphetamine; dextroamphetamine and exacerbate its actions.
Digoxin: (Moderate) Lansoprazole or other proton pump inhibitors (PPIs) can affect digoxin absorption due to their long-lasting effect on gastric acid secretion. Additionally, PPIs may slightly increase digoxin bioavailability. Patients with digoxin serum levels at the upper end of the therapeutic range may need to be monitored for potential increases in serum digoxin levels when a PPI is coadministered with digoxin. Finally, PPIs have been associated with hypomagnesemia. Becuase, low serum magnesium may lead to irregular heartbeat and increase the likelihood of serious cardiac arrhythmias, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and digoxin concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Dolutegravir; Rilpivirine: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine.
Dronedarone: (Moderate) Dronedarone is metabolized by and is an inhibitor of CYP3A. Lansoprazole is a substrate for CYP3A4. The concomitant administration of dronedarone and CYP3A substrates may result in increased exposure of the substrate and should, therefore, be undertaken with caution.
Elagolix: (Minor) Coadministration of elagolix with lansoprazole may theoretically increase plasma concentrations of lansoprazole. Monitor for lansoprazole-related adverse effects during coadministration with elagolix. Elagolix is a weak CYP2C19 inhibitor and lansoprazole is a CYP2C19 sensitive substrate.
Elagolix; Estradiol; Norethindrone acetate: (Minor) Coadministration of elagolix with lansoprazole may theoretically increase plasma concentrations of lansoprazole. Monitor for lansoprazole-related adverse effects during coadministration with elagolix. Elagolix is a weak CYP2C19 inhibitor and lansoprazole is a CYP2C19 sensitive substrate.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Minor) Use caution when administering cobicistat and lansoprazole concurrently. Cobicistat is an inhibitor of CYP3A. Coadministration of cobicistat with CYP3A substrates, such as lansoprazole, can increase lansoprazole exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Minor) Use caution when administering cobicistat and lansoprazole concurrently. Cobicistat is an inhibitor of CYP3A. Coadministration of cobicistat with CYP3A substrates, such as lansoprazole, can increase lansoprazole exposure leading to increased or prolonged therapeutic effects and adverse events; however, the clinical impact of this has not yet been determined.
Emtricitabine; Rilpivirine; Tenofovir alafenamide: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine.
Emtricitabine; Rilpivirine; Tenofovir Disoproxil Fumarate: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Encorafenib: (Major) Avoid concomitant use of lansoprazole and encorafenib as lansoprazole exposure may be decreased, reducing its efficacy. Lansoprazole is a CYP3A substrate and encorafenib is a strong CYP3A inducer.
Enzalutamide: (Major) Avoid coadministration of enzalutamide with lansoprazole due to decreased plasma concentrations of lansoprazole. Lansoprazole is a CYP2C19 and CYP3A4 substrate. Enzalutamide is a moderate CYP2C19 inducer and a strong CYP3A4 inducer.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Erlotinib: (Major) Avoid coadministration of erlotinib with lansoprazole if possible due to decreases in erlotinib plasma concentrations. Erlotinib solubility is pH dependent and solubility decreases as pH increases. Coadministration of erlotinib with medications that increase the pH of the upper gastrointestinal tract may decrease the absorption of erlotinib. Separation of doses may not eliminate the interaction since proton pump inhibitors affect the pH of the upper GI tract for an extended period of time. Increasing the dose of erlotinib is also not likely to compensate for the loss of exposure. Coadministration with another proton pump inhibitor decreased erlotinib exposure by 46% and the erlotinib Cmax by 61%.
Eslicarbazepine: (Moderate) Eslicarbazepine may inhibit the CYP2C19-mediated and induce the CYP3A4-mediated metabolism of lansoprazole; both enzymes are involved in the metabolism of proton pump inhibitors (PPIs). It is unclear that the theoretical interaction would result in a net increase or decrease in PPI action. Some manufacturers recommend avoiding the coadministration of hepatic cytochrome P-450 enzyme inducers and PPIs. If eslicarbazepine and PPI must be used together, monitor the patient closely for signs and symptoms of GI bleeding or other signs and symptoms of reduced PPI efficacy, or for signs of PPI side effects.
Ethacrynic Acid: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and loop diuretic use due to risk for hypomagnesemia.
Fenofibric Acid: (Minor) At therapeutic concentrations, fenofibric acid is a weak inhibitor of CYP2C19. Concomitant use of fenofibric acid with CYP2C19 substrates, such as lansoprazole, has not been formally studied. Fenofibric acid may theoretically increase plasma concentrations of CYP2C19 substrates and could lead to toxicity for drugs that have a narrow therapeutic range. Monitor the therapeutic effect of lansoprazole during coadministration with fenofibric acid.
Fexinidazole: (Moderate) Monitor for lansoprazole-related adverse effects during coadministration with fexinidazole. Concurrent use may increase lansoprazole exposure. Lansoprazole is a CYP2C19 substrate and fexinidazole is a weak CYP2C19 inhibitor.
Fluvoxamine: (Moderate) Fluvoxamine is a major inhibitor of the cytochrome P450 enzyme 2C19. Several proton pump inhibitors, including lansoprazole, are primary substrates of the CYP2C19 enzyme. Reduced metabolism and resulting elevated plasma concentrations of these PPIs may occur if combined with fluvoxamine. Monitor patients for PPI toxicity, such as headache or GI distress if these drugs are combined.
Food: (Major) Administer on an empty stomach, 30 to 60 minutes before meals. If given once daily, administer before the first meal of the day. Antacids were used concomitantly with lansoprazole in clinical trials.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Fosphenytoin: (Major) Avoid concomitant use of lansoprazole and fosphenytoin as lansoprazole exposure may be decreased, reducing its efficacy. Lansoprazole is a CYP3A substrate and fosphenytoin is a strong CYP3A inducer.
Furosemide: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and loop diuretic use due to risk for hypomagnesemia.
Gefitinib: (Major) Avoid coadministration of lansoprazole with gefitinib if possible due to decreased exposure to gefitinib, which may lead to reduced efficacy. If concomitant use is unavoidable, take gefitinib 12 hours after the last dose or 12 hours before the next dose of lansoprazole. Gefitinib exposure is affected by gastric pH. Coadministration with another drug to maintain gastric pH above 5 decreased gefitinib exposure by 47%.
Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Idelalisib: (Major) Avoid concomitant use of idelalisib, a strong CYP3A inhibitor, with lansoprazole, a CYP3A substrate, as lansoprazole toxicities may be significantly increased. The AUC of a sensitive CYP3A substrate was increased 5.4-fold when coadministered with idelalisib.
Infigratinib: (Major) Avoid coadministration of infigratinib and gastric acid-reducing agents, such as proton pump inhibitors (PPIs). Coadministration may decrease infigratinib exposure resulting in decreased efficacy. If necessary, infigratinib may be administered two hours before or ten hours after an H2-receptor antagonist or two hours before or after a locally acting antacid. Coadministration with a PPI decreased infigratinib exposure by 45%.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Iron: (Moderate) The bioavailability of oral iron salts is influenced by gastric pH, and the concomitant administration of proton pump inhibitors can decrease iron absorption. The non-heme ferric form of iron needs an acidic intragastric pH to be reduced to ferrous and to be absorbed. Iron salts and polysaccharide-iron complex provide non-heme iron. Proton pump inhibitors have long-lasting effects on the secretion of gastric acid and thus, increase the pH of the stomach. The increase in intragastric pH can interfere with the absorption of iron salts.
Isavuconazonium: (Moderate) Concomitant use of isavuconazonium with lansoprazole may result in increased serum concentrations of lansoprazole. Lansoprazole is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is an inhibitor of CYP3A4. Caution and close monitoring are advised if these drugs are used together.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) Avoid coadministration of lansoprazole with rifampin due to the risk of decreased lansoprazole plasma concentrations which may decrease efficacy. Lansoprazole is a CYP3A4 substrate and rifampin is a strong CYP3A4 inducer.
Isoniazid, INH; Rifampin: (Major) Avoid coadministration of lansoprazole with rifampin due to the risk of decreased lansoprazole plasma concentrations which may decrease efficacy. Lansoprazole is a CYP3A4 substrate and rifampin is a strong CYP3A4 inducer.
Itraconazole: (Moderate) When administering proton pump inhibitors with the 100 mg itraconazole capsule and 200 mg itraconazole tablet formulations, systemic exposure to itraconazole is decreased. Conversely, exposure to itraconazole is increased when proton pump inhibitors are administered with the 65 mg itraconazole capsule. Administer proton pump inhibitors at least 2 hours before or 2 hours after the 100 mg capsule or 200 mg tablet. Monitor for increased itraconazole-related adverse effects if proton pump inhibitors are administered with itraconazole 65 mg capsules.
Ketoconazole: (Major) Avoid use of proton pump inhibitors (PPIs) with ketoconazole. Medications that increase gastric pH may impair oral ketoconazole absorption.
Ledipasvir; Sofosbuvir: (Major) Solubility of ledipasvir decreases as gastric pH increases; thus, coadministration of ledipasvir; sofosbuvir with proton pump inhibitors (PPIs) may result in lower ledipasvir plasma concentrations. Ledipasvir can be administered with PPIs if given simultaneously under fasting conditions. The PPI dose should not exceed a dose that is comparable to omeprazole 20 mg/day.
Letermovir: (Moderate) Plasma concentrations of lansoprazole could be increased when administered concurrently with letermovir. The magnitude of this interaction may be increased in patients who are also receiving cyclosporine. If these drugs are given together, monitor for lansoprazole-related adverse events. Lansoprazole is a CYP3A4 substrate. Letermovir is a moderate inhibitor of CYP3A4. When given with cyclosporine, the combined effect of letermovir and cyclosporine on CYP3A4 substrates may be similar to a strong CYP3A4 inhibitor.
Levoketoconazole: (Major) Avoid use of proton pump inhibitors (PPIs) with ketoconazole. Medications that increase gastric pH may impair oral ketoconazole absorption.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Lonafarnib: (Moderate) Monitor for lansoprazole-related adverse effects during coadministration with lonafarnib. Concurrent use may increase lansoprazole exposure. Lansoprazole is a CYP3A4 substrate and lonafarnib is a strong CYP3A4 inhibitor.
Loop diuretics: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and loop diuretic use due to risk for hypomagnesemia.
Lopinavir; Ritonavir: (Moderate) Increased exposure to lansoprazole may occur during concurrent administration of ritonavir. Although dosage adjustment of lansoprazole is not normally required, dosage reduction may be considered in patients receiving higher lansoprazole doses (e.g., those with Zollinger-Ellison syndrome). Ritonavir is a strong CYP3A4 inhibitor. Lansoprazole is a CYP2C19 and CYP3A4 substrate. Coadministration of a dual CYP2C19/strong CYP3A4 inhibitor increased the lansoprazole AUC by an average of 4-times.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Luliconazole: (Minor) Theoretically, luliconazole may increase the side effects of lansoprazole, which is a CYP2C19 and a CYP3A4 substrate. Monitor patients for adverse effects of lansoprazole, such as electroylyte changes. In vitro, therapeutic doses of luliconazole inhibit the activity of CYP2C19 amd CYP3A4 and small systemic concentrations may be noted with topical application, particularly when applied to patients with moderate to severe tinea cruris. No in vivo drug interaction trials were conducted prior to the approval of luliconazole.
Lumacaftor; Ivacaftor: (Moderate) Lumacaftor; ivacaftor may reduce the efficacy of lansoprazole by substantially decreasing its systemic exposure. If used together, a lansoprazole dosage adjustment may be necessary to obtain the desired therapeutic effect. Lansoprazole is a CYP3A4 and CYP2C19 substrate. Lumacaftor; ivacaftor is a strong inducer of CYP3A; in vitro data suggests is also has the potential to induce CYP2C19.
Lumacaftor; Ivacaftor: (Moderate) Lumacaftor; ivacaftor may reduce the efficacy of lansoprazole by substantially decreasing its systemic exposure. If used together, a lansoprazole dosage adjustment may be necessary to obtain the desired therapeutic effect. Lansoprazole is a CYP3A4 and CYP2C19 substrate. Lumacaftor; ivacaftor is a strong inducer of CYP3A; in vitro data suggests is also has the potential to induce CYP2C19.
Mefloquine: (Moderate) Proton pump inhibitors (PPIs) may increase plasma concentrations of mefloquine. Patients on chronic mefloquine therapy might be at increased risk of adverse reactions, especially patients with a neurological or psychiatric history.
