ORIAHNN

Browse PDR's full list of drug information

ORIAHNN

Classes

Estrogen with Progestogen Combinations, Excluding Hormonal Contraceptives
Gonadotropin Releasing Hormone Receptor Antagonist

Administration

Hazardous Drugs Classification
NIOSH 2016 List: Group 1
NIOSH (Draft) 2020 List: Table 1
Observe and exercise appropriate precautions for handling, preparation, administration, and disposal of hazardous drugs.
Use gloves to handle. Cutting, crushing, or otherwise manipulating tablets/capsules will increase exposure and require additional protective equipment. Eye/face and respiratory protection may be needed during preparation and administration.

Oral Administration Oral Solid Formulations

Administer the elagolix; estradiol; norethindrone capsule in the morning and the elagolix capsule in the evening at approximately the same times each day.
Doses may be taken with or without food.
Missed dose: The missed dose should be taken within 4 hours of the time that it was supposed to be taken and then the next dose is taken at the usual time. If more than 4 hours have passed since a capsule is usually taken, the missed dose should not be taken and the next dose should be taken at the usual time. Take only 1 morning capsule and 1 evening capsule per day.

Adverse Reactions
Severe

bone fractures / Delayed / 1.5-1.5
breast cancer / Delayed / 0.4-0.4
myocardial infarction / Delayed / Incidence not known
stroke / Early / Incidence not known
thrombosis / Delayed / Incidence not known
thromboembolism / Delayed / Incidence not known
pulmonary embolism / Delayed / Incidence not known
retinal thrombosis / Delayed / Incidence not known
visual impairment / Early / Incidence not known
papilledema / Delayed / Incidence not known
suicidal ideation / Delayed / Incidence not known
pancreatitis / Delayed / Incidence not known
biliary obstruction / Delayed / Incidence not known
new primary malignancy / Delayed / Incidence not known

Moderate

osteopenia / Delayed / 27.0-27.0
hot flashes / Early / 22.0-22.0
hypertension / Early / 3.0-4.9
depression / Delayed / 3.0-3.0
elevated hepatic enzymes / Delayed / 1.1-1.3
osteoporosis / Delayed / Incidence not known
vaginal bleeding / Delayed / Incidence not known
angina / Early / Incidence not known
fluid retention / Delayed / Incidence not known
chest pain (unspecified) / Early / Incidence not known
migraine / Early / Incidence not known
hypertriglyceridemia / Delayed / Incidence not known
hyperlipidemia / Delayed / Incidence not known
hypercholesterolemia / Delayed / Incidence not known
jaundice / Delayed / Incidence not known
cholestasis / Delayed / Incidence not known
cholelithiasis / Delayed / Incidence not known
hyperglycemia / Delayed / Incidence not known
hypothyroidism / Delayed / Incidence not known

Mild

amenorrhea / Delayed / 57.0-61.0
headache / Early / 9.0-9.0
fatigue / Early / 6.0-6.0
libido decrease / Delayed / 3.0-4.9
menorrhagia / Delayed / 3.0-4.9
vomiting / Early / 3.0-4.9
nausea / Early / 3.0-4.9
weight gain / Delayed / 3.0-4.9
alopecia / Delayed / 3.0-4.9
emotional lability / Early / 3.0-4.9
arthralgia / Delayed / 3.0-4.9
infection / Delayed / 3.0-4.9
influenza / Delayed / 3.0-4.9
breakthrough bleeding / Delayed / Incidence not known
abdominal pain / Early / Incidence not known
diplopia / Early / Incidence not known
anxiety / Delayed / Incidence not known
irritability / Delayed / Incidence not known

Boxed Warning
Atrial fibrillation, cardiac disease, cerebrovascular disease, coronary artery disease, endocarditis, hypercholesterolemia, hypertension, myocardial infarction, obesity, peripheral vascular disease, protein C deficiency, protein S deficiency, stroke, systemic lupus erythematosus (SLE), thromboembolic disease, thromboembolism, thrombophlebitis, tobacco smoking, valvular heart disease

A boxed warning exists for the elagolix; estradiol; norethindrone acetate product; estrogen and progestin combinations increase the risk of thromboembolic disorders and vascular events. The use of this product is contraindicated in tobacco smoking women over 35 years of age due to a greatly increased risk for thromboembolism; younger women taking estrogens and progestins are strongly advised not to smoke. Elagolix; estradiol; norethindrone acetate is contraindicated in patients with an active or past history of thromboembolism, thrombophlebitis, thromboembolic disease, coronary artery disease, uncontrolled hypertension, peripheral vascular disease, stroke, or myocardial infarction (MI). An increased risk of cerebrovascular disease (stroke) and deep venous thrombosis (DVT) has been reported with unopposed estrogen therapy. An increased risk of thromboembolism, including pulmonary embolism (PE), DVT, stroke and myocardial infarction (MI) has been reported with estrogen plus progestin therapy. In clinical trials with elagolix; estradiol; norethindrone acetate, 2 thrombotic events occurred in 453 women (thrombosis in the calf and pulmonary embolism). This product is also contraindicated in women who have thrombogenic valvular or thrombogenic rhythm diseases of the heart (e.g., subacute bacterial endocarditis with valvular heart disease, or atrial fibrillation), or known inherited or acquired hypercoagulopathies (e.g., protein S deficiency, protein C deficiency, Factor V Leiden, prothrombin G20210A mutation, antithrombin deficiency, antiphospholipid antibodies). Should a thrombotic or vascular event occur or be suspected, discontinue elagolix; estradiol; norethindrone acetate immediately. In general, the risk is greatest among women over 35 years of age who smoke, and women with uncontrolled hypertension, dyslipidemia, vascular disease, or obesity. Risk factors for cardiac disease, arterial vascular disease (e.g., hypertension, diabetes, hypercholesterolemia, and obesity) and/or venous thromboembolism (VTE) [e.g., personal history or family history of VTE, obesity, smoking, or systemic lupus erythematosus (SLE)] should be monitored and managed appropriately during treatment. The use of estrogen may increase blood pressure. For women with well-controlled hypertension, continue to monitor blood pressure and stop the use of this product if blood pressure rises significantly. Monitor blood pressure in normotensive women treated with elagolix; estradiol; norethindrone acetate.

Common Brand Names

ORIAHNN

Dea Class

Rx

Description

An oral GnRH receptor antagonist (elagolix) combined with estradiol (an estrogen) and norethindrone acetate (a progestin)
Used to manage heavy menstrual bleeding due to uterine fibroids in premenopausal women
Do not use beyond 24 months due to the risk of continued bone loss, which may not be reversible

Dosage And Indications
For the treatment of menorrhagia associated with uterine leiomyomata (fibroids) in premenopausal women. Oral dosage Adults

300 mg elagolix/1 mg estradiol/0.5 mg norethindrone PO once daily in the morning and 300 mg elagolix PO once daily in the evening for up to 24 months. Limit use to 24 months due to the risk for continued bone loss, which may not be reversible.

Dosing Considerations
Hepatic Impairment

Contraindicated for women with any hepatic impairment or disease.

Renal Impairment

No dose adjustment is required in women with any degree of renal impairment or end-stage renal disease (including dialysis).

