Tanzeum

Browse PDR's full list of drug information

Tanzeum

Classes

Incretin mimetics Antidiabetics

Administration
Injectable Administration

Administer by subcutaneous injection only. Do not administer by intravenous or intramuscular injection as no data is available on the safety or efficacy via these routes.
When using albiglutide concomitantly with insulin, administer as separate injections. Never mix them together. The two injections may be injected in the same body region, but the injections should not be adjacent to each other.
Visually inspect for particulate matter and discoloration prior to administration whenever solution and container permit.

Subcutaneous Administration

Administer once every 7 days (weekly); the dose can be administered at any time of day, with or without meals.
Albiglutide is available as pre-filled single-dose pens containing either albiglutide 30 mg or albiglutide 50 mg.
 
Reconstitution of the Pen:
The powder contained within the pen must be reconstituted prior to administration.
Twist the clear cartridge on the pen in the direction of the arrow until a "click" is heard (You will also see a number "2" appear in the number window). This action mixes the diluent with the powder.
Slowly and gently rock the pen side-to-side 5 times to mix. Do NOT shake the pen. Shaking the pen will cause foaming.
Patients using the product at home must wait 15 minutes for the 30-mg pen or 30 minutes for the 50-mg pen to ensure that the medicine is properly mixed and to avoid clogging the pen needle. In health care environments, a health care professional may have to wait up to 10 minutes after adding the diluent to see complete dissolution.
As long as the needle has not been attached, the pen can be used within 8 hours of reconstitution with the diluent.
 
Preparing the Pen for injection:
Prime the pen prior to use.
Slowly and gently rock the pen side-to-side an additional 5 times. Do NOT shake the pen.
Visually inspect for particulate matter. The injection will be yellow in color and free of particles. A small amount of foam is normal.
Holding the pen upright, attach the supplied needle to the pen.
Gently tap the clear cartridge to bring large bubbles to the top. Remove air bubbles by slowly twisting the pen until a number "3" appears in the number window. At the same time, the injection button will be automatically released from the bottom of the pen.
Once the needle is attached, the product must be administered immediately. The product can clog the needle if allowed to dry in the primed pen.
 
Subcutaneous Administration using the Pen:
Inject subcutaneously into the thigh, abdomen, or upper arm. Once the needle is inserted, press the injection button until you hear a "click" and then hold the button for 5 additional seconds to deliver the full dose.
See the manufacturers instructions for use for complete reconstitution and administration directions and illustrations. These are available at www.tanzeum.com.
Rotate administration sites with each injection to prevent lipodystrophy.
After injection, properly dispose of the pen.

Adverse Reactions
Severe

atrial fibrillation / Early / 1.0-1.0
pancreatitis / Delayed / 0.3-0.3
atrial flutter / Early / 0.2-0.2
renal failure (unspecified) / Delayed / Incidence not known
angioedema / Rapid / Incidence not known
new primary malignancy / Delayed / Incidence not known

Moderate

antibody formation / Delayed / 5.5-5.5
hematoma / Early / 2.1-2.1
hypoglycemia / Early / 2.0-2.0
erythema / Early / 1.7-1.7
dyspnea / Early / 0-1.0
constipation / Delayed / Incidence not known
dehydration / Delayed / Incidence not known
elevated hepatic enzymes / Delayed / Incidence not known

Mild

injection site reaction / Rapid / 18.0-18.0
infection / Delayed / 14.2-14.2
diarrhea / Early / 13.1-13.1
nausea / Early / 11.1-11.1
cough / Delayed / 6.9-6.9
back pain / Delayed / 6.7-6.7
arthralgia / Delayed / 6.6-6.6
sinusitis / Delayed / 6.2-6.2
influenza / Delayed / 5.2-5.2
vomiting / Early / 4.2-4.2
gastroesophageal reflux / Delayed / 3.5-3.5
dyspepsia / Early / 3.4-3.4
rash / Early / 0-1.0
pruritus / Rapid / 0-1.0

Common Brand Names

Tanzeum

Dea Class

Rx

Description

Incretin mimetic (GLP-1 receptor agonist) administered as a once-weekly subcutaneous injection
Used to improve glycemic control in adults with type 2 diabetes mellitus
Not recommended as a first-line therapy because of the boxed warning regarding rodent C-cell tumor findings and the uncertain relevance to humans

