PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Incretin mimetics Antidiabetics

    DEA CLASS

    Rx

    DESCRIPTION

    Subcutaneous incretin mimetic (GLP-1 receptor agonist) - the immediate-release injection given twice daily with meals; the extended-release injection suspension is given once-weekly
    Used to improve glycemic control in adults with type 2 diabetes mellitus as monotherapy or with oral antidiabetic agents
    May be given with basal insulin but not prandial or rapid/short-acting insulin
    Not a first-line therapy because of the boxed warning regarding rodent C-cell tumor findings and the uncertain relevance to humans

    COMMON BRAND NAMES

    Bydureon, Bydureon BCise, Byetta

    HOW SUPPLIED

    Bydureon BCise Subcutaneous Inj Susp ER: 0.85mL, 2mg
    Bydureon Subcutaneous Inj Pwd F/Susp ER: 2mg
    Byetta Subcutaneous Inj Sol: 1mL, 250mcg

    DOSAGE & INDICATIONS

    For the treatment of type 2 diabetes mellitus in combination with diet and exercise.
    Subcutaneous dosage (regular-release injection solution, Byetta)
    Adults

    Initially, 5 mcg subcutaneously twice daily given within the 60-minute period before the morning and evening meal. Alternatively, administer before the 2 main meals of the day, with the doses approximately 6 hours or more apart. Exenatide should not be administered after a meal. Based on glucose monitoring and clinical response, may increase after 1 month to exenatide 10 mcg subcutaneously twice daily. Initiation with 5 mcg reduces the incidence and severity of gastrointestinal side effects. May be used as monotherapy or with other antidiabetic medications. Dose adjustment of metformin or a thiazolidinedione is not usually required when exenatide is added. A reduction in the dose of a sulfonylurea may be needed to reduce the risk of hypoglycemia. CO-USE with INSULIN: Combined use with prandial insulin has not been studied and cannot be recommended. Exenatide is approved for use with basal insulin. In a clinical trial, the dose of insulin glargine was decreased by 20% in patients with a hemoglobin A1C 8% or less to minimize the risk of hypoglycemia. An insulin glargine dose titration algorithm is in the exenatide package insert. When added to insulin detemir, a reduction in the dose of insulin detemir may be needed to reduce hypoglycemia; the insulin detemir package label recommends a dose of insulin detemir 10 units subcutaneously once daily when combining with a GLP-1 receptor agonist.

    Subcutaneous dosage (extended-release once weekly injection suspension, Bydureon or Bydureon BCise)
    Adults

    2 mg subcutaneously once every 7 days (once weekly). Administer at any time of day, with or without meals. MISSED DOSE: If a dose is missed, administer it as soon as noticed, as long as the next regularly scheduled dose is due at least 3 days later. After that, patients can resume their usual dosing schedule of once every 7 days (weekly). If a dose is missed and the next regularly scheduled dose is 1 or 2 days later, the patient should not administer the missed dose, instead they should wait until the next regularly scheduled dose. The day of weekly administration can be changed if needed, as long as the last dose was administered 3 or more days before. Extended-release exenatide is not a first-line therapy for patients inadequately controlled on diet and exercise. CO-USE of INSULIN: Concurrent treatment with prandial insulin has not been studied and cannot be recommended. Exenatide may be used with basal insulin. The dose of insulin glargine was decreased by 20% in patients with an A1C 8% or less to minimize the risk of hypoglycemia when initiating exenatide. When added to insulin detemir, a reduction in the dose of insulin detemir may be needed to reduce hypoglycemia; the insulin detemir package label recommends a dose of insulin detemir 10 units subcutaneously once daily when combining with a GLP-1 receptor agonist. PRIOR TREATMENT WITH BYETTA: Prior treatment with Byetta is not required when initiating Bydureon/Bydureon BCise therapy. If a patient is already receiving Byetta and the decision is made to switch to Bydureon/Bydureon BCise, then discontinue Byetta. Patients changing from Byetta to Bydureon/Bydureon BCise may experience transient (approximately 2 to 4 weeks) elevations in blood glucose concentrations.

    MAXIMUM DOSAGE

    Adults

    2 mg/week subcutaneous for extended-release injection (e.g., Bydureon/Bydureon BCise); 20 mcg/day subcutaneous for regular-release exenatide injection (e.g., Byetta).

    Geriatric

    2 mg/week subcutaneous for extended-release injection (e.g., Bydureon/Bydureon BCise); 20 mcg/day subcutaneous for regular-release exenatide injection (e.g., Byetta).

    Adolescents

    Safety and efficacy have not been established.

    Children

    Safety and efficacy have not been established.

    Infants

    Not indicated.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    Specific guidelines for dosage adjustments in hepatic impairment are not available; it appears that no dosage adjustments are needed. Exenatide is cleared primarily by the kidney.

    Renal Impairment

    CrCl 30 mL/minute or more or eGFR 30 mL/minute/1.73 m2 or more: No dosage adjustment needed. Use with caution in patients with moderate renal impairment (CrCl 30 to 50 mL/min), especially when initiating treatment or increasing doses.
    CrCl less than 30 mL/minute or eGFR less than 30 mL/minute/1.73 m2: Use is not recommended.
     
    Hemodialysis
    Exenatide is not recommended for use in patients with end-stage renal disease (ESRD) on continuous or intermittent hemodialysis.

    ADMINISTRATION

    Injectable Administration

    Administer by subcutaneous injection only. Do not administer by intravenous or intramuscular injection.
    Visually inspect for particulate matter and discoloration prior to administration whenever solution and container permit.
    Do NOT mix exenatide with insulin. When using exenatide with basal insulin, administer as separate injections. It is acceptable for the injections to be in the same body region but the injections should NOT be adjacent to each other.
    Diabetes medication pens should never be shared among patients. Even if the disposable needle is changed, sharing may result in transmission of hepatitis viruses, HIV, or other blood-borne pathogens. Do not share pens among multiple patients in an inpatient setting; use multidose vials instead if available, or, reserve use of any pen to 1 patient only.

    Subcutaneous Administration

    Regular-release injection solution (Byetta multi-dose pen-injector):
    Administer twice daily, within the 60-minute time period prior to the morning and evening meals. Alternatively, administer before the 2 main meals of the day, approximately 6 hours or more apart. Do not administer after meals.
    For patients who are to self-administering exenatide, adequate oral as well as written instructions on the use of the injector pen should be supplied before they self-administer a dose.
    Regular-release exenatide is available as a pre-filled pen; do not transfer exenatide from the pen to a syringe or a vial.
    Pen needles for the Byetta Pen are not included and must be purchased separately.
    The pen needle that is recommended for most patients is the 31G x 5/16' (8 mm) size needle. The following pen needles have been tested and are considered to be compatible with the Byetta pre-filled pen: BD 29G x 1/2' (12 or 12.7 mm), BD 29G x 5/16' (8 mm), BD 30G x 5/16' (8 mm), BD 31G x 5/16' (8 mm), Ypsomed Relion (Walmart) 29G x 1/2' (12 or 12.7 mm), Ypsomed Relion (Walmart) 31G x 5/16' (8 mm), and all Novo Nordisk pen needles. For more information, contact the Amylin Lilly Customer Support Center toll-free at 1-800-868-1190.
    The following pen needles have been tested and have been determined to be INCOMPATIBLE with the Byetta pre-filled pen: Artsana InsuPen 29G and 31G pen needles. For more information, contact the Amylin Lilly Customer Support Center toll-free at 1-800-868-1190.
    The exenatide Byetta pen-injector must be primed prior to the first use. See the pen user manual for directions.
    Inject subcutaneously into the thigh, abdomen, or upper arm.
    Double-check dosage prior to administration.
    Lightly pinch a fold of skin; insert the needle; release the skin; inject at a 90 degree angle. Thin or smaller individuals can use a 45 degree angle to avoid intramuscular injection. Aspiration is not necessary. Inject over 2 to 4 seconds.
    Rotate administration sites with each injection to prevent lipodystrophy.
    After use, properly dispose of used pen needles.
    Storage: Replace the blue cap after injection. Do not store the pen with the needle on, as the medication may leak out or air bubbles may form in the cartridge. After first use, the Byetta Pen injector can be kept at a temperature not to exceed 77 degrees F (25 degrees C). Do not freeze. Protect from light. When carrying the pen away from home, store the pen at a temperature between 36 to 77 degrees F (2 to 25 degrees C) and keep dry. A Byetta Pen can be used for up to 30 days after first use. After 30 days, throw away the pen, even if some medicine remains in it.
     