Drug Interactions

Abacavir; Dolutegravir; Lamivudine: (Moderate) Dolutegravir plasma concentrations may be reduced when administered concurrently with elagolix; thereby increasing the risk for HIV treatment failures or the development of viral-resistance. Data are insufficient to make dosing recommendations; however, predictions regarding this interaction can be made based on the drugs metabolic pathways. Elagolix is a weak to moderate inducer of CYP3A, dolutegravir is partially metabolized by this isoenzyme.
Acarbose: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Concomitant use of dihydrocodeine with elagolix can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If elagolix is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Elagolix is a weak to moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Acetaminophen; Codeine: (Moderate) Concomitant use of codeine with elagolix can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If elagolix is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Elagolix is a weak to moderate CYP3A4 inducer.
Acetaminophen; Hydrocodone: (Moderate) Concomitant use of hydrocodone with elagolix can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal; consider increasing the dose of hydrocodone as needed. If elagolix is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer.
Acetaminophen; Oxycodone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with elagolix is necessary; consider increasing the dose of oxycodone as needed. If elagolix is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Acitretin: (Major) Acitretin reduces the efficacy of oral progestin only contraceptives. Since Acitretin may cause serious birth defects, the patient should use 2 forms of reliable contraception at the same time for at least 1 month before beginning acitretin therapy, during acitretin therapy, and must continue to use them for at least 3 years after acitretin treatment has stopped. It is recommended that the patient either abstain from sexual intercourse or use 2 reliable kinds of birth control at the same time to prevent unwanted pregnancy.
Adagrasib: (Major) Concomitant use of elagolix 200 mg twice daily and adagrasib for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and adagrasib to 6 months. Coadministration may increase elagolix exposure. Elagolix is a CYP3A substrate; adagrasib is a strong inhibitor of CYP3A. Coadministration of elagolix with another strong CYP3A inhibitor increased the AUC of elagolix by 120%. (Moderate) Use caution if coadministration of adagrasib with progestins is necessary, as the systemic exposure of progestins may be increased resulting in an increase in treatment-related adverse reactions. Progestins are metabolized primarily by hydroxylation via a CYP3A; adagrasib is a strong CYP3A inhibitor.
Albuterol; Budesonide: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Alfentanil: (Moderate) Consider an increased dose of alfentanil and monitor for evidence of opioid withdrawal if coadministration with elagolix is necessary. If elagolix is discontinued, consider reducing the alfentanil dosage and monitor for evidence of respiratory depression. Coadministration of a weak to moderate CYP3A4 inducer like elagolix with alfentanil, a CYP3A4 substrate, may decrease exposure to alfentanil resulting in decreased efficacy or onset of withdrawal symptoms in a patient who has developed physical dependence to alfentanil. Alfentanil plasma concentrations will increase once the inducer is stopped, which may increase or prolong the therapeutic and adverse effects, including serious respiratory depression.
Alogliptin: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Alogliptin; Metformin: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance.
Alogliptin; Pioglitazone: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Alpha-glucosidase Inhibitors: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Amikacin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Aminoglycosides: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Amiodarone: (Moderate) Monitor for decreased efficacy of amiodarone if coadministration with elagolix is necessary. Coadministration may decrease amiodarone plasma concentrations. Amiodarone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer.
Amlodipine: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Amlodipine; Atorvastatin: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Amlodipine; Benazepril: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Amlodipine; Celecoxib: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Amlodipine; Olmesartan: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Amlodipine; Valsartan: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Amobarbital: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment.
Amoxicillin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Amoxicillin; Clarithromycin; Omeprazole: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as clarithromycin is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Clarithromycin significantly inhibits OATP1B1, and also inhibits CYP3A and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. Consider an alternative to clarithromycin in a patient receiving elagolix. (Moderate) Coadministration of elagolix with omeprazole may increase plasma concentrations of omeprazole. Consider dosage reduction of omeprazole when elagolix is used concomitantly with higher doses of omeprazole, e.g., in patients with Zollinger-Ellison syndrome; however, no dose adjustments are needed for omeprazole at doses of 40 mg once daily or lower. Elagolix is a weak CYP2C19 inhibitor and omeprazole is a CYP2C19 sensitive substrate. (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available. (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available. In addition, drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Consider monitoring serum potassium concentrations during the first month of dosing in high-risk patients who take strong CYP3A4 inhibitors long-term and concomitantly. Strong CYP3A4 inhibitors include clarithromycin. (Minor) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as clarithromycin may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events. Also, practitioners should be alert to the possibility that breakthrough bleeding or contraceptive failure may occur with clarithromycin.
Amoxicillin; Clavulanic Acid: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Ampicillin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Ampicillin; Sulbactam: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Anastrozole: (Major) Avoid concomitant use of estrogens and anastrozole. Estrogen-containing therapies may reduce the effectiveness of aromatase inhibitors, such as anastrozole.
Apalutamide: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as apalutamide. Concurrent administration of apalutamide with progestins, oral contraceptives, or non-oral combination contraceptives may reduce hormonal concentrations. Progestins are CYP3A4 substrates and apalutamide is a strong CYP3A4 inducer. If the hormone is used for contraception, an alternate or additional form of contraception should be considered. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of apalutamide. Monitor hormonal replacement therapy for loss of efficacy while on apalutamide, with dose adjustments as needed. Women taking hormonal replacement and apalutamide should report breakthrough bleeding to their prescribers. This interaction does not apply to vaginal preparations of progesterone (e.g., Crinone, Endometrin). (Major) Women taking both estrogens and apalutamide should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed apalutamide. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of apalutamide. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on apalutamide, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and apalutamide is a strong CYP3A4 inducer. Concurrent administration may increase estrogen elimination. (Moderate) Concomitant use of elagolix and apalutamide may result in decreased concentrations of elagolix; monitor for decreased efficacy with coadministration. Elagolix is a CYP3A substrate; apalutamide is a strong inducer of CYP3A.
Aprepitant, Fosaprepitant: (Major) If aprepitant, fosaprepitant is coadministered with hormonal contraceptives, including hormonal contraceptive devices (skin patches, implants, and hormonal IUDs), use an alternative or back-up non-hormonal method of contraception (e.g., condoms, spermicides) during treatment and for at least 1 month following the last dose of aprepitant, fosaprepitant. The efficacy of estradiol may be reduced when coadministered with aprepitant, fosaprepitant and for 28 days after the last dose. The exact mechanism for this interaction has not been described. Ethinyl estradiol is a CYP3A4 substrate and aprepitant, fosaprepitant is a CYP3A4 inducer; however, aprepitant, fosaprepitant is also a dose-dependent weak-to-moderate CYP3A4 inhibitor. When administered as an oral 3-day regimen (125mg/80mg/80mg) in combination with ondansetron and dexamethasone, aprepitant decreased trough concentrations of ethinyl estradiol and norethindrone by up to 64% for 3 weeks post-treatment. When ethinyl estradiol and norgestimate were administered on days 1 to 21 and aprepitant (40mg) give as a single dose on day 8, the AUC of ethinyl estradiol decreased by 4% on day 8 and by 29% on day 12; the AUC of norelgestromin increased by 18% on day 8, and decreased by 10% on day 12. Trough concentrations of both ethinyl estradiol and norelgestromin were generally lower after coadministration of aprepitant (40mg) on day 8 compared to administration without aprepitant. Specific studies have not been done with other hormonal contraceptives (e.g., progestins, non-oral combination contraceptives), an alternative or additional non-hormonal method of birth control during treatment and for 28 days after treatment is prudent to avoid potential for contraceptive failure. Additionally, although not specifically studied, because estrogens are CYP3A4 substrates, the efficacy of estrogens or progestins when used for hormone replacement may also be reduced. The clinical significance of this is not known since aprepitant, fosaprepitant is only used intermittently. (Major) If aprepitant, fosaprepitant is coadministered with hormonal contraceptives, including hormonal contraceptive devices (skin patches, implants, and hormonal IUDs), use an alternative or back-up non-hormonal method of contraception (e.g., condoms, spermicides) during treatment and for at least 1 month following the last dose of aprepitant, fosaprepitant. The efficacy of progestins may be reduced when coadministered with aprepitant, fosaprepitant and for 28 days after the last dose. The exact mechanism for this interaction has not been described. Progestins are CYP3A4 substrates and aprepitant, fosaprepitant is a CYP3A4 inducer; however, aprepitant, fosaprepitant is also a dose-dependent weak-to-moderate CYP3A4 inhibitor. When administered as an oral 3-day regimen (125mg/80mg/80mg) in combination with ondansetron and dexamethasone, aprepitant decreased trough concentrations of ethinyl estradiol and norethindrone by up to 64% for 3 weeks post-treatment. When ethinyl estradiol and norgestimate were administered on days 1 to 21 and aprepitant (40mg) give as a single dose on day 8, the AUC of ethinyl estradiol decreased by 4% on day 8 and by 29% on day 12; the AUC of norelgestromin increased by 18% on day 8, and decreased by 10% on day 12. Trough concentrations of both ethinyl estradiol and norelgestromin were generally lower after coadministration of aprepitant (40mg) on day 8 compared to administration without aprepitant. Specific studies have not been done with other hormonal contraceptives (e.g., progestins, non-oral combination contraceptives), an alternative or additional non-hormonal method of birth control during treatment and for 28 days after treatment is prudent to avoid potential for contraceptive failure. The clinical significance of this is not known since aprepitant, fosaprepitant is only used intermittently.
Aripiprazole: (Moderate) Because aripiprazole is partially metabolized by CYP3A4, caution is advisable during coadministration of a CYP3A4 inducer, such as elagolix. If these agents are used in combination, the patient should be carefully monitored for a decrease in aripiprazole efficacy. A dose adjustment of aripiprazole may be needed. Avoid concurrent use of Abilify Maintena with a CYP3A4 inducer when the combined treatment period exceeds 14 days because aripiprazole blood concentrations decline and may become suboptimal. There are no dosing recommendations for Aristada or Aristada Initio during use of a mild to moderate CYP3A4 inducer.
Armodafinil: (Major) Armodafinil may cause failure of oral contraceptives or hormonal contraceptive-containing implants or devices due to induction of CYP3A4 isoenzyme metabolism of estradiol, ethinyl estradiol and/or the progestins in these products. Female patients of child-bearing potential should be advised to discuss contraceptive options with their health care provider to prevent unintended pregnancies. An alternative method or an additional method of contraception should be utilized during armodafinil therapy and continued for one month after armodafinil discontinuation. (Major) Armodafinil may cause failure of oral contraceptives or hormonal contraceptive-containing implants or devices due to induction of CYP3A4 isoenzyme metabolism of estrogens and/or the progestins in these products. Female patients of child-bearing potential should be advised to discuss contraceptive options with their health care provider to prevent unintended pregnancies. An alternative method or an additional method of contraception should be utilized during armodafinil therapy and continued for one month after armodafinil discontinuation.
Artemether; Lumefantrine: (Major) Although no formal drug interaction studies have been performed, the manufacturer states that artemether; lumefantrine may reduce the effectiveness of hormonal contraceptives, including non-oral combination contraceptives, oral contraceptives, and progestin contraceptives (i.e., norethindrone). This may be due to a CYP3A4 interaction. Artemether; lumefantrine is a substrate and ethinyl estradiol is a substrate/inhibitor of the CYP3A4 isoenzyme. Additional use of a non-hormonal method of birth control is recommended. (Major) Although no formal drug interaction studies have been performed, the manufacturer states that artemether; lumefantrine may reduce the effectiveness of hormonal treatments, including progestin-only contraceptives (e.g., norethindrone). This may be due to a CYP3A4 interaction. Additional use of a non-hormonal method of birth control is recommended when norethindrone is used for birth control. Women receiving norethindrone hormone replacement or contraceptives with artemether; lumefantrine should be instructed to report any breakthrough bleeding or other adverse effects to their prescribers.
Aspirin, ASA; Butalbital; Caffeine: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Concomitant use of codeine with elagolix can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If elagolix is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Elagolix is a weak to moderate CYP3A4 inducer.
Aspirin, ASA; Omeprazole: (Moderate) Coadministration of elagolix with omeprazole may increase plasma concentrations of omeprazole. Consider dosage reduction of omeprazole when elagolix is used concomitantly with higher doses of omeprazole, e.g., in patients with Zollinger-Ellison syndrome; however, no dose adjustments are needed for omeprazole at doses of 40 mg once daily or lower. Elagolix is a weak CYP2C19 inhibitor and omeprazole is a CYP2C19 sensitive substrate.
Aspirin, ASA; Oxycodone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with elagolix is necessary; consider increasing the dose of oxycodone as needed. If elagolix is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Atazanavir: (Contraindicated) Concomitant use of elagolix and organic anion transporting polypeptide (OATP) 1B1 inhibitors such as atazanavir is contraindicated. Coadministration may increase elagolix plasma concentrations and decrease atazanavir concentrations. Elagolix is a substrate of CYP3A and OATP1B1, and a weak to moderate CYP3A4 inducer. Atazanavir is a strong inhibitor of CYP3A and a CYP3A4 substrate, and it inhibits OATP1B1. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Major) Atazanavir may decrease the metabolism of oral contraceptives and non-oral combination contraceptives; the mean exposure and minimum serum concentrations of ethinyl estradiol and norethindrone are increased when administered with atazanavir 400 mg daily. However, if atazanavir is boosted with ritonavir, mean exposure of ethinyl estradiol will be decreased; data are limited regarding use of atazanavir with cobicistat. Instruct women to report any breakthrough bleeding or other adverse effects (e.g., insulin resistance, dyslipidemia, and acne) to their prescribers. It may be prudent for women who receive hormonal contraceptives with atazanavir boosted with ritonavir or cobicistat to use an additional method of contraception to protect against unwanted pregnancy. Further, because hormonal contraceptives do not protect against the transmission of HIV/AIDS and other sexually transmitted diseases, HIV-infected women should use an additional barrier method of contraception such as condoms. (Moderate) Atazanavir has been shown to decrease the metabolism of ethinyl estradiol; a similar interaction may occur with other estrogens used for hormone replacement therapy. Patients should be instructed to report any estrogen- related adverse events.
Atazanavir; Cobicistat: (Contraindicated) Concomitant use of elagolix and organic anion transporting polypeptide (OATP) 1B1 inhibitors such as atazanavir is contraindicated. Coadministration may increase elagolix plasma concentrations and decrease atazanavir concentrations. Elagolix is a substrate of CYP3A and OATP1B1, and a weak to moderate CYP3A4 inducer. Atazanavir is a strong inhibitor of CYP3A and a CYP3A4 substrate, and it inhibits OATP1B1. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as cobicistat is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Cobicistat is a combined inhibitor; it is a potent inhibitor of CYP3A and inhibits OATP1B1 and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Major) Atazanavir may decrease the metabolism of oral contraceptives and non-oral combination contraceptives; the mean exposure and minimum serum concentrations of ethinyl estradiol and norethindrone are increased when administered with atazanavir 400 mg daily. However, if atazanavir is boosted with ritonavir, mean exposure of ethinyl estradiol will be decreased; data are limited regarding use of atazanavir with cobicistat. Instruct women to report any breakthrough bleeding or other adverse effects (e.g., insulin resistance, dyslipidemia, and acne) to their prescribers. It may be prudent for women who receive hormonal contraceptives with atazanavir boosted with ritonavir or cobicistat to use an additional method of contraception to protect against unwanted pregnancy. Further, because hormonal contraceptives do not protect against the transmission of HIV/AIDS and other sexually transmitted diseases, HIV-infected women should use an additional barrier method of contraception such as condoms. (Major) Consider the benefits and risk of administering antiretroviral regimens containing cobicistat with norethindrone. Insufficient data are available to make dosage recommendations, particularly when cobicistat is combined in other antiviral regimens. It is not clear how cobicistat alters various progestin-only agents used for contraception, fertility or luteal support, or for hormone replacement therapy (HRT). Instruct women to report any breakthrough bleeding or other adverse effects (e.g., insulin resistance, dyslipidemia, and acne) to their prescribers. There is a potential for altered efficacy for combined hormonal contraceptives. Consider alternative methods of contraception, such as condoms, to prevent unwanted pregnancy and transmission of HIV/AIDS. When progestins are used for other purposes, monitor for altered clinical response to hormonal therapy. (Moderate) Atazanavir has been shown to decrease the metabolism of ethinyl estradiol; a similar interaction may occur with other estrogens used for hormone replacement therapy. Patients should be instructed to report any estrogen- related adverse events.
Atogepant: (Major) Avoid use of atogepant and elagolix when atogepant is used for chronic migraine. Use an atogepant dose of 30 or 60 mg PO once daily for episodic migraine if coadministered with elagolix. Concurrent use may decrease atogepant exposure and reduce efficacy. Atogepant is a CYP3A substrate and elagolix is a moderate CYP3A inducer.
Avacopan: (Major) Avoid concomitant use of avacopan and elagolix due to the risk of decreased avacopan exposure which may reduce its efficacy. Avacopan is a CYP3A substrate and elagolix is a moderate CYP3A inducer.
Avanafil: (Major) Coadministration of avanafil with elagolix is not recommended by the manufacturer of avanafil due to the potential for decreased avanafil efficacy. Avanafil is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Although the potential effect of CYP inducers on the pharmacokinetics of avanafil was not evaluated, plasma concentrations may decrease.
Avapritinib: (Major) Avoid coadministration of avapritinib with elagolix due to the risk of decreased avapritinib efficacy. Avapritinib is a CYP3A4 substrate and elagolix is a weak-to-moderate CYP3A4 inducer. Coadministration with a moderate CYP3A4 inducer is predicted to decrease the AUC and Cmax of avapritinib by 62% and 55%, respectively.
Axitinib: (Major) Avoid coadministration of axitinib with elagolix if possible due to the risk of decreased efficacy of axitinib. Selection of a concomitant medication with no or minimal CYP3A4 induction potential is recommended. Axitinib is a CYP3A4/5 substrate and elagolix is a weak to moderate CYP3A4 inducer.
Azelastine; Fluticasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Azithromycin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Aztreonam: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Bacitracin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Barbiturates: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment.
Beclomethasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Bedaquiline: (Major) Avoid coadministration of elagolix with bedaquiline due to decreased plasma exposure to bedaquiline. Bedaquiline is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Coadministration with another moderate CYP3A4 inducer decreased bedaquiline exposure by approximately 20%. The AUC and Cmax of the primary metabolite of bedaquiline (M2) were increased by 70% and 80%, respectively.
Belzutifan: (Major) Women taking both estrogens and belzutifan should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed belzutifan. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of belzutifan. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on belzutifan, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and belzutifan is a weak CYP3A4 inducer. Concurrent administration may increase estrogen elimination. (Major) Women taking both progestins and belzutifan should report breakthrough bleeding to their prescribers. An alternate or additional form of contraception should be considered in patients prescribed belzutifan. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive

agent may need to be continued for 1 month after discontinuation of belzutifan. For patients on hormone replacement treatments (HRT) with progestins, monitor for altered clinical response, such as increased hot flashes, vaginal dryness, changes in withdrawal bleeding, or other signs of decreased hormonal efficacy. Progestins are CYP3A4 substrates and belzutifan is a weak CYP3A4 inducer. (Moderate) Monitor for anemia and hypoxia if concomitant use of elagolix with belzutifan is necessary due to increased plasma exposure of belzutifan which may increase the incidence and severity of adverse reactions. Reduce the dose of belzutifan as recommended if anemia or hypoxia occur. Belzutifan is a CYP2C19 substrate and elagolix is a CYP2C19 inhibitor.
Berotralstat: (Major) Reduce the berotralstat dose to 110 mg PO once daily in patients chronically taking elagolix. Concurrent use may increase berotralstat exposure and the risk of adverse effects. Berotralstat is a P-gp substrate and elagolix is a P-gp inhibitor. Coadministration with another P-gp inhibitor increased berotralstat exposure by 69%.
Betamethasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Betrixaban: (Major) Avoid betrixaban use in patients with severe renal impairment receiving elagolix. Reduce betrixaban dosage to 80 mg PO once followed by 40 mg PO once daily in all other patients receiving elagolix. Bleeding risk may be increased; monitor patients closely for signs and symptoms of bleeding. Betrixaban is a substrate of P-gp; elagolix inhibits P-gp.
Bexarotene: (Major) Bexarotene capsules may theoretically increase the rate of metabolism and reduce plasma concentrations of substrates metabolized by CYP3A4, including oral contraceptives. It is recommended that two reliable forms of contraception be used simultaneously during oral bexarotene therapy. It is strongly recommended that one of the forms of contraception be non-hormonal. Additionally, because of possible CYP3A4 induction, bexarotene may also decrease the efficacy of hormones used for hormone replacement therapy. (Major) Women taking both estrogens and bexarotene should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed bexarotene. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of bexarotene. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on bexarotene, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and bexarotene is a moderate CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Bosentan: (Major) Hormonal contraceptives should not be used as the sole method to prevent pregnancy in patients receiving bosentan. There is a possibility of contraceptive failure when bosentan is coadministered with products containing estrogens and/or progestins. Bosentan is teratogenic. To prevent pregnancy, females of reproductive potential must use 2 acceptable contraception methods during treatment and for 1 month after discontinuation of bosentan therapy. The patient may choose 1 highly effective contraceptive form, including an intrauterine device (IUD) or tubal sterilization, a combination of a hormonal contraceptive with a barrier method, or 2 barrier methods. If a male partner's vasectomy is chosen as a method of contraception, a hormonal or barrier method must still be used by the female patient. Hormonal contraceptives, including oral contraceptives or non-oral combination contraceptives (injectable, transdermal, and implantable contraceptives) may not be reliably effective in the presence of bosentan, since many contraceptive drugs are metabolized by CYP3A4 isoenzymes and bosentan is a significant inducer of CYP3A enzymes. Decreases in hormonal exposure have been documented in drug interaction studies of bosentan with hormonal contraception. Additionally, estrogens and progestins used for hormone replacement therapy (HRT) may also be less effective; patients should be monitored for changes in efficacy such as breakthrough bleeding or an increase in hot flashes. Dosage adjustments may be necessary. (Major) Hormonal contraceptives should not be used as the sole method to prevent pregnancy in patients receiving bosentan. There is a possibility of contraceptive failure when bosentan is coadministered with products containing estrogens and/or progestins. Bosentan is teratogenic. To prevent pregnancy, females of reproductive potential must use two acceptable contraception methods during treatment and for one month after discontinuation of bosentan therapy. The patient may choose one highly effective contraceptive form, including an intrauterine device (IUD) or tubal sterilization, a combination of a hormonal contraceptive with a barrier method, or two barrier methods. If a male partner's vasectomy is chosen as a method of contraception, a hormonal or barrier method must still be used by the female patient. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on bosentan, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and bosentan is a moderate CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Brigatinib: (Major) Avoid coadministration of brigatinib with elagolix due to decreased plasma exposure to brigatinib which may result in decreased efficacy; concentrations of elagolix may also increase. If concomitant use is unavoidable, after 7 days of concomitant treatment with elagolix, increase the dose of brigatinib as tolerated in 30 mg increments to a maximum of twice the original brigatinib dose; monitor for an increase in elagolix-related adverse reactions. After discontinuation of elagolix, resume the brigatinib dose that was tolerated prior to initiation of elagolix. Brigatinib is a CYP3A4 substrate and elagolix is a moderate CYP3A4 inducer. Coadministration with a moderate CYP3A inducer is predicted to decrease the AUC of brigatinib by approximately 50%. Elagolix is also a P-glycoprotein (P-gp) substrate. Brigatinib is a P-gp inhibitor in vitro and may have the potential to increase concentrations of P-gp substrates.
Bromocriptine: (Moderate) Caution and close monitoring are advised if bromocriptine and elagolix are used together. Concurrent use may decrease the plasma concentrations of bromocriptine resulting in loss of efficacy. Bromocriptine is extensively metabolized by the liver via CYP3A4; elagolix is a weak to moderate inducer of CYP3A4. (Minor) Bromocriptine is used to restore ovulation and ovarian function in amenorrheic women. Estrogens and progestins can cause amenorrhea and, therefore, counteract the desired effects of bromocriptine. Concurrent use is not recommended; an alternate form of contraception is recommended during bromocriptine therapy. (Minor) Bromocriptine is used to restore ovulation and ovarian function in amenorrheic women. Progestins can cause amenorrhea and, therefore, counteract the desired effects of bromocriptine. Concurrent use is not recommended; an alternate form of contraception is recommended during bromocriptine therapy.
Budesonide: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Budesonide; Formoterol: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Bupivacaine; Lidocaine: (Moderate) Concomitant use of systemic lidocaine and elagolix may decrease lidocaine plasma concentrations. Higher lidocaine doses may be required; titrate to effect. Lidocaine is a CYP3A4 and CYP1A2 substrate; elagolix is a weak to moderate CYP3A4 inducer.
Buprenorphine: (Moderate) Monitor for decreased efficacy of buprenorphine, and potentially the onset of a withdrawal syndrome in patients who have developed physical dependence to buprenorphine, if coadministration with elagolix is necessary; consider increasing the dose of buprenorphine until stable drug effects are achieved. If elagolix is discontinued, consider a buprenorphine dose reduction and monitor for signs of respiratory depression. Buprenorphine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer.
Buprenorphine; Naloxone: (Moderate) Monitor for decreased efficacy of buprenorphine, and potentially the onset of a withdrawal syndrome in patients who have developed physical dependence to buprenorphine, if coadministration with elagolix is necessary; consider increasing the dose of buprenorphine until stable drug effects are achieved. If elagolix is discontinued, consider a buprenorphine dose reduction and monitor for signs of respiratory depression. Buprenorphine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer.
Buspirone: (Moderate) Monitor for decreased efficacy of buspirone if elagolix is added to a patient on a stable dosage of buspirone; a dose increase of buspirone may be needed to maintain anxiolytic activity. Buspirone is a sensitive CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer.
Butabarbital: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment.
Butalbital; Acetaminophen: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment.
Butalbital; Acetaminophen; Caffeine: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment.
Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment. (Moderate) Concomitant use of codeine with elagolix can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If elagolix is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Elagolix is a weak to moderate CYP3A4 inducer.
Butalbital; Aspirin; Caffeine; Codeine: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment. (Moderate) Concomitant use of codeine with elagolix can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If elagolix is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Elagolix is a weak to moderate CYP3A4 inducer.
Cabotegravir; Rilpivirine: (Major) The concomitant use of elagolix and rilpivirine may lead to decreased rilpivirine concentrations and loss of virologic response. Consider use of an alternative agent. If concomitant use of these agents is unavoidable, monitor patients for loss of rilpivirine efficacy. Elagolix is a weak to moderate CYP3A4 inducer and rilpivirine is a moderately sensitive CYP3A4 substrate.
Calaspargase pegol: (Major) The concomitant use of calaspargase pegol and oral contraceptives may reduce the efficacy of oral contraceptives. Women of reproductive potential should use a non-hormonal method of birth control during therapy and for at least 3 months after the last calaspargase pegol dose due to the risk of fetal harm.
Calcium: (Minor) Estrogens can increase calcium absorption. Use caution in patients predisposed to hypercalcemia or nephrolithiasis.
Canagliflozin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Canagliflozin; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Capmatinib: (Major) Avoid coadministration of capmatinib and elagolix due to the risk of decreased capmatinib exposure, which may reduce its efficacy. Capmatinib is a CYP3A substrate and elagolix is a moderate CYP3A4 inducer. Coadministration with another moderate CYP3A4 inducer decreased capmatinib exposure by 44%.
Carbamazepine: (Major) Advise patients taking estrogen hormones for contraception to consider an alternate or additional form of contraception, such as nonhormonal and/or barrier methods, during and for at least 1 month following discontinuation of carbamazepine. Higher-dose hormonal regimens containing a minimum of 30 mcg of ethinyl estradiol or equivalent may also be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on carbamazepine, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A substrates and carbamazepine is a strong CYP3A inducer. Concurrent administration may increase estrogen elimination. (Major) Advise patients taking progestin hormones for contraception to consider an alternate or additional form of contraception, such as nonhormonal and/or barrier methods, during and for at least 1 month following discontinuation of carbamazepine. Higher-dose hormonal regimens may also be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on carbamazepine, with dose adjustments made based on clinical efficacy. Progestins are CYP3A substrates and carbamazepine is a strong CYP3A inducer. Concurrent administration may increase progestin elimination. This interaction does not apply to vaginal preparations of progesterone (e.g., Crinone, Endometrin). (Moderate) Concomitant use of elagolix and carbamazepine may result in decreased concentrations of elagolix and/or carbamazepine; monitor for decreased efficacy of both drugs with coadministration. Elagolix is a CYP3A substrate and a weak to moderate inducer; carbamazepine is a strong inducer and substrate of CYP3A4.
Carbapenems: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cariprazine: (Major) Coadministration of cariprazine with elagolix is not recommended as the net effect of CYP3A4 induction on cariprazine and its metabolites is unclear. Cariprazine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Coadministration of cariprazine with CYP3A4 inducers has not been evaluated.
Cefaclor: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cefadroxil: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cefazolin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cefdinir: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cefepime: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cefiderocol: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cefixime: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cefotaxime: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cefotetan: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cefoxitin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cefpodoxime: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cefprozil: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Ceftaroline: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Ceftazidime: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Ceftazidime; Avibactam: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicill in derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Ceftolozane; Tazobactam: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Ceftriaxone: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cefuroxime: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Celecoxib; Tramadol: (Moderate) Monitor for reduced efficacy of tramadol and signs of opioid withdrawal if coadministration with elagolix is necessary; consider increasing the dose of tramadol as needed. If elagolix is discontinued, consider a dose reduction of tramadol and frequently monitor for signs or respiratory depression and sedation. Tramadol is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease tramadol levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Cenobamate: (Major) Women taking both estrogens and cenobamate should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed cenobamate. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of cenobamate. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on cenobamate, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and cenobamate is a moderate CYP3A4 inducer. Concurrent administration may increase estrogen elimination. (Major) Women taking both progestins and cenobamate should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed cenobamate. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of cenobamate. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on cenobamate, with dose adjustments made based on clinical efficacy. Progestins are CYP3A4 substrates and cenobamate is a moderate CYP3A4 inducer. Concurrent administration may increase progestin elimination.
Cephalexin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Ceritinib: (Major) Concomitant use of elagolix 200 mg twice daily and ceritinib for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and ceritinib to 6 months. Elagolix is a CYP3A substrate and ceritinib is a strong inhibitor of CYP3A. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively.
Charcoal: (Major) Note that charcoal exerts a nonspecific effect, and many medications can be adsorbed by activated charcoal; repeat doses may decrease the enterohepatic recycling of some drugs. Activated charcoal dietary supplements may have the potential to reduce the effectiveness of oral contraceptives. Data clearly demonstrating this interaction are not available. Ovulatory potential was studied during the use of two monophasic oral contraceptive pill preparations, after repeated mid-cycle administration of activated charcoal to treat diarrhea in women. None of eleven women ovulated. Repeated charcoal treatment, when administered 3 hours after but at least 12 hours before pill intake, did not alter oral contraceptive efficacy.
Chenodiol: (Minor) Estrogens and combination hormonal oral contraceptives increase hepatic cholesterol secretion, and encourage cholesterol gallstone formation and hence may theoretically counteract the effectiveness of chenodiol.
Chloramphenicol: (Major) Concomitant use of elagolix 200 mg twice daily and chloramphenicol for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and chloramphenicol to 6 months. Elagolix is a CYP3A substrate; chloramphenicol is a strong inhibitor of CYP3A. Coadministration may increase elagolix plasma concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Moderate) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as chloramphenicol may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events. Also, anti-infectives that disrupt the normal GI flora, including chloramphenicol, may potentially decrease the effectiveness of estrogen-containing oral contraceptives. (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available. In addition, drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Consider monitoring serum potassium concentrations during the first month of dosing in high-risk patients who take strong CYP3A4 inhibitors long-term and concomitantly. Strong CYP3A4 inhibitors include chloramphenicol.
Chlorpheniramine; Codeine: (Moderate) Concomitant use of codeine with elagolix can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If elagolix is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Elagolix is a weak to moderate CYP3A4 inducer.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Concomitant use of dihydrocodeine with elagolix can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If elagolix is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Elagolix is a weak to moderate inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Chlorpheniramine; Hydrocodone: (Moderate) Concomitant use of hydrocodone with elagolix can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal; consider increasing the dose of hydrocodone as needed. If elagolix is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer.