Dosage And Indications
For the treatment of type 2 diabetes mellitus in combination with diet and exercise. Subcutaneous dosage Adults

30 mg subcutaneously once every 7 days (weekly). Administer the dose at any time of day, with or without meals. The dosage may be increased to 50 mg subcutaneously once weekly if the glycemic response is inadequate. If a dose is missed, administer it as soon as noticed, as long as the next regularly scheduled dose is due at least 3 days later. After that, patients can resume their usual dosing schedule of once every 7 days (weekly). If it is more than 3 days after the missed dose, wait until the next regularly scheduled dose. The day of weekly administration can be changed if needed, as long as the previous dose was administered 4 days or more prior.[57014] LIMITS OF USE: The concurrent use of albiglutide and prandial insulin has not been studied. When albiglutide is added to insulin detemir, a reduction in the dose of insulin detemir may be needed to reduce the risk of hypoglycemia. The manufacturer of insulin detemir recommends initiating therapy with insulin detemir at 10 units subcutaneously once daily when combining with a GLP-1 receptor agonist.[22300] When initiating albiglutide, consider reducing the dose of concomitantly administered insulin secretagogues (e.g., sulfonylureas) to reduce the risk of hypoglycemia.

Dosing Considerations
Hepatic Impairment

Specific guidelines for dosage adjustments in hepatic impairment are not available; it appears that no dosage adjustments are needed.

Renal Impairment

No dosage adjustment is needed in patients with mild, moderate or severe renal impairment. Use caution when initiating or increasing doses since patients with renal impairment tended to have a higher incidence of GI events as renal function declined; there is also limited clinical experience in patients with severe renal impairment.