    Extended-release injection suspension (Bydureon single-dose Pen):
    Administer once every 7 days (weekly); the dose can be administered at any time of day, with or without meals.
    Available as:
    a pre-filled single-dose pen tray containing exenatide 2 mg single-use pen and a custom needle
    a single-dose tray containing a vial of exenatide 2 mg, a pre-filled syringe delivering 0.65 mL diluent, a vial connector, and 2 custom needles (23G x 5/16') specific to this delivery system (one is a spare needle). Do not substitute needles or any other components in the tray.
    Visually inspect for particulate matter. Exenatide must be well-suspended (mixed) prior to use from a pen or syringe kit. Ensure the medicine is mixed evenly; rotate and shake or tap as directed until there is no white medicine visible on sides of the pen or syringe. Medicine is mixed well when it appears as an even mix that is cloudy.
    Extended-release exenatide must be injected immediately after suspended in the diluent within the Pen device or the syringe.
    Pull the needle cover straight off the pen for use.
    Inject subcutaneously into the thigh, abdomen, or upper arm. For the pen, insert the needle into your skin. Press the injection button with your thumb until you hear a “click.” Keep holding the button down and slowly count to 10 to get your full dose.
    See the manufacturer's instructions for use for complete administration directions and illustrations. These are available at www.bydureon.com.
    Rotate administration sites with each injection to prevent lipodystrophy.
    After injection, properly dispose of the pen and needles.
     
    Extended-release injection suspension (Bydureon BCise single-use Autoinjector):
    Preparing the Autoinjector:
    Let the autoinjector come to room temperature for approximately 15 minutes before administration.
    Shake the autoinjector well, in an up-and-down motion, for at least 15 seconds to ensure the medicine is mixed evenly; shake until there is no white medicine on sides, bottom, or top.
    Visually inspect for particulate matter. Medicine is mixed well when it appears as an even mix that is cloudy; it is okay to see air bubbles.
    Once the medicine is fully mixed, the autoinjector must be used immediately.
    Hold the autoinjector upright with the orange cap toward the ceiling. Unlock the autoinjector by turning the knob from lock to unlock until a click is heard.
    While still holding the autoinjector upright, unscrew the orange cap. A green shield will pop up after the cap is removed; the green shield hides the needle.
    It is normal to see a few drops of liquid inside the cap; do not recap the autoinjector.
     
    Subcutaneous Administration using the Autoinjector:
    Administer once every 7 days (weekly); the dose can be administered at any time of day, with or without meals.
    Inject subcutaneously into the thigh, abdomen, or upper arm.
    Push the autoinjector against the skin at the chosen injection site.
    Once the needle is inserted, press the injection button until you hear a "click" and then hold the button for 15 additional seconds to deliver the full dose.
    After injection, an orange rod will appear in the window. When the autoinjector is removed from the skin, the green shield will move back up to lock over the needle.
    See the manufacturer’s instructions for use for complete administration directions and illustrations. These are available at www.bydureonbcise.com.
    Rotate administration sites with each injection to prevent lipodystrophy.
    After injection, properly dispose of the autoinjector.

    STORAGE

    Bydureon:
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Do not freeze
    - Do not use if product has been frozen
    - Protect from light
    - Reconstituted product may be stored at room temperature (approximately 77 degrees F) for up to 4 weeks
    - Store unreconstituted product in refrigerator (36 to 46 degrees F)
    Bydureon BCise:
    - Product is stable until the expiration date on the label if refrigerated (36 to 46 degrees F)
    - Protect from light
    - Refrigerate (between 36 and 46 degrees F)
    - Store in original package until time of use
    Byetta:
    - Discard 30 days after first use
    - Do not freeze
    - Do not use if product has been frozen
    - May be stored at a temperature not exceeding 77 degrees F after first use
    - Prior to dispensing, store in refrigerator (36 to 46 degrees F)
    - Protect from light

    CONTRAINDICATIONS / PRECAUTIONS

    General Information

    Exenatide is contraindicated in any patient who has exhibited exenatide hypersensitivity or hypersensitivity to any of its inactive ingredients. During post-marketing surveillance, allergic reactions such as generalized pruritus, urticaria, maculopapular rash, angioedema, and anaphylactoid reactions (< 1/10,000) have been reported.
     
    The effect of exenatide to slow gastric emptying may reduce the extent and rate of absorption of orally administered drugs. Exenatide should be used with caution in patients receiving oral medications that require rapid gastrointestinal absorption. Prolonged exposure to stomach acid may destroy the film coating on certain medications and may result in decreased efficacy. When possible it may be prudent to take any oral medication at least 1 hour prior to administration of injectable exenatide, although specific research addressing this issue is not available.
     
    Treatment with exenatide may result in a reduction in appetite, food intake, and/or body weight; there is no need to modify the dosing regimen due to such effects.

    Diabetic ketoacidosis, type 1 diabetes mellitus

    Exenatide is not a substitute for insulin in patients who require insulin. Exenatide should not be used in patients with type 1 diabetes mellitus or for the treatment of diabetic ketoacidosis. The concurrent use of exenatide with prandial insulin has not been studied and cannot be recommended.

    Burns, diarrhea, fever, infection, surgery, thyroid disease, trauma, vomiting

    Diabetic patients must follow a regular, prescribed diet and exercise schedule to avoid either hypo- or hyperglycemia. Fever, thyroid disease, infection, recent trauma or surgery, diarrhea secondary to malabsorption, vomiting, and certain medications can affect requirements of antidiabetic agents; dosage adjustments may be necessary. Diabetic patients should be given a 'sick-day' plan to take appropriate action with blood glucose monitoring and their antidiabetic therapy, including exenatide, when acute illness is present. Temporary use of insulin in place of oral antidiabetic agents may be necessary during periods of physiologic stress (e.g., burns, systemic infection, trauma, surgery, or fever).

    Crohn's disease, gastroparesis, GI disease, inflammatory bowel disease, ulcerative colitis

    Exenatide may slow gastric emptying. Exenatide has not been studied in patients with severe gastrointestinal (GI) disease, including gastroparesis. Its use is commonly associated with gastrointestinal adverse effects, including nausea, vomiting, and diarrhea. Therefore, the use of exenatide is not recommended in patients with severe GI disease (e.g., Crohn's disease, gastroparesis, inflammatory bowel disease, ulcerative colitis). Patients who develop severe abdominal pain while on exenatide should be evaluated as this could be a warning sign for a serious condition.

    Hypoglycemia

    Hypoglycemia should be monitored for by the patient and clinician when exenatide treatment is initiated and continued. The risk of hypoglycemia is increased when exenatide is used in combination with insulin secretagogues (e.g., sulfonylureas, "glinides") or with insulin. Although specific dose recommendations are not available for most agents, the clinician should consider a dose reduction of the insulin secretagogue or insulin when used in combination with exenatide. Adequate blood glucose monitoring should be continued and followed. Hypoglycemia was not increased when regular-release exenatide injection solution was combined with metformin (without a sulfonylurea). When combined with a thiazolidinedione with or without metformin, the incidence of hypoglycemia was 11% in patients receiving regular-release exenatide injection solution vs. 7% in patients taking placebo. In five 24- to 30-week trials, no major hypoglycemia was reported for extended-release exenatide suspension or comparator-treated patients. Patient and family education regarding hypoglycemia management is crucial; the patient and patient's family should be instructed on how to recognize and manage the symptoms of hypoglycemia. Early warning signs of hypoglycemia may be less obvious in patients with hypoglycemia unawareness which can be due to a long history of diabetes (where deficiencies in the release or response to counter regulatory hormones exist), with autonomic neuropathy, intensified diabetes control, or taking beta-blockers, guanethidine, or reserpine. Patients should be aware of the need to have a readily available source of glucose (dextrose, d-glucose) or other carbohydrate to treat hypoglycemic episodes. In severe hypoglycemia, intravenous dextrose or glucagon injections may be needed. Because hypoglycemic events may be difficult to recognize in some elderly patients, antidiabetic agent regimens should be carefully managed to obviate an increased risk of severe hypoglycemia. Severe or frequent hypoglycemia in a patient is an indication for the modification of treatment regimens, including setting higher glycemic goals.