Methohexital: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Methotrexate: (Major) Avoid concomitant use of methotrexate and proton pump inhibitors (PPIs) due to the risk of severe methotrexate-related adverse reactions. If concomitant use is unavoidable, closely monitor for adverse reactions; consider temporary withdrawal of the PPI in some patients receiving high-dose methotrexate. Concomitant use of methotrexate, primarily at high dose, and PPIs may increase and prolong serum concentrations of methotrexate, possibly leading to methotrexate toxicities.
Metolazone: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Mitotane: (Moderate) Use caution if mitotane and lansoprazole are used concomitantly, and monitor for decreased efficacy of lansoprazole and a possible change in dosage requirements. Mitotane is a strong CYP3A4 inducer and lansoprazole is a CYP3A4 substrate; coadministration may result in decreased plasma concentrations of lansoprazole.
Mycophenolate: (Moderate) Concomitant administration of proton pump inhibitors (PPIs) with mycophenolate mofetil (Cellcept) appears to reduce MPA exposure AUC-12h (25.8 +/- 6.4 mg/L x h with omeprazole vs. 33.3 +/- 11.5 mg//L x h without omeprazole); however, the interaction does not appear to exist with mycophenolate sodium delayed-release tablets (Myfortic). Reduced systemic exposure of MPA after mycophenolate mofetil in the presence of a PPI appears to be due to impaired absorption of mycophenolate mofetil which may occur because of incomplete dissolution of mycophenolate mofetil in the stomach at elevated pH. The clinical significance of reduced MPA exposure is unknown; however patients should be evaluated periodically if mycophenolate mofetil is administered with a PPI. Of note, MPA concentrations appear to be reduced in the initial hours after mycophenolate mofetil receipt but increase later in the dosing interval because of enterohepatic recirculation. A second peak in the concentration-time profile of MPA is observed 612 hours after dosing due to enterohepatic recirculation. For example, the 12-hour plasma concentrations of MPA were similar among patients who received mycophenolate mofetil with or without omeprazole. The biphasic plasma concentration-time course of MPA due to extensive enterohepatic circulation hampers therapeutic drug monitoring of MPA. Drug exposure as measured by AUC-12h is the best estimator for the clinical effectiveness of mycophenolate, but measurement of full-dose interval MPA AUC-12h requires collection of multiple samples over a 12-hour period; MPA predose concentrations correlate poorly with MPA AUC-12h. The interaction does not appear to exist with Mycophenolate sodium (Myfortic).
Nelfinavir: (Major) Use of proton pump inhibitors with nelfinavir is not recommended. Coadministration may result in decreased nelfinavir exposure, subtherapeutic antiretroviral activity, and possibility resistant HIV mutations. In one study, concurrent use of nelfinavir with omeprazole resulted in decreased nelfinavir AUC, Cmax, and Cmin by 36%, 37%, and 39%, respectively.
Neratinib: (Major) Avoid concomitant use of neratinib with proton pump inhibitors due to decreased absorption and systemic exposure of neratinib; the solubility of neratinib decreases with increasing pH of the GI tract. Concomitant use with lansoprazole decreased neratinib exposure by 65%.
Nilotinib: (Major) Avoid the concomitant use of nilotinib and proton pump inhibitors (PPIs), as PPIs may cause a reduction in nilotinib bioavailability. Nilotinib displays pH-dependent solubility with decreased solubility at a higher pH. PPIs inhibit gastric acid secretion and elevate the gastric pH. Administration of a single 400-mg nilotinib dose with multiple oral doses of esomeprazole 40 mg/day reduced the nilotinib AUC by 34% in a study in healthy subjects. Increasing the dose is unlikely to compensate for the loss of nilotinib exposure; additionally, separating the administration of these agents may not eliminate the interaction as PPIs affect the pH of the upper GI tract for an extended period of time.
Nirmatrelvir; Ritonavir: (Moderate) Increased exposure to lansoprazole may occur during concurrent administration of ritonavir. Although dosage adjustment of lansoprazole is not normally required, dosage reduction may be considered in patients receiving higher lansoprazole doses (e.g., those with Zollinger-Ellison syndrome). Ritonavir is a strong CYP3A4 inhibitor. Lansoprazole is a CYP2C19 and CYP3A4 substrate. Coadministration of a dual CYP2C19/strong CYP3A4 inhibitor increased the lansoprazole AUC by an average of 4-times.
Nirogacestat: (Major) Avoid concomitant use of nirogacestat and proton pump inhibitors. Concurrent use may impair nirogacestat absorption which may decrease nirogacestat exposure and reduce its efficacy. Antacids may be used with nirogacestat but administration should be separated by at least 2 hours.
Octreotide: (Moderate) Coadministration of oral octreotide with proton pump inhibitors (PPIs) may require increased doses of octreotide. Coadministration of oral octreotide with drugs that alter the pH of the upper GI tract, including PPIs, may alter the absorption of octreotide and lead to a reduction in bioavailability. This interaction has been documented with esomeprazole and can occur with the other PPIs.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Oritavancin: (Moderate) Coadministration of oritavancin and lansoprazole may result in increases or decreases in lansoprazole exposure and may increase side effects or decrease efficacy of lansoprazole. Lansoprazole is metabolized by CYP3A4 and CYP2C19. Oritavancin weakly induces CYP3A4, while weakly inhibiting CYP2C19. If these drugs are administered concurrently, monitor the patient for signs of toxicity or lack of efficacy.
Pazopanib: (Major) Pazopanib displays pH-dependent solubility with decreased solubility at a higher pH. The concomitant use of pazopanib and proton pump inhibitors (PPIs) that elevate the gastric pH may reduce the bioavailability of pazopanib. In a study of patients with solid tumors, the AUC and Cmax of pazopanib were decreased by approximately 40% when coadministered with esomeprazole. If a drug is needed to raise the gastric pH, consider use of a short-acting antacid; separate antacid and pazopanib dosing by several hours.
Pentobarbital: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Pexidartinib: (Major) Avoid coadministration of pexidartinib with lansoprazole as concurrent use may decrease pexidartinib exposure which may result in decreased therapeutic response. As an alternative to a proton pump inhibitor (PPI), use locally-acting antacids or H2-receptor antagonists. Coadministration of another PPI decreased pexidartinib exposure by 50%.