Chlorpropamide: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Ciclesonide: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Ciprofloxacin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Cisapride: (Moderate) Monitor for decreased efficacy of cisapride if coadministration with elagolix is necessary; coadministration may result in decreased plasma concentrations of cisapride. Elagolix is a weak to moderate CYP3A4 inducer and cisapride is a CYP3A4 substrate.
Citalopram: (Moderate) CItalopram 20 mg/day is the maximum recommended dose for patients taking concomitant CYP2C19 inhibitors because of the risk of QT prolongation. Elagolix is a weak CYP2C19 inhibitor and a weak to moderate CYP3A4 inducer and citalopram is a CYP2C19 and CYP3A4 substrate. The net effect of elagolix on citalopram exposure is not clear.
Clarithromycin: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as clarithromycin is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Clarithromycin significantly inhibits OATP1B1, and also inhibits CYP3A and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. Consider an alternative to clarithromycin in a patient receiving elagolix. (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available. In addition, drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Consider monitoring serum potassium concentrations during the first month of dosing in high-risk patients who take strong CYP3A4 inhibitors long-term and concomitantly. Strong CYP3A4 inhibitors include clarithromycin. (Minor) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as clarithromycin may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events. Also, practitioners should be alert to the possibility that breakthrough bleeding or contraceptive failure may occur with clarithromycin.
Clindamycin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Clobazam: (Major) Clobazam induces CYP3A4, which may reduce the concentrations of estrogen and progestin hormones. Hormonal contraceptives may not be reliable when coadministered with clobazam. Females taking hormonal-based birth control should use additional non-hormonal methods and not rely solely on hormonal contraceptive methods when taking clobazam. The additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Hormonal contraceptives include combination oral contraceptives, non-oral combination contraceptives, and contraceptives containing only progestins and includes oral, injectable, transdermal, vaginal inserts, and implantable forms of hormonal birth control. Clobazam may also reduce the effectiveness of other estrogens or progestins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on clobazam, with adjustments made based on clinical efficacy. (Moderate) Concurrent administration of clobazam, a weak CYP3A4 inducer, with estrogens, may increase the elimination of these hormones. Patients may need to be monitored for reduced clinical effect while on clobazam, with dose adjustments made based on clinical efficacy.
Clozapine: (Moderate) Monitor for loss of clozapine effectiveness if coadministered with elagolix. Consideration should be given to increasing the clozapine dose if necessary. When elagolix is discontinued, reduce the clozapine dose based on clinical response. Elagolix is a weak to moderate inducer of CYP3A4, one of the isoenzymes responsible for the metabolism of clozapine.
Cobicistat: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as cobicistat is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Cobicistat is a combined inhibitor; it is a potent inhibitor of CYP3A and inhibits OATP1B1 and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Major) Consider the benefits and risk of administering antiretroviral regimens containing cobicistat with norethindrone. Insufficient data are available to make dosage recommendations, particularly when cobicistat is combined in other antiviral regimens. It is not clear how cobicistat alters various progestin-only agents used for contraception, fertility or luteal support, or for hormone replacement therapy (HRT). Instruct women to report any breakthrough bleeding or other adverse effects (e.g., insulin resistance, dyslipidemia, and acne) to their prescribers. There is a potential for altered efficacy for combined hormonal contraceptives. Consider alternative methods of contraception, such as condoms, to prevent unwanted pregnancy and transmission of HIV/AIDS. When progestins are used for other purposes, monitor for altered clinical response to hormonal therapy.
Cobimetinib: (Major) Avoid the concurrent use of cobimetinib with elagolix due to decreased cobimetinib efficacy. Cobimetinib is a CYP3A substrate in vitro, and elagolix is a weak to moderate inducer of CYP3A. Based on simulations, cobimetinib exposure would decrease by 73% when coadministered with a moderate CYP3A inducer.
Codeine: (Moderate) Concomitant use of codeine with elagolix can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If elagolix is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Elagolix is a weak to moderate CYP3A4 inducer.
Codeine; Guaifenesin: (Moderate) Concomitant use of codeine with elagolix can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If elagolix is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Elagolix is a weak to moderate CYP3A4 inducer.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Concomitant use of codeine with elagolix can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If elagolix is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Elagolix is a weak to moderate CYP3A4 inducer.
Codeine; Phenylephrine; Promethazine: (Moderate) Concomitant use of codeine with elagolix can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If elagolix is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Elagolix is a weak to moderate CYP3A4 inducer.
Codeine; Promethazine: (Moderate) Concomitant use of codeine with elagolix can decrease codeine levels, resulting in less metabolism by CYP2D6 and decreased morphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor for reduced efficacy of codeine and signs of opioid withdrawal; consider increasing the dose of codeine as needed. If elagolix is discontinued, consider a dose reduction of codeine and frequently monitor for signs or respiratory depression and sedation. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Elagolix is a weak to moderate CYP3A4 inducer.
Colchicine: (Major) Avoid concomitant use of colchicine and elagolix due to the risk for increased colchicine exposure which may increase the risk for adverse effects. Concomitant use is contraindicated in patients with renal or hepatic impairment. Additionally, this combination is contraindicated if colchicine is being used for cardiovascular risk reduction. If concomitant use is necessary outside of these scenarios, consider a colchicine dosage reduction. Specific dosage reduction recommendations are available for colchicine tablets for some indications; it is unclear if these dosage recommendations are appropriate for other products or indications. For colchicine tablets being used for gout prophylaxis, reduce the dose from 0.6 mg twice daily to 0.3 mg once daily or from 0.6 mg once daily to 0.3 mg once every other day. For colchicine tablets being used for gout treatment, reduce the dose from 1.2 mg followed by 0.6 mg to 0.6 mg without an additional dose. For colchicine tablets being used for Familial Mediterranean Fever, the maximum daily dose is 0.6 mg. Colchicine is a P-gp substrate and elagolix is a P-gp inhibitor.
Colistimethate, Colistin, Polymyxin E: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Colistin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Conivaptan: (Minor) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as conivaptan may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events.
Corticosteroids: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Cortisone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Cosyntropin: (Minor) Use cosyntropin cautiously in patients taking estrogens as these patients may exhibit abnormally high basal plasma cortisol concentrations and a decreased response to the test.
Cyclosporine: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as cyclosporine is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Cyclosporine inhibits both OATP1B1 and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Moderate) Estrogens in oral contraceptives or non-oral combination contraceptives may inhibit the metabolism of cyclosporine. Delayed cyclosporine clearance can increase cyclosporine concentrations. Additionally, estrogens are metabolized by CYP3A4; cyclosporine inhibits CYP3A4 and may increase estrogen concentrations and estrogen-related side effects. The patient's cyclosporine concentrations should be monitored closely; monitor clinical status including blood pressure and renal and hepatic function. Be alert for complaints of estrogen-related side effects (e.g., nausea, fluid retention, breast tenderness).
Dabigatran: (Moderate) Increased serum concentrations of dabigatran are possible when dabigatran, a P-glycoprotein (P-gp) substrate, is coadministered with elagolix, a P-gp inhibitor. Although coadministration may have no effect on the pharmacokinetics of dabigatran in healthy subjects, patients should be monitored for increased adverse effects of dabigatran. When dabigatran is administered for treatment or reduction in risk of recurrence of deep venous thrombosis (DVT) or pulmonary embolism (PE) or prophylaxis of DVT or PE following hip replacement surgery, avoid coadministration with P-gp inhibitors like elagolix in patients with CrCl less than 50 mL/minute. When dabigatran is used in patients with non-valvular atrial fibrillation and severe renal impairment (CrCl less than 30 mL/minute), avoid coadministration with elagolix, as serum concentrations of dabigatran are expected to be higher than when administered to patients with normal renal function. P-gp inhibition and renal impairment are the major independent factors that result in increased exposure to dabigatran.
Dabrafenib: (Major) Avoid concomitant use of dabrafenib and hormonal contraceptives; decreased hormonal contraceptive concentrations and loss of efficacy may occur. Use of an alternative non-hormonal contraceptive method of birth control is recommended during treatment for 2 weeks after the last dose of dabrafenib. Dabrafenib is a moderate CYP3A4 inducer and many hormonal contraceptive are CYP3A4 substrates.
Daclatasvir: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as daclatasvir is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Daclatasvir inhibits both OATP1B1 and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density.
Dalbavancin: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Danazol: (Minor) As danazol inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives, including oral contraceptives.
Dantrolene: (Moderate) Concomitant use of dantrolene and estrogens may increase the risk of developing hepatotoxicity. While a definite drug interaction with dantrolene and estrogen therapy has not yet been established, caution should be observed if the two drugs are to be given concomitantly. Hepatotoxicity has occurred more often, for example, in women over 35 years of age receiving concomitant estrogen therapy.
Dapagliflozin: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Dapagliflozin; Metformin: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Dapagliflozin; Saxagliptin: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Daptomycin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Daratumumab; Hyaluronidase: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Daridorexant: (Major) Avoid concomitant use of daridorexant and elagolix. Coadministration may decrease daridorexant exposure which may reduce its efficacy. Daridorexant is a CYP3A substrate and elagolix is a moderate CYP3A inducer. Concomitant use of another moderate CYP3A inducer decreased daridorexant overall exposure by over 50%.
Darolutamide: (Contraindicated) Coadministration of elagolix with darolutamide is contraindicated as concurrent use may increase elagolix exposure. Elagolix is a substrate of OATP1B1 and darolutamide is an OATP1B1 inhibitor.
Darunavir: (Major) Concomitant use of elagolix 200 mg twice daily and darunavir for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and darunavir to 6 months. Monitor for elagolix-related side effects and reduced response to darunavir. Elagolix is a CYP3A substrate and a weak to moderate CYP3A4 inducer; darunavir is a strong inhibitor of CYP3A and a sensitive CYP3A4 substrate. Coadministration may increase elagolix plasma concentrations and decrease darunavir concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Major) Studies evaluating use of darunavir (boosted with either ritonavir or cobicistat) with norethindrone have not been conducted; therefore, an alternative (non-hormonal) method of contraception is recommended. Taking these drugs together may alter the exposure and serum concentrations of norethindrone. If the drugs must be used together, instruct women to report any breakthrough bleeding or other adverse effects (e.g., insulin resistance, dyslipidemia, and acne) to their prescribers. It may be prudent for women who receive hormonal contraceptives with darunavir boosted with ritonavir or cobicistat to use an additional method of contraception to protect against unwanted pregnancy. Further, because hormonal contraceptives do not protect against the transmission of HIV/AIDS and other sexually transmitted diseases, HIV-infected women should use an additional barrier method of contraception such as condoms. (Moderate) Darunavir is expected to increase the metabolism of estradiol. Women using estrogens for hormone replacement therapy should be monitored for signs of estrogen deficiency.
Darunavir; Cobicistat: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as cobicistat is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Cobicistat is a combined inhibitor; it is a potent inhibitor of CYP3A and inhibits OATP1B1 and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Major) Concomitant use of elagolix 200 mg twice daily and darunavir for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and darunavir to 6 months. Monitor for elagolix-related side effects and reduced response to darunavir. Elagolix is a CYP3A substrate and a weak to moderate CYP3A4 inducer; darunavir is a strong inhibitor of CYP3A and a sensitive CYP3A4 substrate. Coadministration may increase elagolix plasma concentrations and decrease darunavir concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Major) Consider the benefits and risk of administering antiretroviral regimens containing cobicistat with norethindrone. Insufficient data are available to make dosage recommendations, particularly when cobicistat is combined in other antiviral regimens. It is not clear how cobicistat alters various progestin-only agents used for contraception, fertility or luteal support, or for hormone replacement therapy (HRT). Instruct women to report any breakthrough bleeding or other adverse effects (e.g., insulin resistance, dyslipidemia, and acne) to their prescribers. There is a potential for altered efficacy for combined hormonal contraceptives. Consider alternative methods of contraception, such as condoms, to prevent unwanted pregnancy and transmission of HIV/AIDS. When progestins are used for other purposes, monitor for altered clinical response to hormonal therapy. (Major) Studies evaluating use of darunavir (boosted with either ritonavir or cobicistat) with norethindrone have not been conducted; therefore, an alternative (non-hormonal) method of contraception is recommended. Taking these drugs together may alter the exposure and serum concentrations of norethindrone. If the drugs must be used together, instruct women to report any breakthrough bleeding or other adverse effects (e.g., insulin resistance, dyslipidemia, and acne) to their prescribers. It may be prudent for women who receive hormonal contraceptives with darunavir boosted with ritonavir or cobicistat to use an additional method of contraception to protect against unwanted pregnancy. Further, because hormonal contraceptives do not protect against the transmission of HIV/AIDS and other sexually transmitted diseases, HIV-infected women should use an additional barrier method of contraception such as condoms. (Moderate) Darunavir is expected to increase the metabolism of estradiol. Women using estrogens for hormone replacement therapy should be monitored for signs of estrogen deficiency.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as cobicistat is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Cobicistat is a combined inhibitor; it is a potent inhibitor of CYP3A and inhibits OATP1B1 and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Major) Concomitant use of elagolix 200 mg twice daily and darunavir for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and darunavir to 6 months. Monitor for elagolix-related side effects and reduced response to darunavir. Elagolix is a CYP3A substrate and a weak to moderate CYP3A4 inducer; darunavir is a strong inhibitor of CYP3A and a sensitive CYP3A4 substrate. Coadministration may increase elagolix plasma concentrations and decrease darunavir concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Major) Consider the benefits and risk of administering antiretroviral regimens containing cobicistat with norethindrone. Insufficient data are available to make dosage recommendations, particularly when cobicistat is combined in other antiviral regimens. It is not clear how cobicistat alters various progestin-only agents used for contraception, fertility or luteal support, or for hormone replacement therapy (HRT). Instruct women to report any breakthrough bleeding or other adverse effects (e.g., insulin resistance, dyslipidemia, and acne) to their prescribers. There is a potential for altered efficacy for combined hormonal contraceptives. Consider alternative methods of contraception, such as condoms, to prevent unwanted pregnancy and transmission of HIV/AIDS. When progestins are used for other purposes, monitor for altered clinical response to hormonal therapy. (Major) Studies evaluating use of darunavir (boosted with either ritonavir or cobicistat) with norethindrone have not been conducted; therefore, an alternative (non-hormonal) method of contraception is recommended. Taking these drugs together may alter the exposure and serum concentrations of norethindrone. If the drugs must be used together, instruct women to report any breakthrough bleeding or other adverse effects (e.g., insulin resistance, dyslipidemia, and acne) to their prescribers. It may be prudent for women who receive hormonal contraceptives with darunavir boosted with ritonavir or cobicistat to use an additional method of contraception to protect against unwanted pregnancy. Further, because hormonal contraceptives do not protect against the transmission of HIV/AIDS and other sexually transmitted diseases, HIV-infected women should use an additional barrier method of contraception such as condoms. (Moderate) Darunavir is expected to increase the metabolism of estradiol. Women u sing estrogens for hormone replacement therapy should be monitored for signs of estrogen deficiency.