Drug Interactions

Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Acetaminophen; Caffeine; Magnesium Salicylate; Phenyltoloxamine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Acetaminophen; Caffeine; Phenyltoloxamine; Salicylamide: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Acetazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
Aliskiren; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Amlodipine; Benazepril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Amlodipine; Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Amlodipine; Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Amlodipine; Olmesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Amlodipine; Telmisartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Amlodipine; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Amoxicillin; Clarithromycin; Lansoprazole: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Amprenavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Androgens: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
Angiotensin II receptor antagonists: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Angiotensin-converting enzyme inhibitors: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Aspirin, ASA: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Aspirin, ASA; Caffeine; Dihydrocodeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Aspirin, ASA; Carisoprodol: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Aspirin, ASA; Dipyridamole: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Aspirin, ASA; Omeprazole: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Aspirin, ASA; Oxycodone: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Aspirin, ASA; Pravastatin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Atazanavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Atazanavir; Cobicistat: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
atypical antipsychotic: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Azilsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Azilsartan; Chlorthalidone: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Benazepril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Beta-blockers: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Bismuth Subsalicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Bortezomib: (Moderate) During clinical trials of bortezomib, hypoglycemia and hyperglycemia were reported in diabetic patients receiving antidiabetic agents. Patients taking antidiabetic agents and receiving bortezomib treatment may require close monitoring of their blood glucose levels and dosage adjustment of their medication.
Candesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Captopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Carbonic anhydrase inhibitors: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
Chloroquine: (Major) Careful monitoring of blood glucose is recommended when chloroquine and antidiabetic agents, including the incretin mimetics, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with chloroquine and an antidiabetic agent.
Chlorpromazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Chlorthalidone; Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
Choline Salicylate; Magnesium Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Chromium: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended.
Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
Codeine; Phenylephrine; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Codeine; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Conjugated Estrogens; Medroxyprogesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Corticosteroids: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Cyclosporine: (Moderate) Patients should be monitored for worsening of glycemic control if therapy with cyclosporine is initiated in patients receiving antidiabetic agents, including albiglutide. Cyclosporine has been reported to cause hyperglycemia. It may have direct beta-cell toxicity; the effects may be dose-related.
Daclatasvir: (Moderate) Closely monitor blood glucose levels if daclatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as daclatasvir.
Danazol: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
Darunavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Darunavir; Cobicistat: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Dextromethorphan; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Diazoxide: (Minor) Diazoxide, when administered intravenously or orally, produces a prompt dose-related increase in blood glucose level, due primarily to an inhibition of insulin release from the pancreas, and also to an extrapancreatic effect. The hyperglycemic effect begins within an hour and generally lasts no more than 8 hours in the presence of normal renal function. The hyperglycemic effect of diazoxide is expected to be antagonized by certain antidiabetic agents (e.g., insulin or a sulfonylurea). Blood glucose should be closely monitored.
Dienogest; Estradiol valerate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Disopyramide: (Moderate) Disopyramide may enhance the hypoglycemic effects of antidiabetic agents. Patients receiving this combination should be monitored for changes in glycemic control.
Drospirenone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Drospirenone; Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Drospirenone; Ethinyl Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Enalapril, Enalaprilat: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Enalapril; Felodipine: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Eprosartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Esterified Estrogens; Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
Estradiol Cypionate; Medroxyprogesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Estradiol; Levonorgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Estradiol; Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Estradiol; Norgestimate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Estradiol; Progesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Estrogens: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as combined hormonal oral contraceptives (OCs). Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. atients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Ethanol: (Moderate) Patients should be advised to limit alcohol (ethanol) ingestion when treated with an antidiabetic agent. Ethanol inhibits gluconeogenesis, which can contribute to or increase the risk for hypoglycemia. In some patients, hypoglycemia can be prolonged. If a patient with diabetes ingests alcohol, they should be counselled to to avoid ingestion of alcohol on an empty stomach, which increases risk for low blood sugar. Patients should also be aware of the carbohydrate intake provided by certain types of alcohol in the diet, which can contribute to poor glycemic control. If a patient chooses to ingest alcohol, they should monitor their blood glucose frequently. Many non-prescription drug products may be formulated with alcohol; instruct patients to scrutinize product labels prior to consumption.
Ethinyl Estradiol; Desogestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethinyl Estradiol; Ethynodiol Diacetate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethinyl Estradiol; Etonogestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethinyl Estradiol; Levonorgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethinyl Estradiol; Levonorgestrel; Ferrous bisglycinate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethinyl Estradiol; Levonorgestrel; Folic Acid; Levomefolate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethinyl Estradiol; Norelgestromin: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethinyl Estradiol; Norethindrone Acetate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethinyl Estradiol; Norethindrone Acetate; Ferrous fumarate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethinyl Estradiol; Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethinyl Estradiol; Norethindrone; Ferrous fumarate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethinyl Estradiol; Norgestimate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethinyl Estradiol; Norgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Ethotoin: (Minor) Ethotoin can decrease the hypoglycemic effects of incretin mimetics by producing an increase in blood glucose levels. Patients receiving incretin mimetics should be closely monitored for signs indicating loss of diabetic control when therapy with a hydantoin is instituted. Conversely, patients should be closely monitored for signs of hypoglycemia when therapy with a hydantoin is discontinued.
Etonogestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Fibric acid derivatives: (Moderate) Dose reductions and increased frequency of glucose monitoring may be required when antidiabetic agents are administered with fibric acid derivatives (e.g., clofibrate, fenofibric acid, fenofibrate, gemfibrozil). Fibric acid derivatives may enhance the hypoglycemic effects of antidiabetic agents through increased insulin sensitivity and decreased glucagon secretion.
Fluoxetine: (Moderate) In patients with diabetes mellitus, fluoxetine may alter glycemic control. Hypoglycemia has occurred during fluoxetine therapy. Hyperglycemia has developed in patients with diabetes mellitus following discontinuation of the drug. The dosage of insulin and/or other antidiabetic agents may need to be adjusted when therapy with fluoxetine is instituted or discontinued.
Fluoxetine; Olanzapine: (Moderate) In patients with diabetes mellitus, fluoxetine may alter glycemic control. Hypoglycemia has occurred during fluoxetine therapy. Hyperglycemia has developed in patients with diabetes mellitus following discontinuation of the drug. The dosage of insulin and/or other antidiabetic agents may need to be adjusted when therapy with fluoxetine is instituted or discontinued.
Fluoxymesterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
Fluphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Fosamprenavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Fosinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Fosphenytoin: (Minor) Fosphenytoin can decrease the hypoglycemic effects of incretin mimetic