Phenobarbital: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Phenytoin: (Major) Avoid concomitant use of lansoprazole and phenytoin as lansoprazole exposure may be decreased, reducing its efficacy. Lansoprazole is a CYP3A substrate and phenytoin is a strong CYP3A inducer.
Polyethylene Glycol; Electrolytes; Bisacodyl: (Minor) The concomitant use of bisacodyl oral tablets with drugs that raise gastric pH like proton pump inhibitors can cause the enteric coating of the bisacodyl tablets to dissolve prematurely, leading to possible gastric irritation or dyspepsia. When taking bisacodyl tablets, it is advisable to avoid PPIs within 1 hour before or after the bisacodyl dosage.
Posaconazole: (Major) The concurrent use of posaconazole immediate-release oral suspension and proton pump inhibitors (PPIs) should be avoided, if possible, due to the potential for decreased posaconazole efficacy. If used in combination, closely monitor for breakthrough fungal infections. PPIs increase gastric pH, resulting in decreased posaconazole absorption and lower posaconazole plasma concentrations. When a single 400 mg dose of posaconazole oral suspension was administered with esomeprazole (40 mg PO daily), the mean reductions in Cmax were 46% and the mean reductions in AUC were 32% for posaconazole. The pharmacokinetics of posaconazole delayed-release tablets and oral suspension are not significantly affected by PPIs. Additionally, posaconazole is a potent inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of many PPIs (dexlansoprazole, esomeprazole, lansoprazole, omeprazole, pantoprazole, and rabeprazole). Coadministration may result in increased plasma concentration of the PPIs.
Primidone: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Rifampin: (Major) Avoid coadministration of lansoprazole with rifampin due to the risk of decreased lansoprazole plasma concentrations which may decrease efficacy. Lansoprazole is a CYP3A4 substrate and rifampin is a strong CYP3A4 inducer.
Rifapentine: (Major) Avoid concomitant use of lansoprazole and rifapentine as lansoprazole exposure may be decreased, reducing its efficacy. Lansoprazole is a CYP3A4 substrate and rifapentine is a strong CYP3A4 inducer.
Rilpivirine: (Contraindicated) Concurrent use of proton pump inhibitors and rilpivirine is contraindicated; when these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Proton pump inhibitors inhibit secretion of gastric acid by proton pumps thereby increasing the gastric pH; for optimal absorption, rilpivirine requires an acidic environment. Coadministration of a proton pump inhibitor and rilpivirine may result in decreased rilpivirine absorption/serum concentrations, which could cause impaired virologic response to rilpivirine.
Risedronate: (Moderate) Use of proton pump inhibitors (PPIs) with delayed-release risedronate tablets (Atelvia) is not recommended. Co-administration of drugs that raise stomach pH increases risedronate bioavailability due to faster release of the drug from the enteric coated tablet. This interaction does not apply to risedronate immediate-release tablets. In healthy subjects who received esomeprazole for 6 days, the Cmax and AUC of a single dose of risedronate delayed-release tablets (Atelvia) increased by 60% and 22%, respectively. PPIsare widely used and are frequently coadministered in users of oral bisphosphonates. A national register-based, open cohort study of 38,088 elderly patients suggests that those who use PPIs in conjunction with alendronate have a dose-dependent loss of protection against hip fracture. While causality was not investigated, the dose-response relationship noted during the study suggested that PPIs may reduce oral alendronate efficacy, perhaps through an effect on absorption or other mechanism, and therefore PPIs may not be optimal agents to control gastrointestinal complaints. Study results suggest that the interaction may occur across the class; however, other interactions have not been confirmed and data suggest that fracture protection is not diminished when risedronate is used with PPIs. A post hoc analysis of patients who took risedronate 5 mg daily during placebo-controlled clinical trials determined that risedronate significantly reduced the risk of new vertebral fractures compared to placebo, regardless of concomitant PPI use. PPI users (n = 240) and PPI non-users (n = 2489) experienced fracture risk reductions of 57% (p = 0.009) and 38% (p < 0.001), respectively.
Ritonavir: (Moderate) Increased exposure to lansoprazole may occur during concurrent administration of ritonavir. Although dosage adjustment of lansoprazole is not normally required, dosage reduction may be considered in patients receiving higher lansoprazole doses (e.g., those with Zollinger-Ellison syndrome). Ritonavir is a strong CYP3A4 inhibitor. Lansoprazole is a CYP2C19 and CYP3A4 substrate. Coadministration of a dual CYP2C19/strong CYP3A4 inhibitor increased the lansoprazole AUC by an average of 4-times.
Saquinavir: (Major) Coadministration with omeprazole results in significantly increased saquinavir concentrations. A similar interaction is expected with all proton pump inhibitors (PPIs). If saquinavir must be administered with PPIs, the patient should be closely monitored for saquinavir-related toxicities, including gastrointestinal symptoms, increased triglycerides, and deep vein thrombosis (DVT). Coadministration with omeprazole results in significantly increased saquinavir concentrations. In a small study, 18 healthy individuals received saquinavir 1000 mg (with ritonavir 100 mg) twice daily for 15 days; on days 11 through 15 omeprazole 40 mg was given once daily, which resulted in an 82% increase in the saquinavir AUC. A similar interaction is expected with all PPIs.
Secobarbital: (Moderate) Monitor for decreased efficacy of lansoprazole if concomitant use of lansoprazole and barbiturates is necessary. Lansoprazole is metabolized by CYP2C19 and CYP3A4. Barbiturates induce CYP3A4 and CYP2C19. Drugs known to induce CYP3A4 and CYP2C19 may lead to decreased lansoprazole plasma concentrations.
Secretin: (Major) Discontinue use of proton pump inhibitors before administering secretin. Patients who are receiving proton pump inhibitors at the time of stimulation testing may be hyperresponsive to secretin stimulation, falsely suggesting gastrinoma. The time required for serum gastrin concentrations to return to baseline after discontinuation of a proton pump inhibitor is specific to the individual drug.