Deferasirox: (Moderate) Counsel patients to use non-hormonal methods of contraception during treatment with deferasirox. Deferasirox may induce the CYP3A4 metabolism of hormonal contraceptives; thereby decreasing their effectiveness.
Deflazacort: (Major) Avoid concomitant use of deflazacort and elagolix. Concurrent use may significantly decrease concentrations of 21-desDFZ , the active metabolite of deflazacort, resulting in loss of efficacy. Deflazacort is a CYP3A4 substrate; elagolix is a weak to moderate inducer of CYP3A4. Administration of deflazacort with multiple doses of another strong CYP3A4 inducer resulted in geometric mean exposures that were approximately 95% lower compared to administration alone. (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Delafloxacin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Delavirdine: (Major) Concomitant use of elagolix 200 mg twice daily and delavirdine for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and delavirdine to 6 months. Monitor for elagolix-related side effects and reduced response to delavirdine. Elagolix is a CYP3A substrate and a weak to moderate CYP3A4 inducer; delavirdine is a strong inhibitor of CYP3A and a CYP3A4 substrate. Coadministration may increase elagolix plasma concentrations and decrease delavirdine concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Minor) As delavirdine inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives, including oral contraceptives.
Demeclocycline: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Desogestrel; Ethinyl Estradiol: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Dexamethasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Diazepam: (Minor) Coadministration of elagolix with diazepam may theoretically increase plasma concentrations of diazepam. Elagolix is a weak CYP2C19 inhibitor and diazepam is a CYP2C19 sensitive substrate. Monitor for diazepam-related adverse effects during coadministration with elagolix.
Dicloxacillin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Dienogest; Estradiol valerate: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Digoxin: (Moderate) Clinical monitoring is recommended for digoxin when coadministered with elagolix. Monitor heart rate, clinical status and serum digoxin concentrations periodically and as clinically indicated. Elagolix is an inhibitor of P-glycoprotein (P-gp), and digoxin is a P-gp substrate. During drug interaction studies, the coadministration of elagolix with digoxin resulted in an increase in digoxin peak concentrations by a mean of 1.71 ( range, 1.53 to 1.91) and mean AUC of 1.26 (range 1.17 to 1.35).
Diltiazem: (Moderate) Use caution and careful monitoring when coadministering elagolix with diltiazem; diltiazem exposure and effect may be decreased. Dose adjustments should be made for diltiazem based on clinical response. Elagolix is a weak to moderate CYP3A4 inducer. Diltiazem is a CYP3A4 substrate. (Minor) As diltiazem inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Dipeptidyl Peptidase-4 Inhibitors: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Disopyramide: (Moderate) Monitor disopyramide serum concentrations and for loss of efficacy when coadministration with elagolix is necessary. Disopyramide exposure may be decreased during concurrent use. Elagolix is a weak to moderate CYP3A4 inducer and disopyramide is a CYP3A4 substrate.
Docetaxel: (Moderate) Monitor for decreased docetaxel efficacy when coadministration with elagolix is necessary. Docetaxel exposure may be decreased during concurrent use. Elagolix is a weak to moderate CYP3A4 inducer and docetaxel is a CYP3A4 substrate.
Dolutegravir: (Moderate) Dolutegravir plasma concentrations may be reduced when administered concurrently with elagolix; thereby increasing the risk for HIV treatment failures or the development of viral-resistance. Data are insufficient to make dosing recommendations; however, predictions regarding this interaction can be made based on the drugs metabolic pathways. Elagolix is a weak to moderate inducer of CYP3A, dolutegravir is partially metabolized by this isoenzyme.
Dolutegravir; Lamivudine: (Moderate) Dolutegravir plasma concentrations may be reduced when administered concurrently with elagolix; thereby increasing the risk for HIV treatment failures or the development of viral-resistance. Data are insufficient to make dosing recommendations; however, predictions regarding this interaction can be made based on the drugs metabolic pathways. Elagolix is a weak to moderate inducer of CYP3A, dolutegravir is partially metabolized by this isoenzyme.
Dolutegravir; Rilpivirine: (Major) The concomitant use of elagolix and rilpivirine may lead to decreased rilpivirine concentrations and loss of virologic response. Consider use of an alternative agent. If concomitant use of these agents is unavoidable, monitor patients for loss of rilpivirine efficacy. Elagolix is a weak to moderate CYP3A4 inducer and rilpivirine is a moderately sensitive CYP3A4 substrate. (Moderate) Dolutegravir plasma concentrations may be reduced when administered concurrently with elagolix; thereby increasing the risk for HIV treatment failures or the development of viral-resistance. Data are insufficient to make dosing recommendations; however, predictions regarding this interaction can be made based on the drugs metabolic pathways. Elagolix is a weak to moderate inducer of CYP3A, dolutegravir is partially metabolized by this isoenzyme.
Doravirine: (Moderate) Concurrent administration of doravirine and elagolix may result in decreased doravirine exposure, resulting in potential loss of virologic control. Doravirine is a CYP3A4 substrate; elagolix is a weak to moderate CYP3A4 inducer.
Doravirine; Lamivudine; Tenofovir disoproxil fumarate: (Moderate) Concurrent administration of doravirine and elagolix may result in decreased doravirine exposure, resulting in potential loss of virologic control. Doravirine is a CYP3A4 substrate; elagolix is a weak to moderate CYP3A4 inducer.
Doripenem: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Doxycycline: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Drospirenone: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Drospirenone; Estetrol: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Drospirenone; Estradiol: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Drospirenone; Ethinyl Estradiol: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Duvelisib: (Major) Avoid concomitant use of duvelisib with elagolix. Coadministration may decrease the exposure of duvelisib, which may reduce the efficacy of duvelisib. If concomitant use is necessary, increase the dose of duvelisib on day 12 of coadministration from 25 mg PO twice daily to 40 mg PO twice daily; or from 15 mg PO twice daily to 25 mg PO twice daily. When elagolix has been discontinued for at least 14 days, resume duvelisib at the dose taken prior to initiating treatment with elagolix. Duvelisib is a CYP3A substrate; elagolix is a moderate CYP3A inducer. Coadministration of duvelisib with another moderate CYP3A inducer for 12 days decreased duvelisib exposure by 35%.
Efavirenz: (Major) Patients should be advised to use a reliable method of barrier contraception in addition to oral contraceptives or non-oral combination contraceptives, including implantable etonogestrel, while using efavirenz. Efavirenz has no effect on ethinyl estradiol concentrations, but levels of progestins (norelgestromin and levonorgestrel) can be markedly decreased. Norelgestromin Cmax and AUC decreased by 46% and 64%, respectively. Levonorgestrel Cmax and AUC decreased bu 80% and 83%, respectively. There have been post-marketing reports of contraceptive failure with implantable etonogestrel in efavirenz-exposed patients. Decreased exposure of etonogestrel may be expected. There are no effects of ethinyl estradiol/norgestimate on efavirenz plasma concentrations.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Patients should be advised to use a reliable method of barrier contraception in addition to oral contraceptives or non-oral combination contraceptives, including implantable etonogestrel, while using efavirenz. Efavirenz has no effect on ethinyl estradiol concentrations, but levels of progestins (norelgestromin and levonorgestrel) can be markedly decreased. Norelgestromin Cmax and AUC decreased by 46% and 64%, respectively. Levonorgestrel Cmax and AUC decreased bu 80% and 83%, respectively. There have been post-marketing reports of contraceptive failure with implantable etonogestrel in efavirenz-exposed patients. Decreased exposure of etonogestrel may be expected. There are no effects of ethinyl estradiol/norgestimate on efavirenz plasma concentrations.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Patients should be advised to use a reliable method of barrier contraception in addition to oral contraceptives or non-oral combination contraceptives, including implantable etonogestrel, while using efavirenz. Efavirenz has no effect on ethinyl estradiol concentrations, but levels of progestins (norelgestromin and levonorgestrel) can be markedly decreased. Norelgestromin Cmax and AUC decreased by 46% and 64%, respectively. Levonorgestrel Cmax and AUC decreased bu 80% and 83%, respectively. There have been post-marketing reports of contraceptive failure with implantable etonogestrel in efavirenz-exposed patients. Decreased exposure of etonogestrel may be expected. There are no effects of ethinyl estradiol/norgestimate on efavirenz plasma concentrations.
Efgartigimod Alfa; Hyaluronidase: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Elacestrant: (Major) Avoid concurrent use of elacestrant and elagolix due to the risk of decreased elacestrant exposure which may reduce its efficacy. Elacestrant is a CYP3A substrate and elagolix is a moderate CYP3A inducer. Concomitant use with another moderate CYP3A inducer reduced elacestrant overall exposure by 55% to 73%.
Elbasvir; Grazoprevir: (Major) Concurrent administration of elbasvir with elagolix should be avoided if possible. Use of these drugs together is expected to decrease the plasma concentrations of elbasvir, and may result in decreased virologic response. Elagolix is a weak to moderate CYP3A inducer, while elbasvir is a substrate of CYP3A. (Major) If possible, avoid concurrent administration of grazoprevir with elagolix. Use of these drugs together is expected to decrease the plasma concentrations of grazoprevir, and may result in decreased virologic response. Elagolix is a weak to moderate CYP3A inducer, while grazoprevir is a substrate of CYP3A.
Elexacaftor; tezacaftor; ivacaftor: (Contraindicated) Coadministration of elagolix with elexacaftor is contraindicated as concurrent use may increase elagolix exposure. Elagolix is a substrate of OATP1B1 and elexacaftor is a strong OATP1B1 inhibitor.
Eltrombopag: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as eltrombopag is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Eltrombopag is an inhibitor of OATP1B1 in vitro and can increase the systemic exposure of other drugs that are substrates of OATP1B1. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density.
Eluxadoline: (Contraindicated) Concomitant use of elagolix and organic anion transporting polypeptide (OATP) 1B1 inhibitors such as eluxadoline is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of OATP1B1. Eluxadoline inhibits OATP1B1. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as cobicistat is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Cobicistat is a combined inhibitor; it is a potent inhibitor of CYP3A and inhibits OATP1B1 and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Major) Consider the benefits and risk of administering antiretroviral regimens containing cobicistat with norethindrone. Insufficient data are available to make dosage recommendations, particularly when cobicistat is combined in other antiviral regimens. It is not clear how cobicistat alters various progestin-only agents used for contraception, fertility or luteal support, or for hormone replacement therapy (HRT). Instruct women to report any breakthrough bleeding or other adverse effects (e.g., insulin resistance, dyslipidemia, and acne) to their prescribers. There is a potential for altered efficacy for combined hormonal contraceptives. Consider alternative methods of contraception, such as condoms, to prevent unwanted pregnancy and transmission of HIV/AIDS. When progestins are used for other purposes, monitor for altered clinical response to hormonal therapy. (Moderate) Consider the benefits and risk of administering elvitegravir with ethinyl estradiol; norgestimate and other combination oral contraceptives. Concurrent use may result in elevated norgestimate and reduced ethinyl estradiol serum concentrations. Risk associated with these altered concentrations may include increased insulin resistance, dyslipidemia, acne, and venous thrombosis. Consider alternative non-hormonal methods of contraception, such as condoms, to prevent unwanted pregnancy and transmission of HIV/AIDS.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as cobicistat is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Cobicistat is a combined inhibitor; it is a potent inhibitor of CYP3A and inhibits OATP1B1 and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Major) Consider the benefits and risk of administering antiretroviral regimens containing cobicistat with norethindrone. Insufficient data are available to make dosage recommendations, particularly when cobicistat is combined in other antiviral regimens. It is not clear how cobicistat alters various progestin-only agents used for contraception, fertility or luteal support, or for hormone replacement therapy (HRT). Instruct women to report any breakthrough bleeding or other adverse effects (e.g., insulin resistance, dyslipidemia, and acne) to their prescribers. There is a potential for altered efficacy for combined hormonal contraceptives. Consider alternative methods of contraception, such as condoms, to prevent unwanted pregnancy and transmission of HIV/AIDS. When progestins are used for other purposes, monitor for altered clinical response to hormonal therapy. (Moderate) Consider the benefits and risk of administering elvitegravir with ethinyl estradiol; norgestimate and other combination oral contraceptives. Concurrent use may result in elevated norgestimate and reduced ethinyl estradiol serum concentrations. Risk associated with these altered concentrations may include increased insulin resistance, dyslipidemia, acne, and venous thrombosis. Consider alternative non-hormonal methods of contraception, such as condoms, to prevent unwanted pregnancy and transmission of HIV/AIDS.
Empagliflozin: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Empagliflozin; Linagliptin: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents, such as linagliptin, should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Empagliflozin; Linagliptin; Metformin: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents, such as linagliptin, should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Empagliflozin; Metformin: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Emtricitabine; Rilpivirine; Tenofovir alafenamide: (Major) The concomitant use of elagolix and rilpivirine may lead to decreased rilpivirine concentrations and loss of virologic response. Consider use of an alternative agent. If concomitant use of these agents is unavoidable, monitor patients for loss of rilpivirine efficacy. Elagolix is a weak to moderate CYP3A4 inducer and rilpivirine is a moderately sensitive CYP3A4 substrate.
Emtricitabine; Rilpivirine; Tenofovir Disoproxil Fumarate: (Major) The concomitant use of elagolix and rilpivirine may lead to decreased rilpivirine concentrations and loss of virologic response. Consider use of an alternative agent. If concomitant use of these agents is unavoidable, monitor patients for loss of rilpivirine efficacy. Elagolix is a weak to moderate CYP3A4 inducer and rilpivirine is a moderately sensitive CYP3A4 substrate.
Enasidenib: (Contraindicated) Coadministration of elagolix with enasidenib is contraindicated as concurrent use may increase elagolix exposure. Elagolix is a substrate of OATP1B1 and enasidenib is a strong OATP1B1 inhibitor.
Encorafenib: (Contraindicated) Coadministration of elagolix with encorafenib is contraindicated as concurrent use may increase elagolix exposure. Elagolix is a substrate of OATP1B1 and encorafenib is a strong OATP1B1 inhibitor. (Major) Avoid coadministration of encorafenib and hormonal contraceptives due to the potential for loss of contraceptive efficacy. Advise females of reproductive potential to use an effective, non-hormonal method of contraception during treatment and for 2 weeks after the final dose of encorafenib. Encorafenib can cause fetal harm when administered during pregnancy.
Entrectinib: (Major) Avoid coadministration of entrectinib with elagolix due to decreased entrectinib exposure and risk of decreased efficacy. Entrectinib is a CYP3A4 substrate; elagolix is a moderate CYP3A4 inducer. Coadministration of a moderate CYP3A4 inducer is predicted to reduce the entrectinib AUC by 56%.