s by producing an increase in blood glucose levels. Patients receiving incretin mimetics should be closely monitored for signs indicating loss of diabetic control when therapy with a hydantoin is instituted. Conversely, patients should be closely monitored for signs of hypoglycemia when therapy with a hydantoin is discontinued.
Garlic, Allium sativum: (Moderate) Patients receiving antidiabetic agents should use dietary supplements of Garlic, Allium sativum with caution. Constituents in garlic might have some antidiabetic activity, and may increase serum insulin levels and increase glycogen storage in the liver. Monitor blood glucose and glycemic control. Patients with diabetes should inform their health care professionals of their intent to ingest garlic dietary supplements. Some patients may require adjustment to their hypoglycemic medications over time. One study stated that additional garlic supplementation (0.05 to 1.5 grams PO per day) contributed to improved blood glucose control in patients with type 2 diabetes mellitus within 1 to 2 weeks, and had positive effects on total cholesterol and high/low density lipoprotein regulation over time. It is unclear if hemoglobin A1C is improved or if improvements are sustained with continued treatment beyond 24 weeks. Other reviews suggest that garlic may provide modest improvements in blood lipids, but few studies demonstrate decreases in blood glucose in diabetic and non-diabetic patients. More controlled trials are needed to discern if garlic has an effect on blood glucose in patients with diabetes. When garlic is used in foods or as a seasoning, or at doses of 50 mg/day or less, it is unlikely that blood glucose levels are affected to any clinically significant degree.
Glecaprevir; Pibrentasvir: (Moderate) Closely monitor blood glucose levels if glecaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as glecaprevir. (Moderate) Closely monitor blood glucose levels if pibrentasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as pibrentasvir.
Green Tea: (Moderate) Green tea catechins have been shown to decrease serum glucose concentrations in vitro. Patients with diabetes mellitus taking incretin mimetics should be monitored closely for hypoglycemia if consuming green tea.
Hydrochlorothiazide, HCTZ; Irbesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Hydrochlorothiazide, HCTZ; Lisinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Hydrochlorothiazide, HCTZ; Losartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Hydrochlorothiazide, HCTZ; Quinapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Hydrochlorothiazide, HCTZ; Telmisartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Hydrochlorothiazide, HCTZ; Triamterene: (Minor) Triamterene can decrease the hypoglycemic effects of antidiabetic agents, such as incretin mimetics, by producing an increase in blood glucose levels. Patients on antidiabetics should be monitored for changes in blood glucose control if triamterene is added or deleted. Dosage adjustments may be necessary.
Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Hydroxychloroquine: (Moderate) Careful monitoring of blood glucose is recommended when hydroxychloroquine and antidiabetic agents, including the incretin mimetics, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with hydroxychloroquine and an antidiabetic agent.
Hydroxyprogesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Indapamide: (Moderate) A potential pharmacodynamic interaction exists between indapamide and antidiabetic agents, like incretin mimetics. Indapamide can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia.
Indinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Insulin Detemir: (Major) When albiglutide is added to insulin detemir, a reduction in the dose of insulin detemir may be needed to reduce the risk of hypoglycemia.The manufacturer of insulin detemir recommends initiating therapy with insulin detemir at 10 units SQ once daily when combining with a GLP-1 receptor agonist, such as albiglutide. Closely monitor blood glucose.
Irbesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Isocarboxazid: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
Lanreotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when lanreotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Lanreotide inhibits the secretion of insulin and glucagon. Patients treated with lanreotide may experience either hypoglycemia or hyperglycemia.
Ledipasvir; Sofosbuvir: (Moderate) Closely monitor blood glucose levels if ledipasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agent(s) may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as ledipasvir. (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
Leuprolide; Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Levonorgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Levothyroxine: (Minor) When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis.
Levothyroxine; Liothyronine (Porcine): (Minor) When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis.
Levothyroxine; Liothyronine (Synthetic): (Minor) When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis.
Linezolid: (Moderate) Hypoglycemia, including symptomatic episodes, has been noted in post-marketing reports with linezolid in patients with diabetes mellitus receiving therapy with antidiabetic agents, such as insulin and oral hypoglycemic agents. Diabetic patients should be monitored for potential hypoglycemic reactions while on linezolid. If hypoglycemia occurs, discontinue or decrease the dose of the antidiabetic agent or discontinue the linezolid therapy. Linezolid is a reversible, nonselective MAO inhibitor and other MAO inhibitors have been associated with hypoglycemic episodes in diabetic patients receiving insulin or oral hypoglycemic agents.
Liothyronine: (Minor) When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis.
Lisinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Lithium: (Moderate) Lithium may cause variable effects on glycemic control when used in patients receiving antidiabetic therapy iincluding incretin mimetics. Blood glucose concentrations should be closely monitored if lithium is taken by the patient. Dosage adjustments of insulin may be necessary.