Selpercatinib: (Major) Avoid coadministration of selpercatinib with lansoprazole due to the risk of decreased selpercatinib exposure which may reduce its efficacy. If concomitant use is unavoidable, selpercatinib must be taken with food. Coadministration under fasting conditions with another proton pump inhibitor decreased selpercatinib exposure by 69%; however, concomitant use increased selpercatinib exposure by 2% or less when it was administered with a meal.
Sofosbuvir; Velpatasvir: (Major) Coadministration of proton pump inhibitors (PPIs) with velpatasvir is not recommended. If it is considered medically necessary to coadminister, velpatasvir should be administered with food and taken 4 hours before omeprazole 20 mg. Other PPIs have not been studied; however, it may be prudent to separate the administration of the other PPIs similarly. Velpatasvir solubility decreases as pH increases; therefore, drugs that increase gastric pH are expected to decrease the concentrations of velpatasvir, potentially resulting in loss of antiviral efficacy.
Sofosbuvir; Velpatasvir; Voxilaprevir: (Major) Coadministration of proton pump inhibitors (PPIs) with velpatasvir is not recommended. If it is considered medically necessary to coadminister, velpatasvir should be administered with food and taken 4 hours before omeprazole 20 mg. Other PPIs have not been studied; however, it may be prudent to separate the administration of the other PPIs similarly. Velpatasvir solubility decreases as pH increases; therefore, drugs that increase gastric pH are expected to decrease the concentrations of velpatasvir, potentially resulting in loss of antiviral efficacy.
Solifenacin: (Moderate) The American College of Gastroenterology states that the effectiveness of proton pump inhibitors (PPIs) may be theoretically decreased if given with other antisecretory agents (e.g., anticholinergics). Proton pump inhibitors (PPIs) inhibit only actively secreting H+-pumps.
Sotorasib: (Major) Avoid coadministration of sotorasib and gastric acid-reducing agents, such as proton pump inhibitors (PPIs). Coadministration may decrease sotorasib exposure resulting in decreased efficacy. If necessary, sotorasib may be administered 4 hours before or 10 hours after a locally acting antacid. Coadministration with a PPI decreased sotorasib exposure by 57% under fed conditions and 42% under fasted conditions.
Sparsentan: (Major) Avoid concurrent use of sparsentan and proton pump inhibitors (PPIs) due to the risk for decreased sparsentan exposure which may reduce its efficacy. Medications that affect gastric pH may reduce sparsentan absorption.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
St. John's Wort, Hypericum perforatum: (Major) Avoid concomitant use of St. John's wort with the proton pump inhibitors (PPIs) as PPI exposure may be decreased, reducing their efficacy. PPIs are CYP3A4 and CYP2C19 substrates and St. John's wort is a strong CYP3A4 and CYP2C19 inducer. For example, coadministration of omeprazole with St. John's wort decreased omeprazole plasma concentrations by approximately 40%.
Stiripentol: (Moderate) Consider a dose reduction of lansoprazole when coadministered with stiripentol. Coadministration may increase plasma concentrations of lansoprazole resulting in an increased risk of adverse reactions. Lansoprazole is a sensitive CYP2C19 substrate. In vitro data predicts inhibition of CYP2C19 by stiripentol potentially resulting in clinically significant interactions.
Sucralfate: (Moderate) Sucralfate has been shown to delay absorption and reduce the bioavailability of lansoprazole by about 17%. Lansoprazole should be taken no less than 30 minutes before sucralfate if these drugs are to be used concomitantly.
Tacrolimus: (Moderate) Tacrolimus is metabolized via the hepatic cytochrome P-450 (CYP) 3A4. Lansoprazole may potentially inhibit CYP3A4-mediated metabolism of tacrolimus and thereby substantially increase tacrolimus whole blood concentrations. In addition to being a CYP3A4 substrate, lansoprazole is also a CYP2C19 substrate. Patients who are intermediate or poor CYP2C19 metabolizers as compared to those patients who are efficient CYP2C19 metabolizers may have more dramatic increases in their tacrolimus whole blood concentrations. Increased whole blood concentrations of tacrolimus may lead to nephrotoxicity or other side effects.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Terbinafine: (Moderate) Due to the risk for terbinafine related adverse effects, caution is advised when coadministering lansoprazole. Although this interaction has not been studied by the manufacturer, and published literature suggests the potential for interactions to be low, taking these drugs together may increase the systemic exposure of terbinafine. Predictions about the interaction can be made based on the metabolic pathways of both drugs. Terbinafine is metabolized by at least 7 CYP isoenyzmes, with major contributions coming from CYP2C19; lansoprazole is an inhibitor of this enzyme. Monitor patients for adverse reactions if these drugs are coadministered.
Theophylline, Aminophylline: (Minor) Concomitant use of theophylline, a CYP1A2 and CYP3A substrate, and lansoprazole has led to a small increase in theophylline clearance. Aminophylline may require dosage adjustment when therapy with lansoprazole is initiated or discontinued. (Minor) Concomitant use of theophylline, a CYP1A2 and CYP3A substrate, and lansoprazole has led to a small increase in theophylline clearance. Theophylline may require dosage adjustment when therapy with lansoprazole is initiated or discontinued.
Thiazide diuretics: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Thyroid hormones: (Moderate) Proton pump inhibitors (PPIs) may reduce the oral absorption of thyroid hormones and thus reduce efficacy; monitor for altered clinical response to thyroid hormone therapy if concomitant use is necessary. Alternatively, an oral liquid levothyroxine dosage form may be considered. Gastric acidity is an essential requirement for adequate absorption of levothyroxine tablets and capsules and other thyroid hormones. Gastric acidity may be less essential for the absorption of oral liquid dosage forms of levothyroxine; PPIs have been observed to have a minimal effect on the bioavailability of oral liquid levothyroxine.
Tipranavir: (Moderate) Some manufacturers recommend avoiding the coadministration of hepatic cytochrome P-450 enzyme inducers and proton pump inhibitors (PPIs). Tipranavir markedly induces the hepatic cytochrome P-450 enzyme CYP2C19, an enzyme responsible for the metabolism of PPIs. However, since tipranavir is not given unless it is co-prescribed with ritonavir, a known marked enzyme inhibitor, a reduction in PPI metabolism may be unlikely to occur. A reduction in PPI concentrations may increase the risk of gastrointe