Enzalutamide: (Major) Avoid coadministration of enzalutamide with progestins if used for contraception; consider an alternate or additional form of contraception. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of enzalutamide. Patients taking hormonal replacement therapy may need to be monitored for reduced clinical effect while on enzalutamide, with dose adjustments made based on clinical efficacy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. Women taking hormonal replacement and enzalutamide should report breakthrough bleeding, hot flashes, or other symptoms to their prescribers. Progestins are substrates of CYP3A4 and enzalutamide is a strong CYP3A4 inducer. Concurrent administration of enzalutamide with progestins, oral contraceptives, or non-oral combination contraceptives may reduce hormonal concentrations. This interaction does not apply to vaginal preparations of progesterone (e.g., Crinone, Endometrin). (Major) Women taking both estrogens and enzalutamide should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed enzalutamide. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of enzalutamide. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on enzalutamide, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and enzalutamide is a strong CYP3A4 inducer. Concurrent administration may increase estrogen elimination. (Moderate) Concomitant use of elagolix and enzalutamide may result in decreased concentrations of elagolix; monitor for decreased efficacy with coadministration. Elagolix is a CYP3A substrate; enzalutamide is a strong inducer of CYP3A.
Eravacycline: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Erdafitinib: (Major) If coadministration of erdafitinib and elagolix is necessary at the initiation of erdafitinib therapy, administer the dose of erdafitinib as recommended (8 mg once daily with potential to increase the dose to 9 mg on days 14 to 21 based on phosphate levels and tolerability). If elagolix must be added to erdafitinib therapy after the initial dose increase period (days 14 to 21), increase the dose of erdafitinib up to 9 mg. If elagolix is discontinued, continue erdafitinib at the same dose in the absence of drug-related toxicity. Erdafitinib is a CYP3A4 substrate and elagolix is a moderate CYP3A4 inducer.
Erlotinib: (Major) There may be a risk of reduced erlotinib efficacy when coadministered with elagolix; however, the risk has not been clearly defined. If coadministration is necessary, consider increasing the erlotinib dose by 50 mg increments at 2-week intervals as tolerated, to a maximum of 450 mg. Erlotinib is a CYP3A4 substrate, and elagolix is a weak to moderate CYP3A4 inducer.
Ertapenem: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Ertugliflozin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Ertugliflozin; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance. (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Ertugliflozin; Sitagliptin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Erythromycin: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as erythromycin is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Erythromycin significantly inhibits OATP1B1, and also inhibits CYP3A and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. Consider an alternative to erythromycin in a patient receiving elagolix. (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available. (Minor) As erythromycin inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Eslicarbazepine: (Major) Coadministration of eslicarbazepine with oral contraceptives may result in contraceptive failure. Coadministration of eslicarbazepine and ethinyl estradiol and levonorgestrel has resulted in decreased plasma concentrations of these hormones. Instruct females of child-bearing potential to use additional or non-hormonal contraception during therapy with eslicarbazepine and after treatment has been discontinued for at least one menstrual cycle.
Estradiol: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentr ation by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Estradiol; Levonorgestrel: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Estradiol; Norethindrone: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Estradiol; Norgestimate: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Ethinyl Estradiol; Norelgestromin: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Ethinyl Estradiol; Norethindrone Acetate: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Ethinyl Estradiol; Norgestrel: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Ethynodiol Diacetate; Ethinyl Estradiol: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Etonogestrel; Ethinyl Estradiol: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Etravirine: (Major) Women taking both estrogens and etravirine should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed etravirine. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of etravirine. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on etravirine, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and etravirine is a moderate CYP3A4 inducer. Concurrent administration may increase estrogen elimination. (Major) Women taking both progestins and etravirine should report breakthrough bleeding to their prescribers. An alternate or additional form of contraception should be considered in patients prescribed etravirine. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for one month after discontinuation of etravirine. For patients on hormone replacement treatments (HRT) with progestins, monitor for altered clinical response, such as increased hot flashes, vaginal dryness, changes in withdrawal bleeding, or other signs of decreased hormonal efficacy. Progestins are CYP3A4 substrates and etravirine is a strong CYP3A4 inducer.
Everolimus: (Moderate) Monitor everolimus whole blood trough concentrations as appropriate and watch for everolimus-related adverse reactions if coadministration with elagolix is necessary. The dose of everolimus may need to be adjusted. Everolimus is a sensitive CYP3A4 substrate and a P-glycoprotein (P-gp) substrate. Elagolix is a weak to moderate CYP3A4 inducer; it may also increase plasma concentrations of P-gp substrates. Coadministration with CYP3A4 inducers may increase the metabolism of everolimus and decrease everolimus blood concentrations. Coadministration with P-gp inhibitors may decrease the efflux of everolimus from intestinal cells and increase everolimus blood concentrations.
Exemestane: (Major) Avoid concomitant use of estrogens and exemestane. Estrogen-containing therapies may reduce the effectiveness of aromatase inhibitors, such as exemestane.
Exenatide: (Moderate) Separate the administration times of exenatide and estrogen and progestin containing oral contraceptives. Advise patients to take estrogen and progestin containing oral contraceptives at least 1 hour before exenatide. Exenatide slows gastric emptying and simultaneous coadministration may reduce the rate and extent of estrogen and progestin oral absorption which may reduce efficacy. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day.
Fedratinib: (Major) Avoid coadministration of fedratinib with elagolix as concurrent use may decrease fedratinib exposure which may result in decreased therapeutic response. Fedratinib is a CYP3A4 substrate; elagolix is a weak to moderate CYP3A4 inducer. Coadministration of fedratinib with another moderate CYP3A4 inducer decreased the overall exposure of fedratinib by 47%.
Felbamate: (Major) Based on very limited data, it appears felbamate can accelerate the clearance of the estrogen component of some oral contraceptives. Patients who experience breakthrough bleeding while receiving these drugs together should notify their prescribers. An alternate or additional form of contraception should be used during concomitant treatment. Additionally, patients taking non-oral combination contraceptives or estrogens or progestins for hormone replacement therapy may also experience reduced clinical efficacy; dosage adjustments may be necessary. (Major) Estrogens and progestins are both susceptible to drug interactions with hepatic enzyme inducing drugs. Estrogens are metabolized by CYP3A4. Anticonvulsants that stimulate the activity of this enzyme include: barbiturates (including primidone), carbamazepine, felbamate, oxcarbazepine, phenytoin or fosphenytoin (and possibly ethotoin), and topiramate. The anticonvulsants mentioned may cause oral contraceptive failure, especially when low-dose estrogen regimens (e.g., ethinyl estradiol is < 50 mcg/day) are used. Epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism and the higher risk for oral contraceptive failure. During oral contraceptive failure, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Women on OCs and enzyme-inducing anticonvulsant medications concurrently should report breakthrough bleeding to their prescribers. Oral contraceptive formulations containing higher dosages of ethinyl estradiol (i.e., 50 mcg ethinyl estradiol) may be needed to increase contraceptive efficacy. It may be prudent for some women who receive OCs concurrently with enzyme-inducing anticonvulsants to use an additional contraceptive method to protect against unwanted pregnancy. Higher dosages of oral contraceptives (e.g., ethinyl estradiol >= 50 mcg/day) or a second contraceptive method are typically suggested if women use an enzyme-inducing anti-epileptic drug or a barbiturate. Proper intake of folic acid should also be ensured.
Fentanyl: (Moderate) Consider an increased dose of fentanyl and monitor for evidence of opioid withdrawal if coadministration with elagolix is necessary. If elagolix is discontinued, consider reducing the fentanyl dosage and monitor for evidence of respiratory depression. Coadministration of a moderate CYP3A4 inducer like elagolix with fentanyl, a CYP3A4 substrate, may decrease exposure to fentanyl resulting in decreased efficacy or onset of withdrawal symptoms in a patient who has developed physical dependence to fentanyl. Fentanyl plasma concentrations will increase once the inducer is stopped, which may increase or prolong the therapeutic and adverse effects, including serious respiratory depression.
Fidaxomicin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Finerenone: (Major) Avoid concurrent use of finerenone and elagolix due to the risk for decreased finerenone exposure which may reduce its efficacy. Finerenone is a CYP3A substrate and elagolix is a moderate CYP3A inducer. Coadministration with another moderate CYP3A inducer decreased overall exposure to finerenone by 80%.
Flibanserin: (Major) Coadministration of elagolix with flibanserin is not recommended due to decreased plasma exposure to flibanserin which may result in decreased efficacy. Flibanserin is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant administration with a moderate CYP3A4 inducer decreased flibanserin exposures by approximately 21%. (Moderate) The concomitant use of flibanserin and multiple weak CYP3A4 inhibitors, including oral contraceptives, may increase flibanserin concentrations, which may increase the risk of flibanserin-induced adverse reactions. Therefore, patients should be monitored for hypotension, syncope, somnolence, or other adverse reactions, and the risks of combination therapy with multiple weak CYP3A4 inhibitors and flibanserin should be discussed with the patient. In one study of 24 healthy women, the effect of 100 mg flibanserin once daily for 2 weeks on the pharmacokinetics of a single dose of ethinyl estradiol 30 mcg/levonorgestrel 150 mcg was evaluated. Flibanserin increased the AUC and Cmax of ethinyl estradiol by 1.09-fold and 1.1-fold, respectively. Flibanserin decreased the levonorgestrel AUC by 1.06-fold. During pre-marketing evaluation of flibanserin, patients who reported using oral contraceptives had a greater incidence of CNS effects than flibenserin-treated patients who did not report oral contraceptive use, including dizziness (13.4% vs. 9.9%), somnolence (12.3% vs. 10.6%), and fatigue (11.4% vs. 7.5%).
Fluconazole: (Minor) As fluconazole inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Fludrocortisone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Flunisolide: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Fluoxetine: (Minor) As fluoxetine inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Fluticasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Fluticasone; Salmeterol: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Fluticasone; Vilanterol: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Formoterol; Mometasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Fosamprenavir: (Major) Avoid concurrent use of contraceptives and hormone replacement therapies (HRT) containing estrogens with fosamprenavir. Alternative methods of non-hormonal contraception are recommended. Concomitant use may decrease the efficacy of both the estrogen and fosamprenavir, which could lead to loss of virologic response and possible viral resistance. Additionally, there is an increased risk of transaminase elevations during concurrent use of estrogens and fosamprenavir boosted with ritonavir. (Major) Avoid concurrent use of contraceptives and hormone replacement therapies (HRT) containing progestins with fosamprenavir. Alternative methods of non-hormonal contraception are recommended. Concomitant use may decrease the efficacy of both the progestin and fosamprenavir, which could lead to loss of virologic response and possible viral resistance. Additionally, there is an increased risk of transaminase elevations during concurrent use of progestins and fosamprenavir boosted with ritonavir. (Moderate) Monitor for decreased fosamprenavir efficacy if coadministered with elagolix. Concurrent use may decrease the plasma concentrations of fosamprenavir leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. Fosamprenavir is a CYP3A substrate and elagolix is a moderate CYP3A inducer.
Fosphenytoin: (Major) Women taking both estrogens and phenytoin/fosphenytoin should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed phenytoin/fosphenytoin. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of phenytoin/fosphenytoin. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on phenytoin/fosphenytoin, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and phenytoin/fosphenytoin is a strong CYP3A4 inducer. Concurrent administration may increase estrogen elimination. (Moderate) Concomitant use of elagolix and fosphenytoin may result in decreased concentrations of elagolix; monitor for decreased efficacy with coadministration. Elagolix is a CYP3A substrate; fosphenytoin is a strong inducer of CYP3A.
Fostemsavir: (Contraindicated) Coadministration of elagolix with fostemsavir is contraindicated as concurrent use may increase elagolix exposure. Elagolix is a substrate of OATP1B1 and fostemsavir is an OATP1B1 inhibitor.
Ganaxolone: (Major) Avoid concurrent use of ganaxolone and elagolix due to the risk of decreased ganaxolone efficacy. If concomitant use is unavoidable, consider increasing ganaxolone dose without exceeding the maximum daily dose. Ganaxolone is a CYP3A4 substrate and elagolix is a moderate CYP3A4 inducer.
Gemfibrozil: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as gemfibrozil is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density.
Gemifloxacin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used with antibiotics. Oral contraceptives (estrogen/progesterone) reduced the AUC and Cmax of gemifloxacin by 19% and 12%, respectively. These reductions are considered to be clinically insignificant. Gemifloxacin did not affect the pharmacokinetics of an ethinyl estradiol/levonorgestrel oral contraceptive product in healthy females. It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Gentamicin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Glasdegib: (Major) Avoid coadministration of glasdegib and elagolix due to the potential for decreased glasdegib exposure and risk of decreased efficacy. If concurrent use cannot be avoided, increase the glasdegib dosage (i.e., from 100 mg PO daily to 200 mg PO daily; or from 50 mg PO daily to 100 mg PO daily). Resume the previous dose of glasdegib after elagolix has been discontinued for 7 days. Glasdegib is a CYP3A substrate; elagolix is a weak to moderate CYP3A inducer. Coadministration with another moderate CYP3A inducer was predicted to decrease the glasdegib AUC value by 55%.
Glecaprevir; Pibrentasvir: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as glecaprevir is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Glecaprevir inhibits both OATP1B1 and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as pibrentasvir is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Pibrentasvir inhibits both OATP1B1 and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density.
Glimepiride: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Glipizide: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Glipizide; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Glyburide: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Glyburide; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Glycylcyclines: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Grapefruit juice: (Major) Advise patients to avoid grapefruit juice while taking elagolix due to increased elagolix exposure. Elagolix is a CYP3A substrate; grapefruit juice is a strong inhibitor of CYP3A. Coadministration may increase elagolix plasma concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Minor) Grapefruit juice has been reported to decrease the metabolism of some estrogens. Grapefruit juice contains a compound that inhibits CYP3A4 in enterocytes. Estrogen levels may increase by up to 30 percent with chronic use. The clinical significance of the interaction is unknown. It is possible that estrogen induced side effects could be increased in some individuals. Patients should be advised to not significantly alter their grapefruit juice ingestion.When chronically ingesting any CYP3A4 inhibitor ( > 30 days) with estrogens, adequate diagnostic measures, including directed or random endometrial sampling when indicated by signs and symptoms of endometrial hyperplasia, should be undertaken to rule out malignancy in postmenopausal women with undiagnosed persistent or recurring abnormal genital bleeding.