Lomefloxacin: (Moderate) Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent. Therefore, careful monitoring of blood glucose is recommended when quinolones and antidiabetic agents are co-administered.
Loop diuretics: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Lopinavir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Lorcaserin: (Moderate) In general, weight reduction may increase the risk of hypoglycemia in patients with type 2 diabetes mellitus treated with antidiabetic agents, such as insulin and/or insulin secretagogues (e.g., sulfonylureas). In clinical trials, lorcaserin use was associated with reports of hypoglycemia. Blood glucose monitoring is warranted in patients with type 2 diabetes prior to starting and during lorcaserin treatment. Dosage adjustments of anti-diabetic medications should be considered. If a patient develops hypoglycemia during treatment, adjust anti-diabetic drug regimen accordingly. Of note, lorcaserin has not been studied in combination with insulin.
Losartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Lovastatin; Niacin: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. When used at daily doses of 750 to 2,000 mg, niacin significantly lowers LDL cholesterol and triglycerides while increasing HDL cholesterol. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients on antidiabetic therapy for blood glucose control if niacin (nicotinic acid) is added or deleted to the medication regimen and adjust dosages as clinically warranted
Magnesium Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Mecasermin rinfabate: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
Mecasermin, Recombinant, rh-IGF-1: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
Medroxyprogesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Meperidine; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Mesoridazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Mestranol; Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Methazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
Metyrapone: (Moderate) In patients taking insulin or other antidiabetic agents, the signs and symptoms of acute metyrapone toxicity (e.g., symptoms of acute adrenal insufficiency) may be aggravated or modified.
Moexipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Monoamine oxidase inhibitors: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
Nandrolone Decanoate: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
Nebivolol; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Nelfinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Niacin, Niacinamide: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. When used at daily doses of 750 to 2,000 mg, niacin significantly lowers LDL cholesterol and triglycerides while increasing HDL cholesterol. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients on antidiabetic therapy for blood glucose control if niacin (nicotinic acid) is added or deleted to the medication regimen and adjust dosages as clinically warranted
Niacin; Simvastatin: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. When used at daily doses of 750 to 2,000 mg, niacin significantly lowers LDL cholesterol and triglycerides while increasing HDL cholesterol. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients on antidiabetic therapy for blood glucose control if niacin (nicotinic acid) is added or deleted to the medication regimen and adjust dosages as clinically warranted
Nicotine: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Norgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Octreotide: (Moderate) Monitor patients receiving octreotide concomitantly with insulin or other antidiabetic agents for changes in glycemic control and adjust doses of these medications accordingly. Octreotide alters the balance between the counter-regulatory hormones of insulin, glucagon, and growth hormone, which may result in hypoglycemia or hyperglycemia. The hypoglycemia or hyperglycemia which occurs during octreotide acetate therapy is usually mild, but may result in overt diabetes mellitus or necessitate dose changes in insulin or other hypoglycemic agents. In patients with concomitant type1 diabetes mellitus, octreotide is likely to affect glucose regulation, and insulin requirements may be reduced. Symptomatic hypoglycemia, which may be severe, has been reported in type 1 diabetic patients. In Type 2 diabetes patients with partially intact insulin reserves, octreotide administration may result in decreases in plasma insulin levels and hyperglycemia.
Olmesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Ombitasvir; Paritaprevir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Orlistat: (Minor) Weight-loss may affect glycemic control in patients with diabetes mellitus. In many patients, glycemic control may improve. A reduction in dose of oral hypoglycemic medications may be required in some patients taking orlistat. Monitor blood glucose and glycemic control and adjust therapy as clinically indicated.
Oxandrolone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
Oxymetholone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
Pasireotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pasireotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pasireotide inhibits the secretion of insulin and glucagon. Patients treated with pasireotide may experience either hypoglycemia or hyperglycemia.
Pegvisomant: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pegvisomant treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pegvisomant increases sensitivity to insulin by lowering the activity of growth hormone, and in some patients glucose tolerance improves with treatment. Patients with diabetes treated with pegvisomant and antidiabetic agents may be more likely to experience hypoglycemia.