stinal (GI) adverse events such as GI bleeding. If tipranavir and PPIs must be used together, monitor the patient closely for signs and symptoms of GI bleeding or other signs and symptoms of reduced PPI efficacy.
Tolterodine: (Moderate) The American College of Gastroenterology states that the effectiveness of proton pump inhibitors (PPIs) may be theoretically decreased if given with other antisecretory agents (e.g., anticholinergics). Proton pump inhibitors (PPIs) inhibit only actively secreting H+-pumps.
Torsemide: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and loop diuretic use due to risk for hypomagnesemia.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Trospium: (Moderate) The American College of Gastroenterology states that the effectiveness of proton pump inhibitors (PPIs) may be theoretically decreased if given with other antisecretory agents (e.g., anticholinergics). Proton pump inhibitors (PPIs) inhibit only actively secreting H+-pumps.
Tucatinib: (Moderate) Monitor for lansoprazole-related adverse effects during coadministration with tucatinib. Concurrent use may increase lansoprazole exposure. Lansoprazole is a CYP3A4 substrate and tucatinib is a strong CYP3A4 inhibitor.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor magnesium concentration before and periodically during concomitant lansoprazole and thiazide diuretic use due to risk for hypomagnesemia.
Voriconazole: (Moderate) Voriconazole is an inhibitor of the CYP3A and CYP2C19 isozymes and may theoretically reduce the metabolism of substrates of these enzymes, including lansoprazole.
Warfarin: (Moderate) Monitor the INR in patients receiving warfarin with proton pump inhibitors. Increases in INR may lead to abnormal bleeding. Adjust the warfarin dose to maintain the target INR.