Griseofulvin: (Major) The concurrent use of griseofulvin and oral contraceptives can reduce contraceptive efficacy and result in an unintended pregnancy and/or breakthrough bleeding. This risk is particularly serious because griseofulvin is contraindicated during pregnancy due to the risk of teratogenic and abortifacient effects. An alternate or additional form of contraception should be used during concomitant treatment and continued for 1 month after griseofulvin discontinuation. If these drugs are used together, counsel the patient about the risk of pregnancy and teratogenic effects, and instruct the patient to notify the prescriber if they experience breakthrough bleeding while receiving these drugs together. Additionally, patients taking non-oral combination contraceptives or progestins for hormone replacement therapy may also experience reduced clinical efficacy. (Major) Women taking both estrogens and griseofulvin should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed griseofulvin. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of griseofulvin. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on griseofulvin, with dose adjustments made based on clinical efficacy. Concurrent administration may increase estrogen elimination; the mechanism by which griseofulvin enhances estrogen elimination has not been fully elucidated.
Guaifenesin; Hydrocodone: (Moderate) Concomitant use of hydrocodone with elagolix can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal; consider increasing the dose of hydrocodone as needed. If elagolix is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer.
Guanfacine: (Major) Elagolix may significantly decrease guanfacine plasma concentrations. FDA-approved labeling for extended-release (ER) guanfacine recommends that, if these agents are taken together, doubling the recommended dose of guanfacine should be considered; if elagolix is added in a patient already receiving guanfacine, this escalation should occur over 1 to 2 weeks. If elagolix is discontinued, decrease the guanfacine ER dosage back to the recommended dose over 1 to 2 weeks. Specific recommendations for immediate-release (IR) guanfacine are not available. Guanfacine is primarily metabolized by CYP3A4, and elagolix is a weak to moderate CYP3A4 inducer.
Hemin: (Moderate) Hemin works by inhibiting aminolevulinic acid synthetase. Estrogens increase the activity of this enzyme should not be used with hemin.
Homatropine; Hydrocodone: (Moderate) Concomitant use of hydrocodone with elagolix can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal; consider increasing the dose of hydrocodone as needed. If elagolix is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer.
Hyaluronidase, Recombinant; Immune Globulin: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Hyaluronidase: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Hydantoins: (Major) Women taking both progestins and hydantoins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of non-hormonal contraception should be considered in patients prescribed hydantoins. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of hydantoins. Patients taking progestins for other indications may need to be monitored for reduced clinical effect while on hydantoins, with dose adjustments made based on clinical efficacy. Hydantoins are strong hepatic CYP450 inducers. Concurrent administration may increase progestin elimination This interaction does not apply to vaginal preparations of progesterone (e.g., Crinone, Endometrin).
Hydralazine: (Minor) The administration of estrogens can increase fluid retention, which increases blood pressure, thereby antagonizing the antihypertensive effects of hydralazine.
Hydralazine; Isosorbide Dinitrate, ISDN: (Minor) The administration of estrogens can increase fluid retention, which increases blood pressure, thereby antagonizing the antihypertensive effects of hydralazine.
Hydrocodone: (Moderate) Concomitant use of hydrocodone with elagolix can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal; consider increasing the dose of hydrocodone as needed. If elagolix is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer.
Hydrocodone; Ibuprofen: (Moderate) Concomitant use of hydrocodone with elagolix can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal; consider increasing the dose of hydrocodone as needed. If elagolix is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer.
Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with elagolix can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal; consider increasing the dose of hydrocodone as needed. If elagolix is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer.
Hydrocortisone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Ibrexafungerp: (Major) Avoid concurrent administration of ibrexafungerp with elagolix. Use of these drugs together is expected to significantly decrease ibrexafungerp exposure, which may reduce its efficacy. Ibrexafungerp is a CYP3A substrate and elagolix is a moderate CYP3A inducer.
Ibuprofen; Oxycodone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with elagolix is necessary; consider increasing the dose of oxycodone as needed. If elagolix is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Icosapent ethyl: (Moderate) Estrogens may exacerbate hypertriglyceridemia and should be discontinued or changed to alternate therapy, if possible, prior to initiation of icosapent ethyl.
Idelalisib: (Major) Concomitant use of elagolix 200 mg twice daily and idelalisib for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and idelalisib to 6 months. Elagolix is a CYP3A substrate; idelalisib is a strong inhibitor of CYP3A. Coadministration may increase elagolix plasma concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Moderate) Idelalisib is a strong CYP3A inhibitor, and ethinyl estradiol (EE) is a CYP3A substrate. Use caution in dose selection, as the hormonal side effects of ethinyl estradiol may be increased. The AUC of a sensitive CYP3A substrate was increased 5.4-fold when coadministered with idelalisib. Females of reproductive potential should avoid becoming pregnant during idelalisib therapy, using effective contraception during treatment and for at least 1 month after the last dose. Thus, use idelalisib with caution in combination with any combination oral contraceptives, most of which contain EE or mestranol (which is converted to EE). In addiiton, drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Consider monitoring serum potassium concentrations during the first month of dosing in high-risk patients who take strong CYP3A4 inhibitors long-term and concomitantly.
Imatinib: (Minor) As imatinib inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Imipenem; Cilastatin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Imipenem; Cilastatin; Relebactam: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Indinavir: (Major) Concomitant use of elagolix 200 mg twice daily and indinavir for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and indinavir to 6 months. Monitor for elagolix-related side effects and reduced response to indinavir. Elagolix is a CYP3A substrate and a weak to moderate CYP3A4 inducer; indinavir is a strong inhibitor of CYP3A and a CYP3A4 substrate. Coadministration may increase elagolix plasma concentrations and decrease indinavir concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Moderate) Indinavir has been shown to decrease the metabolism of ethinyl estradiol; a similar interaction may occur with other estrogens used for hormone replacement therapy. Patients should be instructed to report any estrogen- related adverse events. (Moderate) Many anti-retroviral protease inhibitors may interact with hormonal agents like norethindrone, due to their actions on CYP metabolism, particularly CYP3A4. Data on the effects that protease inhibitors have on the serum concentrations of norethindrone are complex and are based mostly off of data with norethindrone-containing contraceptives. The AUC for norethindrone increased by 26+/-14%, respectively, when a combined oral contraceptive was coadministered with indinavir. Women receiving hormonal contraceptives and anti-retroviral protease inhibitors (PIs), such as indinavir, should be instructed to report any breakthrough bleeding or other adverse effects to their prescribers. Because hormonal contraceptives do not protect against the transmission of HIV/AIDS and other sexually transmitted diseases, women who receive hormonal contraceptives with indinavir should use an additional barrier method of contraception such as condoms.
Infigratinib: (Major) Avoid concurrent use of infigratinib and elagolix. Coadministration may decrease infigratinib exposure resulting in decreased efficacy. Infigratinib is a CYP3A4 substrate and elagolix is a moderate CYP3A4 inducer.
Insulin Glargine; Lixisenatide: (Moderate) Separate the administration times of lixisenatide and estrogen and progestin containing oral contraceptives. Advise patients to take estrogen and progestin containing oral contraceptives at least 1 hour before or 11 hours after lixisenatide. Lixisenatide slows gastric emptying and simultaneous coadministration may reduce the rate and extent of estrogen and progestin oral absorption which may reduce efficacy. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day.
Insulins: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Isavuconazonium: (Major) The concomitant use of elagolix and isavuconazonium may lead to decreased isavuconazonium concentrations and loss of efficacy. Use of an alternative agent is recommended. If concomitant use of these agents together is unavoidable, monitor patients for loss of isavuconazonium efficacy. Elagolix is a weak to moderate CYP3A4 inducer; isavuconazonium is a sensitive CYP3A4 substrate. The use of isavuconazonium is contraindicated with strong CYP3A4 inducers; however, the manufacturer does not provide guidance for moderate inducers.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Contraindicated) The use of rifampin with elagolix is contraindicated. Concomitant use of elagolix and organic anion transporting polypeptide (OATP) 1B1 inhibitors such as rifampin increase exposure to elagolix. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. During drug interaction studies, a single dose of rifampin increased the mean AUC of elagolix by 5.58-fold. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. While induction of CYP3A by rifampin may also occur, particularly with continued use, it appears that elagolix is more influenced by the OATP1B1 activity of rifampin as AUC remained elevated by a mean of 1.65-fold with continued use of rifampin. (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Major) Women taking both progestins and rifampin should report breakthrough bleeding to their prescribers. An alternate or additional form of contraception should be considered in patients prescribed rifampin. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for one month after discontinuation of rifampin. For patients on hormone replacement treatments (HRT) with progestins, monitor for altered clinical response, such as increased hot flashes, vaginal dryness, changes in withdrawal bleeding, or other signs of decreased hormonal efficacy. Progestins are CYP3A4 substrates and rifampin is a strong CYP3A4 inducer.
Isoniazid, INH; Rifampin: (Contraindicated) The use of rifampin with elagolix is contraindicated. Concomitant use of elagolix and organic anion transporting polypeptide (OATP) 1B1 inhibitors such as rifampin increase exposure to elagolix. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. During drug interaction studies, a single dose of rifampin increased the mean AUC of elagolix by 5.58-fold. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. While induction of CYP3A by rifampin may also occur, particularly with continued use, it appears that elagolix is more influenced by the OATP1B1 activity of rifampin as AUC remained elev ated by a mean of 1.65-fold with continued use of rifampin. (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Major) Women taking both progestins and rifampin should report breakthrough bleeding to their prescribers. An alternate or additional form of contraception should be considered in patients prescribed rifampin. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for one month after discontinuation of rifampin. For patients on hormone replacement treatments (HRT) with progestins, monitor for altered clinical response, such as increased hot flashes, vaginal dryness, changes in withdrawal bleeding, or other signs of decreased hormonal efficacy. Progestins are CYP3A4 substrates and rifampin is a strong CYP3A4 inducer.
Itraconazole: (Major) Concomitant use of elagolix 200 mg twice daily and itraconazole for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and itraconazole to 6 months. Monitor for elagolix-related side effects and reduced response to itraconazole. Elagolix is a CYP3A substrate and a weak to moderate CYP3A4 inducer; itraconazole is a strong inhibitor of CYP3A and a CYP3A4 substrate. Coadministration may increase elagolix plasma concentrations and decrease itraconazole concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Minor) As itraconazole inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Ivosidenib: (Major) Consider alternative methods of contraception in patients receiving ivosidenib. Coadministration may decrease the concentrations of hormonal contraceptives.
Ketoconazole: (Major) Concomitant use of elagolix 200 mg twice daily and ketoconazole for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and ketoconazole to 6 months. Coadministration may increase elagolix exposure. Elagolix is a CYP3A4 substrate and ketoconazole is a strong CYP3A4 inhibitor. Coadministration with ketoconazole increased the AUC of elagolix by 120%. (Minor) As ketoconazole inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Lamotrigine: (Major) A lamotrigine maintenance dose increase of up to 2-fold may be required during concomitant use of estrogen hormones. Increase the dose no more rapidly than 50 to 100 mg/day every week based on clinical response. Coadministration of an oral contraceptive containing 30 mcg of ethinyl estradiol has been observed to decrease the AUC and Cmax of lamotrigine by 52% and 39%, respectively. During the oral contraceptive pill-free week, trough lamotrigine concentrations have been observed to increase an average of 2-fold which may transiently increase the risk for lamotrigine-related adverse effects. If lamotrigine-related adverse effects consistently occur during the pill-free week, the overall lamotrigine maintenance dose may need to be reduced. (Moderate) Patients taking progestin hormones for contraception may consider an alternate or additional form of contraception, such as nonhormonal and/or barrier methods, during and for at least 1 month after discontinuation of lamotrigine. Higher-dose hormonal regimens may also be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on lamotrigine with dose adjustments made based on clinical efficacy. The AUC and Cmax of levonorgestrel decreased by 19% and 12%, respectively, among 16 volunteers during concurrent use with lamotrigine 300 mg/day. Serum progesterone concentrations did not suggest ovulation, however, serum FSH, LH, and estradiol concentrations suggested some loss of suppression of the hypothalamic-pituitary-ovarian axis.
Lansoprazole: (Minor) Coadministration of elagolix with lansoprazole may theoretically increase plasma concentrations of lansoprazole. Monitor for lansoprazole-related adverse effects during coadministration with elagolix. Elagolix is a weak CYP2C19 inhibitor and lansoprazole is a CYP2C19 sensitive substrate.
Lansoprazole; Amoxicillin; Clarithromycin: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as clarithromycin is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Clarithromycin significantly inhibits OATP1B1, and also inhibits CYP3A and P-gp. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. Consider an alternative to clarithromycin in a patient receiving elagolix. (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available. (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available. In addition, drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Consider monitoring serum potassium concentrations during the first month of dosing in high-risk patients who take strong CYP3A4 inhibitors long-term and concomitantly. Strong CYP3A4 inhibitors include clarithromycin. (Minor) Coadministration of elagolix with lansoprazole may theoretically increase plasma concentrations of lansoprazole. Monitor for lansoprazole-related adverse effects during coadministration with elagolix. Elagolix is a weak CYP2C19 inhibitor and lansoprazole is a CYP2C19 sensitive substrate. (Minor) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as clarithromycin may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events. Also, practitioners should be alert to the possibility that breakthrough bleeding or contraceptive failure may occur with clarithromycin.
Lapatinib: (Moderate) Monitor for an increase in lapatinib-related adverse reactions if coadministration with elagolix is necessary. Lapatinib is a P-glycoprotein (P-gp) substrate and elagolix is a P-gp inhibitor. Increased plasma concentrations of lapatinib are likely.
Larotrectinib: (Major) Avoid concurrent use of larotrectinib and elagolix due to the risk of decreased larotrectinib exposure which may reduce its efficacy. If concomitant use is necessary, double the dose of larotrectinib and monitor response. If elagolix is discontinued, resume the original larotrectinib dose after 3 to 5 elimination half-lives of elagolix. Larotrectinib is a CYP3A substrate and elagolix is a moderate CYP3A inducer. Coadministration with a moderate CYP3A inducer is predicted to decrease larotrectinib exposure by 72%.
Lefamulin: (Major) Avoid coadministration of lefamulin with elagolix unless the benefits outweigh the risks due to unpredictable lefamulin exposure. Lefamulin is a CYP3A4 and P-gp substrate; elagolix is both an inducer of CYP3A4 as well as a P-gp inhibitor. The net effect on lefamulin concentrations is unclear. (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Leflunomide: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as leflunomide is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. The active metabolite of leflunomide, which is responsible for virtually all of its activity, inhibits OATP1B1 in vivo and is expected to increase concentrations of drugs that are substrates for OATP1B1. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Moderate) Carefully consider the type and dose of oral contraceptives in patients taking leflunomide. Leflunomide may increase the effects of oral contraceptives. Following oral administration, leflunomide is metabolized to an active metabolite, teriflunomide, which is responsible for essentially all of leflunomide's in vivo activity. Following repeated teriflunomide doses, mean ethinyl estradiol Cmax and AUC increased 1.58- and 1.54-fold, respectively. Levonorgestrel Cmax increased 1.33-fold and AUC 1.41-fold during coadministration.