    Dehydration, dialysis, kidney transplant, renal disease, renal failure, renal impairment

    No dosage adjustment is required in patients with mild renal impairment (CrCl 50 to 80 mL/minute). Caution should be applied when initiating or escalating exenatide in patients with moderate renal impairment (CrCl 30 to 50 mL/minute) or patients with a kidney transplant. Renal impairment can alter exenatide pharmacokinetic parameters and lead to accumulation of the drug due to reduced clearance. Exenatide should not be used in patients with severe renal impairment creatinine clearance (CrCl) less than 30 mL/minute or end-stage renal disease (ESRD) / renal failure. Among patients with end-stage renal disease receiving dialysis, the mean exenatide exposure increased by 3.37-fold as compared with values obtained from patients with normal renal function. In patients with ESRD receiving dialysis, exenatide was poorly tolerated due to gastrointestinal side effects (nausea, vomiting, diarrhea). Nausea and vomiting due to the drug may cause transient hypovolemia, which may worsen renal function. Postmarketing reports of altered renal function have been documented, including increased serum creatinine, renal impairment, worsened chronic renal failure and acute renal failure (unspecified), sometimes requiring hemodialysis or kidney transplantation. Some of these events occurred in patients receiving pharmacologic agents known to affect renal function or hydration status, such as angiotensin converting enzyme inhibitors (ACE inhibitors), nonsteroidal anti-inflammatory drugs (NSAIDs), or diuretics. Additionally, some renal events occurred in patients who had been experiencing nausea, vomiting, or diarrhea, with or without dehydration. Altered renal function was reversible in many cases with supportive treatment and discontinuation of potentially causative agents, including exenatide. Exenatide has not been found to be directly nephrotoxic in preclinical or clinical studies.

    Tobacco smoking

    Monitor blood glucose for needed dosage adjustments with exenatide in diabetic patients whenever a change in either nicotine intake or tobacco smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose or an increase in absorption of subcutaneous absorption of injections.

    Pregnancy

    Based on animal reproduction studies, there may be risks to the fetus from exposure to exenatide during pregnancy, therefore, exenatide should only be used during pregnancy if the potential benefit justifies the potential risk to the fetus. Limited data with exenatide in pregnant women are not sufficient to determine a drug-associated risk for major birth defects or miscarriage. Animal reproduction studies identified increased adverse fetal and neonatal outcomes from exposure to exenatide during pregnancy and lactation, in association with maternal effects. When possible, it may be prudent to avoid exenatide until data in human pregnancy is available. Based on animal data, advise pregnant women of the potential risk to a fetus. In rats, exenatide extended-release administered during the major period of organogenesis reduced fetal growth and produced skeletal ossification deficits at doses that approximate clinical exposures at the maximum recommended human dose (MRHD) of 2 mg/week. In mice, exenatide administered during gestation and lactation caused increased neonatal deaths at doses that approximate clinical exposures at the MRHD. In animal developmental studies (rabbits, mice), exenatide caused cleft palate, irregular skeletal ossification, and an increased number of neonatal deaths. In these animal studies, exenatide was given in doses 3 to 12 times the human dose, based on the maximum recommended dose of 20 mcg/day (determined from AUC). Exenatide has a short plasma half-life and a high molecular weight. As determined from ex vivo study of healthy, term, human placentas, the passage of exenatide through the placenta appears minimal; the fetal:maternal ratio of exenatide is 0.017 or less. A Pregnancy Registry has been implemented to monitor pregnancy outcomes of women exposed to exenatide during pregnancy; health care providers are encouraged to register patients by calling 1-800-633-9081. The American College of Obstetricians and Gynecologists (ACOG) and the American Diabetes Association (ADA) continue to recommend human insulin as the standard of care in women with diabetes or gestational diabetes mellitus (GDM) requiring medical therapy; insulin does not cross the placenta.

    Breast-feeding

    It is not known if exenatide is excreted into human milk; exenatide has been found in low concentrations (2.5% or less of the concentration in maternal plasma following subcutaneous dosing) in the milk of lactating rats. Because exenatide has a short elimination half-life and a high molecular weight, if it is excreted in human milk, it will probably be in low concentrations. Furthermore, because exenatide is a peptide, it will most likely be digested in the stomach of a nursing infant. Because of the potential for clinically significant adverse reactions from exenatide in breast-fed infants, caution should be exercised, and a decision should be made whether to discontinue nursing or discontinue the drug, taking into account these potential risks against the glycemic benefits to the lactating woman. If exenatide is discontinued and blood glucose is not controlled on diet and exercise alone, insulin therapy should be considered. Other oral hypoglycemics may also be considered as possible alternatives in some patients. Because acarbose has limited systemic absorption, which results in minimal maternal plasma concentrations, clinically significant exposure via breast milk is not expected. Also, while the manufacturers of metformin recommend against breast-feeding while taking the drug, metformin may be a possible alternative for some patients. Data have shown that metformin is excreted into breast milk in small amounts and adverse effects on infant plasma glucose have not been reported in human studies. Tolbutamide has usually been considered compatible with breast-feeding. Glyburide may be a suitable alternative since it was not detected in the breast milk of lactating women who received single and multiple doses of glyburide. If any oral hypoglycemics are used during breast feeding, the nursing infant should be monitored for signs of hypoglycemia, such as increased fussiness or somnolence. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to a maternally ingested drug, healthcare providers are encouraged to report the adverse effect to the FDA.

    Children, infants

    Safety and effectiveness of exenatide have not been established in children or adolescents under 18 years of age. The drug is not indicated in infants or neonates.

    Pancreatitis

    No studies have been performed in patients with a history of pancreatitis; it is not known if these patients are at an increased risk of pancreatitis while taking exenatide. Consideration should be given to alternative antidiabetic therapy in patients with a history of pancreatitis. Post-marketing reports of acute pancreatitis in patients taking exenatide have been reported, including necrotizing or hemorrhagic pancreatitis. In February 2014, the FDA and EMA stated that after reviewing a number of clinical trials and animal studies, the current data does not support an increased risk of pancreatitis and pancreatic cancer in patients receiving incretin mimetics. The agencies have not reached any new conclusions about safety risks of the incretin mimetics, although the totality of the reviewed data provides reassurance. Recommendations will be communicated once the review is complete; continue to consider precautions related to pancreatic risk until more data are available.

    Medullary thyroid carcinoma (MTC), multiple endocrine neoplasia syndrome type 2 (MEN 2), thyroid cancer, thyroid C-cell tumors

    Extended-release exenatide suspension is contraindicated in patients with a personal or family history of certain types of thyroid cancer, specifically thyroid C-cell tumors such as medullary thyroid carcinoma (MTC), or in patients with multiple endocrine neoplasia syndrome type 2 (MEN 2). Extended-release exenatide has been shown to cause dose-dependent and treatment duration-dependent malignant thyroid C-cell tumors at clinically relevant exposures in both genders of rats. A statistically significant increase in malignant thyroid C-cell tumors was observed in female rats receiving extended-release exenatide at 25-times clinical exposure compared to controls. Higher incidences were noted in males above controls in all treated groups at 2 times or more clinical exposure. The potential of extended-release exenatide to induce C-cell tumors in mice has not been evaluated. It is unknown whether extended-release exenatide causes thyroid C-cell tumors, including medullary thyroid carcinoma (MTC), in humans. It is not known whether monitoring serum calcitonin or performing thyroid ultrasounds will diminish human risk of thyroid C-cell tumors. Patients should be counseled on the risk and symptoms of thyroid tumors (e.g. a mass in the neck, dysphagia, dyspnea or persistent hoarseness). Although routine monitoring of serum calcitonin is of uncertain value in patients treated with extended-release exenatide, if serum calcitonin is measured and found to be elevated, the patient should be referred to an endocrinologist for further evaluation.

    Geriatric

    Exenatide has been studied in patients 65 years of age or older during clinical trials; safety and efficacy were not different in older adult patients versus younger adult patients. Geriatric patients are especially at risk for hypoglycemic episodes. Risk factors for hypoglycemia include intensive insulin therapy, use of an excessive insulin dose, improper timing of insulin administration with regards to meals, injection of the wrong type of insulin, decreased renal function, severe liver disease, alcohol ingestion, defective counter regulatory hormone release, missing meals/fasting, and gastroparesis. Because hypoglycemic events may be difficult to recognize in some elderly patients, antidiabetic agent regimens should be carefully managed to obviate an increased risk of severe hypoglycemia. Severe or frequent hypoglycemia is an indication for the modification of treatment regimens, including setting higher glycemic goals. The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities (LTCFs). According to OBRA, the use of antidiabetic medications should include monitoring (e.g., periodic blood glucose) for effectiveness based on desired goals for that individual and to identify complications of treatment such as hypoglycemia or impaired renal function.