How Supplied

Heartburn Relief/Lansoprazole/Prevacid Oral Cap DR Pellets: 15mg, 30mg
Lansoprazole/Prevacid/Prevacid Solutab Oral Tab Orally Dis: 15mg, 30mg

Maximum Dosage
Adults

30 mg/day PO for most indications; 90 mg/day PO is FDA-approved maximum for eradication of H. pylori; however, up to 120 mg/day PO is used off-label; up to 180 mg/day PO for Zollinger-Ellison syndrome.

Geriatric

30 mg/day PO for most indications; 90 mg/day PO is FDA-approved maximum for eradication of H. pylori; however, up to 120 mg/day PO is used off-label; up to 180 mg/day PO for Zollinger-Ellison syndrome.

Adolescents

30 mg/day PO for most indications; up to 60 mg/day PO has been used off-label for eradication of H. pylori.

Children

12 years: 30 mg/day PO for most indications; up to 60 mg/day PO has been used off-label for eradication of H. pylori.
1 to 11 years weighing more than 30 kg: 30 mg/day PO for GERD or erosive esophagitis, up to 60 mg/day PO has been used off-label for refractory cases and for eradication of H. pylori.
1 to 11 years weighing 30 kg or less: 15 mg/day PO for GERD or erosive esophagitis, occasionally higher doses used for refractory cases; up to 2.5 mg/kg/day (Max: 60 mg/day) PO has been used off-label for eradication of H. pylori.

Infants

Safety and efficacy have not been established; doses up to 2 mg/kg/day PO have been used off-label for GERD.

Neonates

Safety and efficacy have not been established; doses up to 1.5 mg/kg/day have been used off-label for GERD.

Mechanism Of Action

Lansoprazole belongs to the class of GI antisecretory agents, the substituted benzimidazoles, that suppress gastric acid secretion by inhibiting the (H+, K+)-ATPase enzyme system of parietal cells. An acidic environment in the parietal cell is required for conversion of gastric-acid pump inhibitors, such as lansoprazole, to the active sulfenamide metabolite. The active metabolite then inhibits the ATPase enzyme required for gastric-acid pump activation, thereby blocking the final step of acid output from the parietal cells. A significant increase in gastric pH and decrease in basal acid output follow oral administration of lansoprazole. In hypersecretory conditions, lansoprazole has a marked effect on gastric acid secretion, both basal- and pentagastrin-stimulated. Lansoprazole exerts an inhibitory effect on gastric acid for at least 24 hours, which allows a once-daily dosing schedule. Lansoprazole does not antagonize H2 or cholinergic receptors. Lansoprazole induced increases in mucosal oxygenation or bicarbonate secretion may play a role in protecting the gastric mucosa from injury.
 
Acid suppression may enhance the effect of antimicrobials in eradicating Helicobacter pylori (H. pylori).
 
Serum gastrin concentrations increase 50% to 100% from baseline in the fasting state, and these increases are greater during lansoprazole therapy than during ranitidine therapy. Increases reach a plateau within 2 months and return to pretreatment concentrations within 4 weeks of discontinuation of lansoprazole therapy. Although prolonged hypergastrinemia has been associated with gastric tumors, a long-term study of lansoprazole for the treatment of Zollinger-Ellison syndrome did not reveal evidence to suggest that lansoprazole was implicated in tumor progression noted in 2 patients (10%). Both patients already had extensive metastatic disease.