Pentamidine: (Moderate) Pentamidine can be harmful to pancreatic cells. This effect may lead to hypoglycemia acutely, followed by hyperglycemia with prolonged pentamidine therapy. Patients on antidiabetic agents should be monitored for the need for dosage adjustments during the use of pentamidine.
Pentoxifylline: (Moderate) Pentoxiphylline has been used concurrently with antidiabetic agents without observed problems, but it may enhance the hypoglycemic action of antidiabetic agents. Patients should be monitored for changes in glycemic control while receiving pentoxifylline in combination with antidiabetic agents.
Perindopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Perindopril; Amlodipine: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Perphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Perphenazine; Amitriptyline: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Phenelzine: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
Phenothiazines: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Phenylephrine; Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Phenytoin: (Minor) Phenytoin can decrease the hypoglycemic effects of albiglutide by producing an increase in blood glucose levels. Monitor for signs indicating loss of diabetic control when therapy with a hydantoin is instituted. Conversely, patients should be closely monitored for signs of hypoglycemia when therapy with a hydantoin is discontinued.
Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
Prochlorperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Progesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Progestins: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Promethazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Protease inhibitors: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Quinapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Quinolones: (Moderate) Monitor blood glucose carefully when systemic quinolones and antidiabetic agents, including incretin mimetics, are coadministered. Discontinue the quinolone if a hypoglycemic reaction occurs and initiate appropriate therapy immediately. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent. Hypoglycemia, sometimes resulting in coma, can occur.
Ramipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Reserpine: (Moderate) Reserpine may mask the signs and symptoms of hypoglycemia. Patients receiving reserpine concomitantly with antidiabetic agents, such as incretin mimetics, should be monitored for changes in glycemic control.
Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Sacubitril; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Salicylates: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Salsalate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
Saquinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Segesterone Acetate; Ethinyl Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
Selegiline: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
Sofosbuvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
Sofosbuvir; Velpatasvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir.
Sofosbuvir; Velpatasvir; Voxilaprevir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir. (Moderate) Closely monitor blood glucose levels if voxilaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as voxilaprevir.
Somatropin, rh-GH: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
Sparfloxacin: (Moderate) Hyperglycemia and hypoglycemia have been reported in patients treated concomitantly with quinolones and antidiabetic agents. Therefore, careful monitoring of blood glucose is recommended when quinolones and antidiabetic agents are coadministered.
Sulfonamides: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents; patients with diabetes mellitus should be closely monitored during sulfonamide treatment. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides.
Sympathomimetics: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Tacrolimus: (Moderate) Patients should be monitored for worsening of glycemic control if therapy with tacrolimus is initiated in patients receiving antidiabetic agents, including albiglutide. Tacrolimus has been reported to cause hyperglycemia. Furthermore, tacrolimus has been implicated in causing insulin-dependent diabetes mellitus in patients after renal transplantation. The mechanism of hyperglycemia is thought to be through direct beta-cell toxicity.
Tegaserod: (Moderate) Tegaserod can enhance gastric emptying in patients with diabetes. Typically, blood glucose could be affected, which, in turn, may affect the clinical response to antidiabetic agents. However, incretin mimetics have been shown to slow gastric emptying. The clinical effects of these competing mechanisms is not known. The dosing of antidiabetic agents may require adjustment and blood glucose should be closely monitored when coadministered with tegaserod.
Telmisartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
Testolactone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
Testosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
Thiazide diuretics: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
Thiethylperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Thioridazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Thyroid hormones: (Minor) When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued. Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis.
Tipranavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
Tobacco: (Minor) Tobacco smoking is known to aggravate insulin resistance. The cessation of tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Trandolapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Trandolapril; Verapamil: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Tranylcypromine: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
Triamterene: (Minor) Triamterene can decrease the hypoglycemic effects of antidiabetic agents, such as incretin mimetics, by producing an increase in blood glucose levels. Patients on antidiabetics should be monitored for changes in blood glucose control if triamterene is added or deleted. Dosage adjustments may be necessary.
Trifluoperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.