    ADVERSE REACTIONS

    Severe

    pancreatitis / Delayed / Incidence not known
    renal failure (unspecified) / Delayed / Incidence not known
    angioedema / Rapid / Incidence not known
    anaphylactoid reactions / Rapid / Incidence not known
    new primary malignancy / Delayed / Incidence not known

    Moderate

    antibody formation / Delayed / 6.0-49.0
    constipation / Delayed / 2.1-10.1
    hypoglycemia / Early / 2.0-5.2
    sinus tachycardia / Rapid / Incidence not known

    Mild

    nausea / Early / 8.2-44.0
    diarrhea / Early / 4.0-20.0
    vomiting / Early / 3.4-18.0
    headache / Early / 4.4-14.0
    restlessness / Early / 9.0-9.0
    dizziness / Early / 2.5-9.0
    gastroesophageal reflux / Delayed / 3.0-7.4
    dyspepsia / Early / 5.0-7.4
    fatigue / Early / 5.6-6.1
    anorexia / Delayed / 1.0-5.0
    asthenia / Delayed / 4.0-5.0
    hyperhidrosis / Delayed / 3.0-3.0
    flatulence / Early / 2.0-2.0
    weight loss / Delayed / Incidence not known
    eructation / Early / Incidence not known
    dysgeusia / Early / Incidence not known
    abdominal pain / Early / Incidence not known
    drowsiness / Early / Incidence not known
    alopecia / Delayed / Incidence not known
    pruritus / Rapid / Incidence not known
    urticaria / Rapid / Incidence not known
    maculopapular rash / Early / Incidence not known