Pharmacokinetics

Lansoprazole is administered orally and intravenously. Lansoprazole is about 97% bound to plasma protein. Lansoprazole is believed to be transformed into 2 active inhibitors of acid secretion in the gastric parietal cells. Serum gastrin levels increase 50 to 100% from baseline in the fasting state, and these increases are greater during lansoprazole therapy than during ranitidine therapy. Increases reach a plateau within 2 months and return to pretreatment levels within 4 weeks of discontinuation of lansoprazole therapy. Hepatic metabolism of lansoprazole is extensive. The 2 identified hepatic metabolites of lansoprazole have little antisecretory activity. Plasma elimination half-life, which is less than 2 hours, is not related to gastric antisecretory effect, which lasts more than 24 hours. Elimination is believed to occur via biliary excretion. Almost no unchanged lansoprazole is detected in urine after single-dose administration. After administration of a single dose of radio-labeled lansoprazole, one-third of the administered radiation was excreted in urine and two-thirds in the feces.
 
Affected cytochrome P450 isoenzymes and drug transporters: CYP3A4, CYP2C19
Lansoprazole is a substrate of the cytochrome P450 system via the CYP2C19 and CYP3A4 isoenzymes.

Oral Route

All lansoprazole oral dosage forms (capsules, oral suspension, and disintegrating tablets) contain delayed-release, enteric-coated granules that release drug after they leave the stomach. Absorption of lansoprazole is rapid; mean peak plasma concentrations occur after about 1.7 hours. The absolute bioavailability is over 80%, which can be reduced by 50 to 70% if lansoprazole is given 30 minutes after food. The time to reach Cmax is also delayed by 3.5 to 3.7 hours when administered with food. Antacids can also affect absorption and can cause a slight reduction in bioavailability.

Intravenous Route

Following the administration of 30 mg of lansoprazole by intravenous infusion over 30 minutes to healthy subjects, plasma concentrations of lansoprazole declined exponentially with a mean terminal elimination half-life of 1.3 hours. The mean Cmax was 1,705 ng/mL and the mean AUC was 3,192 ng x hour/mL.

Pregnancy And Lactation
Pregnancy

Available data from published observational studies failed to demonstrate an association of adverse pregnancy-related outcomes and lansoprazole use. Methodological limitations of these observational studies cannot definitely establish or exclude any drug-associated risk during pregnancy. No adverse effects on embryo-fetal development occurred in animal studies performed in pregnant rats at oral lansoprazole doses up to 150 mg/kg/day (40 times the recommended human dose [30 mg/day] based on body surface area) during organogenesis and pregnant rabbits at oral lansoprazole doses up to 30 mg/kg/day (16 times the recommended human dose based on body surface area) during organogenesis. A pre- and postnatal developmental toxicity study in rats during organogenesis through lactation at 6.4 times the maximum recommended human dose produced reductions in the offspring in femur weight, femur length, crown-rump length and growth plate thickness (males only) on postnatal Day 21; these effects were associated with reduction in body weight gain. In a prospective study, outcomes from pregnant women (n= 62) administered lansoprazole (30 mg/day median dose) were compared to a pregnant control group (n=868) who did not take any proton pump inhibitors (PPIs). There was no difference in the rate of major malformations between women exposed to PPIs and the control group, (RR = 1.04, 95% CI 0.25 to 4.21). In a retrospective cohort study covering all live births in Denmark from 1996 to 2008, there was no significant increase in major birth defects during analysis of first trimester exposure to lansoprazole in 794 live births. In a meta-analysis that compared 1,530 pregnant women exposed to PPIs in at least the first trimester with 133,410 unexposed pregnant women, there were no significant increases in risk for congenital malformations or spontaneous abortion with exposure to PPIs for major malformations (OR =1.12, 95% CI 0.86 to 1.45) and for spontaneous abortions (OR = 1.29, 95% CI 0.84 to 1.97). Guidelines recommend a trial of lifestyle modifications as first-line therapy for heartburn and gastroesophageal reflux disease (GERD) during pregnancy, followed by antacids if lifestyle adjustments are ineffective. For ongoing symptoms, histamine type 2-receptor antagonists (H2RAs) can be used. Proton pump inhibitors should be reserved for pregnant patients who fail H2RA therapy. Self-medication with proton pump inhibitors (OTC formulations) during pregnancy is not recommended. Pregnant patients should see their health care professional for a proper diagnosis and for treatment recommendations.

Lansoprazole and its metabolites are present in rat milk. The clinical effects of proton pump inhibitor (PPI) exposure on the breastfed infant or on milk production have not been confirmed and PPI use is not recommended while breast-feeding; consider the developmental and health benefits of breast-feeding along with the clinical need for lansoprazole and any potential adverse effects on the breastfed infant or from the underlying maternal condition. According to guidelines, if heartburn/gastroesophageal reflux (GERD) symptoms persist after delivery, antacids and sucralfate are safe to use because they are not concentrated in breast milk. Histamine type 2-receptor antagonists (H2RAs) are excreted in breast milk, but cimetidine and famotidine are considered safe for use during lactation and may be used if symptoms persist despite antacid use.