How Supplied

Tanzeum Subcutaneous Inj Pwd F/Sol: 30mg, 50mg

Maximum Dosage
Adults

50 mg/week subcutaneously.

Geriatric

50 mg/week subcutaneously.

Adolescents

Safety and efficacy have not been established.

Children

Safety and efficacy have not been established.

Infants

Not indicated.

Neonates

Not indicated.

Mechanism Of Action

Albiglutide is an incretin mimetic; specifically, albiglutide is a glucagon-like peptide-1 (GLP-1) receptor agonist comprised of 2 tandem copies of modified human GLP-1 genetically fused in tandem to human albumin. The human GLP-1 fragment sequence has been modified in order to confer resistance to dipeptidylpeptidase IV (DPP-IV) mediated proteolysis. The human albumin moiety, together with the DPP-IV resistance, extends the half-life allowing once-weekly dosing. GLP-1 is an important, gut-derived, glucose homeostasis regulator that is released after the oral ingestion of carbohydrates or fats. In patients with type 2 diabetes, GLP-1 concentrations are decreased in response to an oral glucose load. GLP-1 enhances insulin secretion; it increases glucose-dependent insulin synthesis and in vivo secretion of insulin from pancreatic beta cells in the presence of elevated glucose. In addition to increases in insulin secretion and synthesis, GLP-1 suppresses glucagon secretion, slows gastric emptying, reduces food intake, and promotes beta-cell proliferation.

Pharmacokinetics

Albiglutide is given via subcutaneous administration. Following subcutaneous administration, the mean estimate of apparent volume of distribution of albiglutide is 11 liters. Albiglutide is a protein for which the expected metabolic pathway is degradation to small peptides and individual amino acids via ubiquitous proteolytic enzymes. Because albiglutide is an albumin fusion protein, it likely follows a metabolic pathway similar to native human serum albumin which is catabolized primarily in the vascular endothelium. The mean apparent clearance of albiglutide is 67 mL/h with an elimination half-life of approximately 5 days, making albiglutide suitable for once-weekly administration.

Subcutaneous Route

Following subcutaneous administration, maximum concentrations of albiglutide were reached at 3 to 5 days post-dosing. The mean peak concentration (Cmax) and mean area under the time-concentration curve (AUC) were 1.74 mcg/mL and 465 mcg x h/mL, respectively, following a single dose of 30 mg albiglutide. Steady-state exposures are achieved following 4 to 5 weeks of once-weekly administration. Exposures at the 30-mg and 50-mg dose levels were consistent with a dose-proportional increase. Similar exposure is achieved with subcutaneous administration of albiglutide in the abdomen, thigh, or upper arm. The absolute bioavailability of albiglutide following subcutaneous administration has not been evaluated.

Pregnancy And Lactation
Pregnancy

Albiglutide should be used in pregnancy only if the potential benefit justifies the potential risk to the fetus. Nonclinical studies have shown reproductive toxicity, but not teratogenicity, in mice treated with albiglutide at up to 39-times human exposure resulting from the maximum recommended dose of 50 mg/week, based on AUC. Due to the long washout period for albiglutide, consider stopping albiglutide at least 1 month before a planned pregnancy. The American College of Obstetricians and Gynecologists (ACOG) and the American Diabetes Association (ADA) continue to recommend human insulin as the standard of care in women with gestational diabetes mellitus (GDM) requiring medical therapy; insulin does not cross the placenta.

It is not known if albiglutide is excreted into human milk; since albiglutide is an albumin-based protein therapeutic, it is likely to be present in human milk. Decreased body weight in offspring was observed in mice treated with albiglutide during gestation and lactation. Because many drugs are excreted in human milk and because of the potential for tumorigenicity shown for albiglutide in animal studies, a decision should be made whether to discontinue breast-feeding or to discontinue the drug, taking into account the importance of the drug to the mother. If albiglutide is discontinued and blood glucose is not controlled on diet and exercise alone, insulin therapy should be considered. Other oral hypoglycemics may be considered as possible alternatives during breast-feeding. Because acarbose has limited systemic absorption, which results in minimal maternal plasma concentrations, clinically significant exposure via breast milk is not expected. Also, while the manufacturers of metformin recommend against breast-feeding while taking the drug, data have shown that metformin is excreted into breast milk in small amounts and adverse effects on infant plasma glucose have not been reported in human studies. The American Academy of Pediatrics (AAP) regards tolbutamide as usually compatible with breast-feeding. Although other sulfonylureas have not been evaluated by the AAP, glyburide may be a suitable alternative since it was not detected in the breast milk of lactating women who received single and multiple doses of glyburide. If any oral hypoglycemics are used during breast feeding, the nursing infant should be monitored for signs of hypoglycemia, such as increased fussiness or somnolence.