    DRUG INTERACTIONS

    Acetaminophen: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration. (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Butalbital: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Butalbital; Caffeine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Butalbital; Caffeine; Codeine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Caffeine; Dihydrocodeine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Caffeine; Magnesium Salicylate; Phenyltoloxamine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration. (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Caffeine; Phenyltoloxamine; Salicylamide: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration. (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Chlorpheniramine; Phenylephrine; Phenyltoloxamine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Codeine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Dextromethorphan: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Dextromethorphan; Doxylamine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Dextromethorphan; Phenylephrine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Dextromethorphan; Pseudoephedrine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Dichloralphenazone; Isometheptene: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Diphenhydramine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Guaifenesin; Phenylephrine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Hydrocodone: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Oxycodone: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Pentazocine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Propoxyphene: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Pseudoephedrine: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetaminophen; Tramadol: (Minor) Although an interaction is possible, these drugs may be used together. To avoid potential pharmacokinetic interactions that might alter effectiveness of acetaminophen, it may be advisable for patients to take acetaminophen at least 1 hour prior to an exenatide injection. When 1,000 mg acetaminophen elixir was given with 10 mcg exenatide (at 0 hours) and at 1, 2 and 4 hours after exenatide injection, acetaminophen AUCs were decreased by 21%, 23%, 24%, and 14%, respectively; Cmax was decreased by 37%, 56%, 54%, and 41%, respectively. Additionally, acetaminophen Tmax was delayed from 0.6 hours in the control period to 0.9, 4.2, 3.3, and 1.6 hours, respectively. Acetaminophen AUC, Cmax, and Tmax were not significantly changed when acetaminophen was given 1 h before exenatide injection. The mechanism of this interaction is not available (although it may be due to delayed gastric emptying from exenatide use) and the clinical impact has not been assessed.
    Acetazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Acetohexamide: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Aliskiren; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Amlodipine; Benazepril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Amlodipine; Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Amlodipine; Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Amlodipine; Olmesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Amlodipine; Telmisartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Amlodipine; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Amoxicillin; Clarithromycin; Lansoprazole: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Amoxicillin; Clarithromycin; Omeprazole: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Amprenavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Androgens: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
    Angiotensin II receptor antagonists: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Angiotensin-converting enzyme inhibitors: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Aspirin, ASA: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Butalbital; Caffeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Caffeine; Dihydrocodeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Carisoprodol: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Dipyridamole: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Omeprazole: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Oxycodone: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Aspirin, ASA; Pravastatin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Atazanavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Atazanavir; Cobicistat: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    atypical antipsychotic: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
    Azelaic Acid; Copper; Folic Acid; Nicotinamide; Pyridoxine; Zinc: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. When used at daily doses of 750 to 2,000 mg, niacin significantly lowers LDL cholesterol and triglycerides while increasing HDL cholesterol. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients on antidiabetic therapy for blood glucose control if niacin (nicotinic acid) is added or deleted to the medication regimen and adjust dosages as clinically warranted
    Azilsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Azilsartan; Chlorthalidone: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Benazepril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Beta-blockers: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
    Bismuth Subsalicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Bortezomib: (Moderate) During clinical trials of bortezomib, hypoglycemia and hyperglycemia were reported in diabetic patients receiving antidiabetic agents. Patients taking antidiabetic agents and receiving bortezomib treatment may require close monitoring of their blood glucose levels and dosage adjustment of their medication.
    Candesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Captopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Carbonic anhydrase inhibitors: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Chloroquine: (Major) Careful monitoring of blood glucose is recommended when chloroquine and antidiabetic agents, including the incretin mimetics, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with chloroquine and an antidiabetic agent.
    Chlorpromazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Chlorpropamide: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Chlorthalidone; Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
    Choline Salicylate; Magnesium Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Chromium: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended.
    Ciprofloxacin: (Moderate) Careful monitoring of blood glucose is recommended when quinolones and antidiabetic agents, including the incretin mimetics, are coadministered. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent.
    Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
    Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
    Codeine; Phenylephrine; Promethazine: (Minor) It is unclear if phenothiazines directly interact with antidiabetic agents, phenothiazines have been reported to increase blood glucose concentrations. Since promethazine is a phenothiazine antihistamine, it should be used cautiously in patients receiving antidiabetic agents; patients should routinely monitor their blood glucose as indicated.
    Codeine; Promethazine: (Minor) It is unclear if phenothiazines directly interact with antidiabetic agents, phenothiazines have been reported to increase blood glucose concentrations. Since promethazine is a phenothiazine antihistamine, it should be used cautiously in patients receiving antidiabetic agents; patients should routinely monitor their blood glucose as indicated.
    Conjugated Estrogens; Medroxyprogesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Corticosteroids: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
    Cyclosporine: (Moderate) Cyclosporine has been reported to cause hyperglycemia. It may have direct beta-cell toxicity; the effects may be dose-related. Patients should be monitored for worsening of glycemic control if therapy with cyclosporine is initiated in patients receiving antidiabetic agents, including incretin mimetics.
    Danazol: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
    Darunavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Darunavir; Cobicistat: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Dextromethorphan; Promethazine: (Minor) It is unclear if phenothiazines directly interact with antidiabetic agents, phenothiazines have been reported to increase blood glucose concentrations. Since promethazine is a phenothiazine antihistamine, it should be used cautiously in patients receiving antidiabetic agents; patients should routinely monitor their blood glucose as indicated.
    Diazoxide: (Minor) Diazoxide, when administered intravenously or orally, produces a prompt dose-related increase in blood glucose level, due primarily to an inhibition of insulin release from the pancreas, and also to an extrapancreatic effect. The hyperglycemic effect begins within an hour and generally lasts no more than 8 hours in the presence of normal renal function. The hyperglycemic effect of diazoxide is expected to be antagonized by certain antidiabetic agents (e.g., insulin or a sulfonylurea). Blood glucose should be closely monitored.
    Dienogest; Estradiol valerate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Digoxin: (Moderate) Repeat doses of exenatide (10 mcg SQ twice daily) decreased the Cmax of digoxin (0.25 mg PO daily) by 17% and delayed Tmax by roughly 2.5 hours. Overall steady state AUC of digoxin was not altered. The mechanism of the interaction is not known (although it may be due to delayed gastric emptying), nor is the clinical significance of this potential interaction. The manufacturer of digoxin recommends measuring serum digoxin concentrations prior to initiation of exenatide. Continue monitoring during concomitant treatment and increase the digoxin dose by 20-40% as necessary.
    Disopyramide: (Moderate) Disopyramide may enhance the hypoglycemic effects of antidiabetic agents. Patients receiving this combination should be monitored for changes in glycemic control.
    Drospirenone; Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Drospirenone; Ethinyl Estradiol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Drospirenone; Ethinyl Estradiol; Levomefolate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Enalapril, Enalaprilat: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Enalapril; Felodipine: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Eprosartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Esterified Estrogens; Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
    Estradiol Cypionate; Medroxyprogesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Estradiol; Levonorgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Estradiol; Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Estradiol; Norgestimate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Estrogens: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as combined hormonal oral contraceptives (OCs). Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. atients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
    Ethanol: (Moderate) Patients should be advised to limit alcohol (ethanol) ingestion when treated with an antidiabetic agent. Ethanol inhibits gluconeogenesis, which can contribute to or increase the risk for hypoglycemia. In some patients, hypoglycemia can be prolonged. If a patient with diabetes ingests alcohol, they should be counselled to to avoid ingestion of alcohol on an empty stomach, which increases risk for low blood sugar. Patients should also be aware of the carbohydrate intake provided by certain types of alcohol in the diet, which can contribute to poor glycemic control. If a patient chooses to ingest alcohol, they should monitor their blood glucose frequently. Many non-prescription drug products may be formulated with alcohol; instruct patients to scrutinize product labels prior to consumption.
    Ethinyl Estradiol; Desogestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Ethynodiol Diacetate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Etonogestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Levonorgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Levonorgestrel; Ferrous bisglycinate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Levonorgestrel; Folic Acid; Levomefolate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Norelgestromin: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Norethindrone Acetate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Norethindrone Acetate; Ferrous fumarate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Norethindrone; Ferrous fumarate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Norgestimate: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethinyl Estradiol; Norgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Ethotoin: (Minor) The hydantoin anticonvulsants ethotoin, fosphenytoin and phenytoin can decrease the hypoglycemic effects of incretin mimetics by producing an increase in blood glucose levels. Patients receiving incretin mimetics should be closely monitored for signs indicating loss of diabetic control when therapy with a hydantoin is instituted. Conversely, patients should be closely monitored for signs of hypoglycemia when therapy with a hydantoin is discontinued.
    Etonogestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Fibric acid derivatives: (Moderate) Dose reductions and increased frequency of glucose monitoring may be required when antidiabetic agents are administered with fibric acid derivatives (e.g., clofibrate, fenofibric acid, fenofibrate, gemfibrozil). Fibric acid derivatives may enhance the hypoglycemic effects of antidiabetic agents through increased insulin sensitivity and decreased glucagon secretion.
    Fluoxetine: (Moderate) In patients with diabetes mellitus, fluoxetine may alter glycemic control. Hypoglycemia has occurred during fluoxetine therapy. Hyperglycemia has developed in patients with diabetes mellitus following discontinuation of the drug. The dosage of insulin and/or other antidiabetic agents may need to be adjusted when therapy with fluoxetine is instituted or discontinued.
    Fluoxetine; Olanzapine: (Moderate) In patients with diabetes mellitus, fluoxetine may alter glycemic control. Hypoglycemia has occurred during fluoxetine therapy. Hyperglycemia has developed in patients with diabetes mellitus following discontinuation of the drug. The dosage of insulin and/or other antidiabetic agents may need to be adjusted when therapy with fluoxetine is instituted or discontinued.
    Fluoxymesterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
    Fluphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Fosamprenavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Fosinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Fosphenytoin: (Minor) The hydantoin anticonvulsants ethotoin, fosphenytoin and phenytoin can decrease the hypoglycemic effects of incretin mimetics by producing an increase in blood glucose levels. Patients receiving incretin mimetics should be closely monitored for signs indicating loss of diabetic control when therapy with a hydantoin is instituted. Conversely, patients should be closely monitored for signs of hypoglycemia when therapy with a hydantoin is discontinued.
    Garlic, Allium sativum: (Moderate) Patients receiving antidiabetic agents should use dietary supplements of Garlic, Allium sativum with caution. Constituents in garlic might have some antidiabetic activity, and may increase serum insulin levels and increase glycogen storage in the liver. Monitor blood glucose and glycemic control. Patients with diabetes should inform their health care professionals of their intent to ingest garlic dietary supplements. Some patients may require adjustment to their hypoglycemic medications over time. One study stated that additional garlic supplementation (0.05 to 1.5 grams PO per day) contributed to improved blood glucose control in patients with type 2 diabetes mellitus within 1 to 2 weeks, and had positive effects on total cholesterol and high/low density lipoprotein regulation over time. It is unclear if hemoglobin A1C is improved or if improvements are sustained with continued treatment beyond 24 weeks. Other reviews suggest that garlic may provide modest improvements in blood lipids, but few studies demonstrate decreases in blood glucose in diabetic and non-diabetic patients. More controlled trials are needed to discern if garlic has an effect on blood glucose in patients with diabetes. When garlic is used in foods or as a seasoning, or at doses of 50 mg/day or less, it is unlikely that blood glucose levels are affected to any clinically significant degree.
    Gemifloxacin: (Moderate) Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones, such as gemifloxacin, and an antidiabetic agent, including incretin mimetics. Therefore, careful monitoring of blood glucose is recommended when quinolones and antidiabetic agents, are coadministered.
    Glimepiride: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Glimepiride; Pioglitazone: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Glimepiride; Rosiglitazone: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Glipizide: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Glipizide; Metformin: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Glyburide: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Glyburide; Metformin: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Green Tea: (Moderate) Green tea catechins have been shown to decrease serum glucose concentrations in vitro. Patients with diabetes mellitus taking incretin mimetics should be monitored closely for hypoglycemia if consuming green tea.
    Hydantoins: (Minor) The hydantoin anticonvulsants ethotoin, fosphenytoin and phenytoin can decrease the hypoglycemic effects of incretin mimetics by producing an increase in blood glucose levels. Patients receiving incretin mimetics should be closely monitored for signs indicating loss of diabetic control when therapy with a hydantoin is instituted. Conversely, patients should be closely monitored for signs of hypoglycemia when therapy with a hydantoin is discontinued.
    Hydrochlorothiazide, HCTZ; Irbesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Hydrochlorothiazide, HCTZ; Lisinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Hydrochlorothiazide, HCTZ; Losartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Hydrochlorothiazide, HCTZ; Olmesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Hydrochlorothiazide, HCTZ; Quinapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Hydrochlorothiazide, HCTZ; Telmisartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Hydrochlorothiazide, HCTZ; Triamterene: (Minor) Triamterene can decrease the hypoglycemic effects of antidiabetic agents, such as incretin mimetics, by producing an increase in blood glucose levels. Patients on antidiabetics should be monitored for changes in blood glucose control if triamterene is added or deleted. Dosage adjustments may be necessary.
    Hydrochlorothiazide, HCTZ; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Hydroxychloroquine: (Major) Careful monitoring of blood glucose is recommended when hydroxychloroquine and antidiabetic agents, including the incretin mimetics, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with hydroxychloroquine and an antidiabetic agent.
    Hydroxyprogesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Indapamide: (Moderate) A potential pharmacodynamic interaction exists between indapamide and antidiabetic agents, like incretin mimetics. Indapamide can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia.
    Indinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Insulin Aspart: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins. Although specific dose recommendations are not available, a lower dose of the insulin may be required to reduce the risk of hypoglycemia in this setting. The concurrent use of exenatide with prandial insulin has not been studied. Exenatide may be used with basal insulin regimens. Adequate blood glucose monitoring should be continued and followed.
    Insulin Degludec: (Major) Exenatide may be used with basal insulin such as insulin degludec. Specific dose recommendations are not available, however, a lower dose of the insulin may be required when initating exenatide. The dose of another basal insulin was decreased by 20% in patients with an A1C 8% or less to minimize the risk of hypoglycemia when initiating exenatide during clinical trials. Adequate blood glucose monitoring should be continued and followed.
    Insulin Degludec; Liraglutide: (Major) Exenatide may be used with basal insulin such as insulin degludec. Specific dose recommendations are not available, however, a lower dose of the insulin may be required when initating exenatide. The dose of another basal insulin was decreased by 20% in patients with an A1C 8% or less to minimize the risk of hypoglycemia when initiating exenatide during clinical trials. Adequate blood glucose monitoring should be continued and followed.
    Insulin Detemir: (Major) The manufacturer of insulin detemir recommends initiating therapy with insulin detemir at 10 units subcutaneously once daily when combining with a GLP-1 receptor agonist such as exenatide. Patients should also self-monitor blood glucose levels.
    Insulin Glargine: (Major) In a 30-week safety and efficacy trial, when exenatide was initiated in combination with insulin glargine, the dose of insulin glargine was decreased by 20% in patients with a hemoglobin A1C of 8% or less to minimize the risk of hypoglycemia. The manufacturer of exenatide provides an insulin glargine dose titration algorithm to aide clinicians when using exenatide with insulin glargine; consult product labels. Patients should also self-monitor blood glucose levels.
    Insulin Glargine; Lixisenatide: (Major) In a 30-week safety and efficacy trial, when exenatide was initiated in combination with insulin glargine, the dose of insulin glargine was decreased by 20% in patients with a hemoglobin A1C of 8% or less to minimize the risk of hypoglycemia. The manufacturer of exenatide provides an insulin glargine dose titration algorithm to aide clinicians when using exenatide with insulin glargine; consult product labels. Patients should also self-monitor blood glucose levels.
    Insulin Glulisine: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins. Although specific dose recommendations are not available, a lower dose of the insulin may be required to reduce the risk of hypoglycemia in this setting. The concurrent use of exenatide with prandial insulin has not been studied. Exenatide may be used with basal insulin regimens. Adequate blood glucose monitoring should be continued and followed.
    Insulin Lispro: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins. Although specific dose recommendations are not available, a lower dose of the insulin may be required to reduce the risk of hypoglycemia in this setting. The concurrent use of exenatide with prandial insulin has not been studied. Exenatide may be used with basal insulin regimens. Adequate blood glucose monitoring should be continued and followed.
    Insulin Regular: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins. Although specific dose recommendations are not available, a lower dose of the insulin may be required to reduce the risk of hypoglycemia in this setting. The concurrent use of exenatide with prandial insulin has not been studied. Exenatide may be used with basal insulin regimens. Adequate blood glucose monitoring should be continued and followed.
    Insulin, Inhaled: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins. Although specific dose recommendations are not available, a lower dose of the insulin may be required to reduce the risk of hypoglycemia in this setting. The concurrent use of exenatide with prandial insulin has not been studied. Exenatide may be used with basal insulin regimens. Adequate blood glucose monitoring should be continued and followed.
    Irbesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Isocarboxazid: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
    Isoniazid, INH: (Minor) Although rare, isoniazid, INH may increase blood sugar. Antidiabetic agent requirements may be increased when patients are administered isoniazid, INH concomitantly. Patients should be closely monitored for changes in glycemic control if isoniazid therapy is initiated or discontinued.
    Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Minor) Although rare, isoniazid, INH may increase blood sugar. Antidiabetic agent requirements may be increased when patients are administered isoniazid, INH concomitantly. Patients should be closely monitored for changes in glycemic control if isoniazid therapy is initiated or discontinued.
    Isoniazid, INH; Rifampin: (Minor) Although rare, isoniazid, INH may increase blood sugar. Antidiabetic agent requirements may be increased when patients are administered isoniazid, INH concomitantly. Patients should be closely monitored for changes in glycemic control if isoniazid therapy is initiated or discontinued.
    Lanreotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when lanreotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Lanreotide inhibits the secretion of insulin and glucagon. Patients treated with lanreotide may experience either hypoglycemia or hyperglycemia.
    Leuprolide; Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Levocarnitine: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended.
    Levofloxacin: (Moderate) Careful monitoring of blood glucose is recommended when levofloxacin and antidiabetic agents, including the incretin mimetics, are coadministered. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent.
    Levonorgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Levothyroxine: (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued.
    Levothyroxine; Liothyronine (Porcine): (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued.
    Levothyroxine; Liothyronine (Synthetic): (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued.
    Linezolid: (Moderate) Hypoglycemia, including symptomatic episodes, has been noted in post-marketing reports with linezolid in patients with diabetes mellitus receiving therapy with antidiabetic agents, such as insulin and oral hypoglycemic agents. Diabetic patients should be monitored for potential hypoglycemic reactions while on linezolid. If hypoglycemia occurs, discontinue or decrease the dose of the antidiabetic agent or discontinue the linezolid therapy. Linezolid is a reversible, nonselective MAO inhibitor and other MAO inhibitors have been associated with hypoglycemic episodes in diabetic patients receiving insulin or oral hypoglycemic agents.
    Liothyronine: (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued.
    Lisinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Lithium: (Moderate) Lithium may cause variable effects on glycemic control when used in patients receiving antidiabetic therapy iincluding incretin mimetics. Blood glucose concentrations should be closely monitored if lithium is taken by the patient. Dosage adjustments of insulin may be necessary.
    Lomefloxacin: (Moderate) Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent. Therefore, careful monitoring of blood glucose is recommended when quinolones and antidiabetic agents are co-administered.
    Loop diuretics: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
    Lopinavir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Lorcaserin: (Moderate) In general, weight reduction may increase the risk of hypoglycemia in patients with type 2 diabetes mellitus treated with antidiabetic agents, such as insulin and/or insulin secretagogues (e.g., sulfonylureas). In clinical trials, lorcaserin use was associated with reports of hypoglycemia. Blood glucose monitoring is warranted in patients with type 2 diabetes prior to starting and during lorcaserin treatment. Dosage adjustments of anti-diabetic medications should be considered. If a patient develops hypoglycemia during treatment, adjust anti-diabetic drug regimen accordingly. Of note, lorcaserin has not been studied in combination with insulin.
    Losartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Lovastatin; Niacin: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. When used at daily doses of 750 to 2,000 mg, niacin significantly lowers LDL cholesterol and triglycerides while increasing HDL cholesterol. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients on antidiabetic therapy for blood glucose control if niacin (nicotinic acid) is added or deleted to the medication regimen and adjust dosages as clinically warranted
    Magnesium Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Mecasermin rinfabate: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
    Mecasermin, Recombinant, rh-IGF-1: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
    Medroxyprogesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Megestrol: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Meperidine; Promethazine: (Minor) It is unclear if phenothiazines directly interact with antidiabetic agents, phenothiazines have been reported to increase blood glucose concentrations. Since promethazine is a phenothiazine antihistamine, it should be used cautiously in patients receiving antidiabetic agents; patients should routinely monitor their blood glucose as indicated.
    Mesoridazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Mestranol; Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Metformin; Repaglinide: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as repaglinide. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Methazolamide: (Minor) Carbonic anhydrase inhibitors may alter blood sugar. Both hyperglycemia and hypoglycemia have been described in patients treated with acetazolamide. This should be taken into consideration in patients with impaired glucose tolerance or diabetes mellitus who are receiving antidiabetic agents. Monitor blood glucose and for changes in glycemic control and be alert for evidence of an interaction.
    Methyltestosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
    Metoclopramide: (Moderate) Metoclopramide can enhance gastric emptying in patients with diabetes. Typically, blood glucose could be affected, which, in turn, may affect the clinical response to antidiabetic agents. However, incretin mimetics have been shown to slow gastric emptying. The clinical effects of these competing mechanisms are not known. The dosing of antidiabetic agents may require adjustment in patients who receive metoclopramide. Blood glucose should be closely monitored and antidiabetic agents adjusted accordingly in this situation.
    Metyrapone: (Moderate) In patients taking insulin or other antidiabetic agents, the signs and symptoms of acute metyrapone toxicity (e.g., symptoms of acute adrenal insufficiency) may be aggravated or modified.
    Moexipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Monoamine oxidase inhibitors: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
    Moxifloxacin: (Moderate) Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones, such as moxifloxacin, and an antidiabetic agent, including incretin mimetics. Therefore, careful monitoring of blood glucose is recommended when quinolones and antidiabetic agents, are coadministered.
    Nandrolone Decanoate: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
    Nateglinide: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as nateglinide. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Nebivolol; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Nelfinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Niacin, Niacinamide: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. When used at daily doses of 750 to 2,000 mg, niacin significantly lowers LDL cholesterol and triglycerides while increasing HDL cholesterol. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients on antidiabetic therapy for blood glucose control if niacin (nicotinic acid) is added or deleted to the medication regimen and adjust dosages as clinically warranted
    Niacin; Simvastatin: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. When used at daily doses of 750 to 2,000 mg, niacin significantly lowers LDL cholesterol and triglycerides while increasing HDL cholesterol. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients on antidiabetic therapy for blood glucose control if niacin (nicotinic acid) is added or deleted to the medication regimen and adjust dosages as clinically warranted
    Nicotine: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
    Norethindrone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Norfloxacin: (Moderate) Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent. Therefore, careful monitoring of blood glucose is recommended when quinolones and antidiabetic agents are coadministered.
    Norgestrel: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Octreotide: (Moderate) Monitor patients receiving octreotide concomitantly with insulin or other antidiabetic agents for changes in glycemic control and adjust doses of these medications accordingly. Octreotide alters the balance between the counter-regulatory hormones of insulin, glucagon, and growth hormone, which may result in hypoglycemia or hyperglycemia. The hypoglycemia or hyperglycemia which occurs during octreotide acetate therapy is usually mild, but may result in overt diabetes mellitus or necessitate dose changes in insulin or other hypoglycemic agents. In patients with concomitant type1 diabetes mellitus, octreotide is likely to affect glucose regulation, and insulin requirements may be reduced. Symptomatic hypoglycemia, which may be severe, has been reported in type 1 diabetic patients. In Type 2 diabetes patients with partially intact insulin reserves, octreotide administration may result in decreases in plasma insulin levels and hyperglycemia.
    Ofloxacin: (Moderate) Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones, such as ofloxacin, and an antidiabetic agent, including incretin mimetics. Therefore, careful monitoring of blood glucose is recommended when quinolones and antidiabetic agents, are coadministered.
    Olmesartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Ombitasvir; Paritaprevir; Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Orlistat: (Minor) Weight-loss may affect glycemic control in patients with diabetes mellitus. In many patients, glycemic control may improve. A reduction in dose of oral hypoglycemic medications may be required in some patients taking orlistat. Monitor blood glucose and glycemic control and adjust therapy as clinically indicated.
    Oxandrolone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
    Oxymetholone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
    Pasireotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pasireotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pasireotide inhibits the secretion of insulin and glucagon. Patients treated with pasireotide may experience either hypoglycemia or hyperglycemia.
    Pegvisomant: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pegvisomant treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pegvisomant increases sensitivity to insulin by lowering the activity of growth hormone, and in some patients glucose tolerance improves with treatment. Patients with diabetes treated with pegvisomant and antidiabetic agents may be more likely to experience hypoglycemia.
    Pentamidine: (Moderate) Pentamidine can be harmful to pancreatic cells. This effect may lead to hypoglycemia acutely, followed by hyperglycemia with prolonged pentamidine therapy. Patients on antidiabetic agents should be monitored for the need for dosage adjustments during the use of pentamidine.
    Pentoxifylline: (Moderate) Pentoxiphylline has been used concurrently with antidiabetic agents without observed problems, but it may enhance the hypoglycemic action of antidiabetic agents. Patients should be monitored for changes in glycemic control while receiving pentoxifylline in combination with antidiabetic agents.
    Perindopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Perindopril; Amlodipine: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Perphenazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Perphenazine; Amitriptyline: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Phenelzine: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
    Phenothiazines: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Phenylephrine; Promethazine: (Minor) It is unclear if phenothiazines directly interact with antidiabetic agents, phenothiazines have been reported to increase blood glucose concentrations. Since promethazine is a phenothiazine antihistamine, it should be used cautiously in patients receiving antidiabetic agents; patients should routinely monitor their blood glucose as indicated.
    Phenytoin: (Minor) The hydantoin anticonvulsants ethotoin, fosphenytoin and phenytoin can decrease the hypoglycemic effects of incretin mimetics by producing an increase in blood glucose levels. Patients receiving incretin mimetics should be closely monitored for signs indicating loss of diabetic control when therapy with a hydantoin is instituted. Conversely, patients should be closely monitored for signs of hypoglycemia when therapy with a hydantoin is discontinued.
    Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
    Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
    Prochlorperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Progesterone: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Progestins: (Moderate) Incretin mimetics slow gastric emptying and should be used with caution in patients receiving oral medications that require minimum threshold concentrations for efficacy, such as progestin-only oral contraceptives. Some incretin mimetics make specific recommendations to reduce the risk for interaction. Taking an oral contraceptive (OC) at least 1 hour before an incretin mimetic injection should reduce the risk of an effect on contraceptive or hormonal absorption. For Lixisenatide, the manufacturer recommends taking the OC 1 hour before injection or 11 hours after injection to reduce the effect on absorption. Additionally, progestins can impair glucose tolerance. Monitor blood glucose more carefully during initiation or discontinuation of hormone replacement or hormonal contraceptive treatment. Patients receiving incretin mimetics should be closely monitored for changes in glycemic control.
    Promethazine: (Minor) It is unclear if phenothiazines directly interact with antidiabetic agents, phenothiazines have been reported to increase blood glucose concentrations. Since promethazine is a phenothiazine antihistamine, it should be used cautiously in patients receiving antidiabetic agents; patients should routinely monitor their blood glucose as indicated.
    Protease inhibitors: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Quinapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Ramipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Regular Insulin; Isophane Insulin (NPH): (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas and glinides (e.g., nateglinide, repaglinide, or metformin; repaglinide). Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Repaglinide: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as repaglinide. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Reserpine: (Moderate) Reserpine may mask the signs and symptoms of hypoglycemia. Patients receiving reserpine concomitantly with antidiabetic agents, such as incretin mimetics, should be monitored for changes in glycemic control.
    Ritonavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Sacubitril; Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Salicylates: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Salsalate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood glucose concentrations. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents. Monitor blood glucose closely during coadministration.
    Saquinavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Selegiline: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
    Somatropin, rh-GH: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
    Sparfloxacin: (Moderate) Hyperglycemia and hypoglycemia have been reported in patients treated concomitantly with quinolones and antidiabetic agents. Therefore, careful monitoring of blood glucose is recommended when quinolones and antidiabetic agents are coadministered.
    Sulfonamides: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents; patients with diabetes mellitus should be closely monitored during sulfonamide treatment. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides.
    Sulfonylureas: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Sympathomimetics: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
    Tacrolimus: (Moderate) Tacrolimus has been reported to cause hyperglycemia. Furthermore, tacrolimus has been implicated in causing insulin-dependent diabetes mellitus in patients after renal transplantation. The mechanism of hyperglycemia is thought to be through direct beta-cell toxicity. Patients should be monitored for worsening of glycemic control if therapy with tacrolimus is initiated in patients receiving antidiabetic agents, including incretin mimetics.
    Tegaserod: (Moderate) Tegaserod can enhance gastric emptying in patients with diabetes. Typically, blood glucose could be affected, which, in turn, may affect the clinical response to antidiabetic agents. However, incretin mimetics have been shown to slow gastric emptying. The clinical effects of these competing mechanisms is not known. The dosing of antidiabetic agents may require adjustment and blood glucose should be closely monitored when coadministered with tegaserod.
    Telmisartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Testolactone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
    Testosterone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Moniitor blood glucose and HbA1C when these drugs are used together.
    Thiazide diuretics: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Thiethylperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Thioridazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Thyroid hormones: (Minor) Thyroid hormones are important in the regulation of carbohydrate metabolism, gluconeogenesis, the mobilization of glycogen stores, and protein synthesis. When thyroid hormones are added to existing diabetes therapy, the glucose-lowering effect may be reduced. Close monitoring of blood glucose is necessary for individuals who use antidiabetic agents whenever there is a change in thyroid treatment. It may be necessary to adjust the dose of antidiabetic agents if thyroid hormones are added or discontinued.
    Tipranavir: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of protease inhibitors. Patients taking antidiabetic agents should be closely monitored for changes in glycemic control, specifically hyperglycemia, if protease inhibitor therapy is initiated.
    Tobacco: (Minor) Tobacco smoking is known to aggravate insulin resistance. The cessation of tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
    Tolazamide: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Tolbutamide: (Moderate) The risk of hypoglycemia is increased when exenatide is used in combination with insulins or insulin secretagogues such as the sulfonylureas. Although specific dose recommendations are not available, a lower dose of the insulin or secretagogue may be required to reduce the risk of hypoglycemia in this setting. Adequate blood glucose monitoring should be continued and followed.
    Trandolapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Trandolapril; Verapamil: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
    Tranylcypromine: (Moderate) Animal data indicate that monoamine oxidase inhibitors (MAOIs) may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to insulin and oral sulfonylureas. Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents.
    Triamterene: (Minor) Triamterene can decrease the hypoglycemic effects of antidiabetic agents, such as incretin mimetics, by producing an increase in blood glucose levels. Patients on antidiabetics should be monitored for changes in blood glucose control if triamterene is added or deleted. Dosage adjustments may be necessary.
    Trifluoperazine: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Hyperglycemia and glycosuria have been reported. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
    Valsartan: (Moderate) Angiotensin II receptor antagonists may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving these drugs concomitantly should be monitored for changes in glycemic control.
    Warfarin: (Moderate) Cases of an increased INR have been reported with the concomitant use of warfarin and exenatide, sometimes associated with bleeding. Monitor for changes in INR and bleeding when these drugs are coadministered. Dosage adjustments of warfarin may be necessary.

    PREGNANCY AND LACTATION

    Pregnancy

    Based on animal reproduction studies, there may be risks to the fetus from exposure to exenatide during pregnancy, therefore, exenatide should only be used during pregnancy if the potential benefit justifies the potential risk to the fetus. Limited data with exenatide in pregnant women are not sufficient to determine a drug-associated risk for major birth defects or miscarriage. Animal reproduction studies identified increased adverse fetal and neonatal outcomes from exposure to exenatide during pregnancy and lactation, in association with maternal effects. When possible, it may be prudent to avoid exenatide until data in human pregnancy is available. Based on animal data, advise pregnant women of the potential risk to a fetus. In rats, exenatide extended-release administered during the major period of organogenesis reduced fetal growth and produced skeletal ossification deficits at doses that approximate clinical exposures at the maximum recommended human dose (MRHD) of 2 mg/week. In mice, exenatide administered during gestation and lactation caused increased neonatal deaths at doses that approximate clinical exposures at the MRHD. In animal developmental studies (rabbits, mice), exenatide caused cleft palate, irregular skeletal ossification, and an increased number of neonatal deaths. In these animal studies, exenatide was given in doses 3 to 12 times the human dose, based on the maximum recommended dose of 20 mcg/day (determined from AUC). Exenatide has a short plasma half-life and a high molecular weight. As determined from ex vivo study of healthy, term, human placentas, the passage of exenatide through the placenta appears minimal; the fetal:maternal ratio of exenatide is 0.017 or less. A Pregnancy Registry has been implemented to monitor pregnancy outcomes of women exposed to exenatide during pregnancy; health care providers are encouraged to register patients by calling 1-800-633-9081. The American College of Obstetricians and Gynecologists (ACOG) and the American Diabetes Association (ADA) continue to recommend human insulin as the standard of care in women with diabetes or gestational diabetes mellitus (GDM) requiring medical therapy; insulin does not cross the placenta.

    It is not known if exenatide is excreted into human milk; exenatide has been found in low concentrations (2.5% or less of the concentration in maternal plasma following subcutaneous dosing) in the milk of lactating rats. Because exenatide has a short elimination half-life and a high molecular weight, if it is excreted in human milk, it will probably be in low concentrations. Furthermore, because exenatide is a peptide, it will most likely be digested in the stomach of a nursing infant. Because of the potential for clinically significant adverse reactions from exenatide in breast-fed infants, caution should be exercised, and a decision should be made whether to discontinue nursing or discontinue the drug, taking into account these potential risks against the glycemic benefits to the lactating woman. If exenatide is discontinued and blood glucose is not controlled on diet and exercise alone, insulin therapy should be considered. Other oral hypoglycemics may also be considered as possible alternatives in some patients. Because acarbose has limited systemic absorption, which results in minimal maternal plasma concentrations, clinically significant exposure via breast milk is not expected. Also, while the manufacturers of metformin recommend against breast-feeding while taking the drug, metformin may be a possible alternative for some patients. Data have shown that metformin is excreted into breast milk in small amounts and adverse effects on infant plasma glucose have not been reported in human studies. Tolbutamide has usually been considered compatible with breast-feeding. Glyburide may be a suitable alternative since it was not detected in the breast milk of lactating women who received single and multiple doses of glyburide. If any oral hypoglycemics are used during breast feeding, the nursing infant should be monitored for signs of hypoglycemia, such as increased fussiness or somnolence. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to a maternally ingested drug, healthcare providers are encouraged to report the adverse effect to the FDA.

    MECHANISM OF ACTION

    Exenatide is the first in a new class of antihyperglycemic agents called incretin mimetics. Endogenous human incretins, such as glucagon-like peptide-1 (GLP-1) enhance insulin secretion after release from the gut into the systemic circulation. Exenatide is a 39-amino acid GLP-1 agonist isolated from the salivary gland venom of the lizard Heloderma suspectum (Gila monster). Exenatide mimics the enhancement of glucose-dependent insulin secretion and other antihyperglycemic actions of incretins. The exenatide peptide has 53% amino acid similarity to mammalian GLP-1 and has a 3000-fold greater potency for glucose lowering in vivo. Exenatide binds and activates the human GLP-1 receptor site in vitro. Occupation of the GLP-1 receptor site by exenatide results in an increase in both glucose-dependent synthesis of insulin, and in vivo secretion of insulin from pancreatic beta cells in the presence of elevated glucose. Increased synthesis and release of insulin occurs via mechanisms involving cyclic AMP and/or other intracellular signaling pathways.
     
    Exenatide acts to improve glucose control via several mechanisms. Exenatide suppresses glucagon secretion, slows gastric emptying, reduces food intake and promotes ß-cell proliferation. Exenatide acutely improves glycemic control by reducing fasting and postprandial glucose concentrations in patients with type 2 diabetes. Exenatide leads to a release of insulin only in the presence of elevated glucose concentrations. Insulin secretion subsides as euglycemia occurs. First-phase insulin response (release of insulin within 10 minutes following a glucose load) is lost in patients with type 2 diabetes. Loss of first-phase response is a beta cell defect. Exenatide restores first-phase insulin response to an IV bolus of glucose. Both first- and second-phase insulin secretion improved significantly over placebo in patients with type 2 diabetes. In patients with type 2 diabetes, exenatide moderates glucagon secretion and lowers serum glucagon concentrations during periods of hyperglycemia. Lower glucagon concentrations lead to decreased hepatic glucose output and decreased insulin demand. Exenatide does not impair the normal glucagon response to hypoglycemia. Exenatide also slows gastric emptying thereby reducing the rate at which meal-derived glucose appears in the circulation. Exenatide has also been shown to reduce food intake in both animals and humans, which may help to control weight. Exenatide does not increase insulin activity in nondiabetics.

    PHARMACOKINETICS

    Exenatide is given via subcutaneous administration. The mean apparent clearance of exenatide in humans is 9.1 L/hour and is independent of the dose. Exenatide is predominantly eliminated by glomerular filtration with subsequent proteolytic degradation. The mean terminal half-life of the injection solution (Byetta) is 2.4 hours. In most individuals, concentrations of the regular-release injection solution (Byetta) are measurable for approximately 10 hours post-dose. Approximately 10 weeks after discontinuation of exenatide extended-release injection suspension (Bydureon), plasma concentrations generally fall below the minimal detectable concentration of 10 pg/mL.
     
    Affected Cytochrome P450 (CYP) 450 enzymes and drug transporters: None

    Subcutaneous Route

    Exenatide regular-release injection solution (Byetta): Following subcutaneous injection to patients with type 2 diabetes mellitus, exenatide reaches peak plasma concentrations in roughly 2 hours. Mean peak exenatide concentration was 211 pg/mL and overall mean area under the curve (AUC) was 1,036 pg x hour/mL following subcutaneous administration of a 10 mcg dose. Exenatide AUC increased proportionally over the therapeutic dose range of 5 to 10 mcg. The Cmax values increased less than proportionally over the same range. Similar absorption is achieved with subcutaneous administration of exenatide in the abdomen, thigh, or arm. The mean apparent volume of distribution of exenatide following subcutaneous administration of a single dose of exenatide is 28.3 liters.
    Exenatide extended-release injection suspension (Bydureon, Bydureon BCise): Following a single subcutaneous injection, exenatide is released from the suspension microspheres over approximately 10 weeks. Initially, surface-bound exenatide is released resulting in an initial peak around week 2. This is followed by a gradual release of exenatide from the microspheres and a second peak around week 6 to 7. The two peaks represent the hydration and erosion of the microspheres. Following initiation of once weekly exenatide, plasma exenatide concentrations gradually increase over 6 to 7 weeks; mean exenatide concentrations of approximately 300 pg/mL (Bydureon) or 208 pg/mL (Bydureon BCise) were then maintained over once weekly dosing intervals indicating that steady-state was achieved. The mean apparent volume of distribution of exenatide following subcutaneous administration of a single dose of exenatide is 28.3 liters.