Lemborexant: (Major) Avoid coadministration of lemborexant and elagolix as concurrent use may decrease lemborexant exposure which may reduce efficacy. Lemborexant is a CYP3A4 substrate; elagolix is a moderate CYP3A4 inducer.
Lenacapavir: (Major) Avoid concurrent use of lenacapavir and elagolix due to the risk of decreased lenacapavir exposure which may result in loss of therapeutic effect and development of resistance. Lenacapavir is a CYP3A substrate and elagolix is a moderate CYP3A inducer. Concomitant use with another moderate CYP3A inducer reduced lenacapavir overall exposure by 56%.
Lenalidomide: (Moderate) Concomitant use of lenalidomide with estrogens may increase the risk of thrombosis in patients with multiple myeloma patients who are also receiving dexamethasone. Use lenalidomide and estrogen-containing agents with caution in these patients. Monitor for signs of thromboembolism (e.g., deep vein thrombosis, pulmonary embolism, myocardial infarction, stroke) and encourage patients to report symptoms such as shortness of breath, chest pain, or arm or leg swelling.
Leniolisib: (Contraindicated) Coadministration of elagolix with leniolisib is contraindicated as concurrent use may increase elagolix exposure and risk for adverse effects. Concomitant use may also decrease leniolisib exposure which may reduce its efficacy. Elagolix is a substrate of OATP1B1 and a moderate CYP3A inducer; leniolisib is an OATP1B1 inhibitor and a CYP3A substrate. Concomitant use with another moderate CYP3A inducer reduced leniolisib overall exposure by 58%.
Lesinurad: (Major) Lesinurad induces CYP3A4, which may reduce the concentrations of estrogen and progestin hormones. Hormonal contraceptives may not be reliable when coadministered with lesinurad. Females taking hormonal-based birth control should use additional non-hormonal methods and not rely solely on hormonal contraceptive methods when taking lesinurad. Hormonal contraceptives include combination oral contraceptives, non-oral combination contraceptives, and contraceptives containing only progestins and includes oral, injectable, transdermal, vaginal inserts, and implantable forms of hormonal birth control. Lesinurad may also reduce the effectiveness of other estrogens or progestins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on lesinurad, with adjustments made based on clinical efficacy.
Lesinurad; Allopurinol: (Major) Lesinurad induces CYP3A4, which may reduce the concentrations of estrogen and progestin hormones. Hormonal contraceptives may not be reliable when coadministered with lesinurad. Females taking hormonal-based birth control should use additional non-hormonal methods and not rely solely on hormonal contraceptive methods when taking lesinurad. Hormonal contraceptives include combination oral contraceptives, non-oral combination contraceptives, and contraceptives containing only progestins and includes oral, injectable, transdermal, vaginal inserts, and implantable forms of hormonal birth control. Lesinurad may also reduce the effectiveness of other estrogens or progestins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on lesinurad, with adjustments made based on clinical efficacy.
Letermovir: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as letermovir is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Letermovir inhibits OATP1B1 and is expected to increase concentrations of drugs that are substrates for OATP1B1. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density.
Letrozole: (Major) Avoid concomitant use of estrogens and letrozole. Estrogen-containing therapies may reduce the effectiveness of aromatase inhibitors, such as letrozole.
Leuprolide; Norethindrone: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Levamlodipine: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Levofloxacin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Levoketoconazole: (Major) Concomitant use of elagolix 200 mg twice daily and ketoconazole for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and ketoconazole to 6 months. Coadministration may increase elagolix exposure. Elagolix is a CYP3A4 substrate and ketoconazole is a strong CYP3A4 inhibitor. Coadministration with ketoconazole increased the AUC of elagolix by 120%. (Minor) As ketoconazole inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Levonorgestrel: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Levonorgestrel; Ethinyl Estradiol: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Levothyroxine: (Minor) The administration of estrogens can increase circulating concentrations of thyroxine-binding globulin, sex hormone-binding globulin, and cortisol-binding globulin. Increased amounts of thyroxine-binding globulin may result in a reduced clinical response to thyroid hormones. Some hypothyroid patients on estrogen may require larger doses of thyroid hormones. Monitor thyroid-stimulating hormone (TSH) level and follow the recommendation for thyroid hormone replacement.
Levothyroxine; Liothyronine (Porcine): (Minor) The administration of estrogens can increase circulating concentrations of thyroxine-binding globulin, sex hormone-binding globulin, and cortisol-binding globulin. Increased amounts of thyroxine-binding globulin may result in a reduced clinical response to thyroid hormones. Some hypothyroid patients on estrogen may require larger doses of thyroid hormones. Monitor thyroid-stimulating hormone (TSH) level and follow the recommendation for thyroid hormone replacement.
Levothyroxine; Liothyronine (Synthetic): (Minor) The administration of estrogens can increase circulating concentrations of thyroxine-binding globulin, sex hormone-binding globulin, and cortisol-binding globulin. Increased amounts of thyroxine-binding globulin may result in a reduced clinical response to thyroid hormones. Some hypothyroid patients on estrogen may require larger doses of thyroid hormones. Monitor thyroid-stimulating hormone (TSH) level and follow the recommendation for thyroid hormone replacement.
Lidocaine: (Moderate) Concomitant use of systemic lidocaine and elagolix may decrease lidocaine plasma concentrations. Higher lidocaine doses may be required; titrate to effect. Lidocaine is a CYP3A4 and CYP1A2 substrate; elagolix is a weak to moderate CYP3A4 inducer.
Lidocaine; Epinephrine: (Moderate) Concomitant use of systemic lidocaine and elagolix may decrease lidocaine plasma concentrations. Higher lidocaine doses may be required; titrate to effect. Lidocaine is a CYP3A4 and CYP1A2 substrate; elagolix is a weak to moderate CYP3A4 inducer.
Lidocaine; Prilocaine: (Moderate) Concomitant use of systemic lidocaine and elagolix may decrease lidocaine plasma concentrations. Higher lidocaine doses may be required; titrate to effect. Lidocaine is a CYP3A4 and CYP1A2 substrate; elagolix is a weak to moderate CYP3A4 inducer.
Linagliptin: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents, such as linagliptin, should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Linagliptin; Metformin: (Minor) Estrogens, progestins, or oral contraceptives can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving > 50 mcg of ethinyl estradiol per day. The presence or absence of a concomitant progestin may influence the significance of this effect. Patients receiving antidiabetic agents, such as linagliptin, should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued. (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance.
Lincomycin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Lincosamides: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Linezolid: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Liothyronine: (Minor) The administration of estrogens can increase circulating concentrations of thyroxine-binding globulin, sex hormone-binding globulin, and cortisol-binding globulin. Increased amounts of thyroxine-binding globulin may result in a reduced clinical response to thyroid hormones. Some hypothyroid patients on estrogen may require larger doses of thyroid hormones. Monitor thyroid-stimulating hormone (TSH) level and follow the recommendation for thyroid hormone replacement.
Lixisenatide: (Moderate) Separate the administration times of lixisenatide and estrogen and progestin containing oral contraceptives. Advise patients to take estrogen and progestin containing oral contraceptives at least 1 hour before or 11 hours after lixisenatide. Lixisenatide slows gastric emptying and simultaneous coadministration may reduce the rate and extent of estrogen and progestin oral absorption which may reduce efficacy. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day.
Lomitapide: (Major) Concomitant use of lomitapide and oral contraceptives may significantly increase the serum concentration of lomitapide. Therefore, the lomitapide dose should not exceed 30 mg/day PO during concurrent use. Oral Contraceptives are weak CYP3A4 inhibitors; the exposure to lomitapide is increased by approximately 2-fold in the presence of weak CYP3A4 inhibitors. In addition, females of reproductive potential must use effective contraception during lomitapide therapy. Because vomiting and diarrhea have been frequently reported during lomitapide therapy and hormone absorption from oral contraceptives may be incomplete in the presence of vomiting or diarrhea, warn patients that the use of additional contraceptive methods is warranted if vomiting or diarrhea occur.
Lonafarnib: (Contraindicated) Concurrent use of lonafarnib and elagolix is contraindicated as use may decrease lonafarnib exposure and efficacy. Elagolix exposure and the risk for elagolix-related adverse effects may also be increased. If concurrent use is necessary, limit elagolix therapy to a maximum duration of six months in patients receiving 150 mg daily or one month in patients receiving 200 mg twice daily. Lonafarnib is a sensitive CYP3A4 substrate and strong CYP3A4 inhibitor; elagolix is a CYP3A4 substrate and moderate CYP3A4 inducer. Coadministration of elagolix with another strong CYP3A4 inhibitor increased elagolix exposure by 120%.
Lonapegsomatropin: (Moderate) Somatropin can induce the activity of cytochrome-mediated metabolism of antipyrine clearance. Because estrogens are also metabolized in this way, somatropin may alter the metabolism of estrogens. In addition, growth-hormone deficient women also treated with estrogen replacement therapy require substantially more somatropin therapy to obtain comparable effects when compared to women not taking estrogen. Patients should be monitored for changes in efficacy of either drug when somatropin and estrogens are coadministered.
Loperamide: (Moderate) Monitor for loperamide-associated adverse reactions, such as CNS effects and cardiac toxicities (i.e., syncope, ventricular tachycardia, QT prolongation, torsade de pointes, cardiac arrest), if coadministered with elagolix. Concurrent use may increase loperamide exposure. Loperamide is a P-gp substrate and elagolix is a P-gp inhibitor. Coadministration with another P-gp inhibitor increased loperamide plasma concentrations by 2- to 3-fold.
Loperamide; Simethicone: (Moderate) Monitor for loperamide-associated adverse reactions, such as CNS effects and cardiac toxicities (i.e., syncope, ventricular tachycardia, QT prolongation, torsade de pointes, cardiac arrest), if coadministered with elagolix. Concurrent use may increase loperamide exposure. Loperamide is a P-gp substrate and elagolix is a P-gp inhibitor. Coadministration with another P-gp inhibitor increased loperamide plasma concentrations by 2- to 3-fold.
Lopinavir; Ritonavir: (Contraindicated) Concomitant use of elagolix and organic anion transporting polypeptide (OATP) 1B1 inhibitors such as lopinavir is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of OATP1B1. Lopinavir inhibits OATP1B1. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Major) Concomitant use of elagolix 200 mg twice daily and ritonavir for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and ritonavir to 6 months. Monitor for elagolix-related side effects and reduced response to ritonavir. Elagolix is a CYP3A substrate and a weak to moderate CYP3A4 inducer; ritonavir is a strong inhibitor of CYP3A and a CYP3A4 substrate. Coadministration may increase elagolix plasma concentrations and decrease ritonavir concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Moderate) Many anti-retroviral protease inhibitors may interact with hormonal agents like norethindrone, due to their actions on CYP metabolism, particularly CYP3A4. Data on the effects that protease inhibitors have on the serum concentrations of norethindrone are complex and are based mostly off of data with norethindrone-containing contraceptives. For example, ritonavir (also found in combinations like lopinavir; ritonavir, and used as a booster in many HIV treatment regimens) may decrease the metabolism of norethindrone, raising norethindrone concentrations. Women receiving norethindrone for hormone replacement or contraception should report potential hormonal adverse effects (e.g., bleeding pattern changes, acne, emotional lability) or any changes in efficacy (e.g., noted changes in bleeding patterns) to their prescribers. Because norethindrone-containing contraceptives do not protect against the transmission of HIV/AIDS and other sexually transmitted diseases, women who receive norethindrone contraception concurrently with ritonavir should use an additional barrier method of contraception such as condoms. (Moderate) Ritonavir has been shown to increase the metabolism of ethinyl estradiol. Ritonavir is a substrate and inhibitor of CYP3A4. It is not known if the effects of protease inhibitors are similar on estradiol; however, estradiol is metabolized by CYP3A4, similar to ethinyl estradiol.
Lorlatinib: (Major) Avoid concomitant use of lorlatinib and elagolix due to decreased plasma concentrations of lorlatinib, which may reduce its efficacy. If concomitant use is necessary, increase the dose of lorlatinib to 125 mg PO once daily. Lorlatinib is a CYP3A substrate and elagolix is a moderate CYP3A inducer. Administration with another moderate CYP3A inducer decreased lorlatinib exposure by 23%. (Major) Women taking both estrogens and lorlatinib should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed lorlatinib. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of lorlatinib. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on lorlatinib, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and lorlatinib is a moderate CYP3A4 inducer. Concurrent administration may increase estrogen elimination. (Major) Women taking both progestins and lorlatinib should report breakthrough bleeding to their prescribers. An alternate or additional form of contraception should be considered in patients prescribed lorlatinib. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of lorlatinib. For patients on hormone replacement treatments (HRT) with progestins, monitor for altered clinical response, such as increased hot flashes, vaginal dryness, changes in withdrawal bleeding, or other signs of decreased hormonal efficacy. Progestins are CYP3A4 substrates and lorlatinib is a moderate CYP3A4 inducer.
Lumacaftor; Ivacaftor: (Major) Avoid concomitant use of hormonal contraceptives and lumacaftor; ivacaftor, unless the benefits outweigh the risks. Lumacaftor; ivacaftor may decrease hormonal contraceptive exposure, reducing efficacy. When coadministered with lumacaftor; ivacaftor, hormonal contraceptives are not a reliable method of effective contraception; instruct patients on alternative methods of birth control. In addition, concomitant use may increase the incidence of menstruation-associated adverse reactions (e.g., amenorrhea, dysmenorrhea, menorrhagia). (Moderate) Concomitant use of elagolix and lumacaftor; ivacaftor may result in decreased concentrations of elagolix; monitor for decreased efficacy with coadministration. Elagolix is a CYP3A substrate; lumacaftor; ivacaftor is a strong inducer of CYP3A.
Lumacaftor; Ivacaftor: (Moderate) Concomitant use of elagolix and lumacaftor; ivacaftor may result in decreased concentrations of elagolix; monitor for decreased efficacy with coadministration. Elagolix is a CYP3A substrate; lumacaftor; ivacaftor is a strong inducer of CYP3A.
Lumateperone: (Major) Avoid coadministration of lumateperone and elagolix as concurrent use may decrease lumateperone exposure which may reduce efficacy. Lumateperone is a CYP3A4 substrate; elagolix is a moderate CYP3A4 inducer.
Mafenide: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Mavacamten: (Contraindicated) Mavacamten is contraindicated for use with elagolix due to risk for reduced mavacamten efficacy. There is also risk for increased adverse reactions due to mavacamten. Concomitant use may increase or decrease mavacamten exposure. Mavacamten is a CYP2C19 and CYP3A substrate and elagolix is a weak CYP2C19 inhibitor and moderate CYP3A inducer. Concomitant use with another weak CYP2C19 inhibitor in CYP2C19 normal and rapid metabolizers increased overall exposure by 48%. (Major) Patients taking both estrogens and mavacamten should report breakthrough vaginal bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed mavacamten. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 4 months after discontinuation of mavacamten. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on mavacamten, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A substrates and mavacamten is a moderate CYP3A inducer. Concurrent administration may increase estrogen elimination.
Meglitinides: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Meropenem: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Meropenem; Vaborbactam: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance.
Metformin; Repaglinide: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance.
Metformin; Rosiglitazone: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Metformin; Saxagliptin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Metformin; Sitagliptin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance. (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Methadone: (Moderate) Monitor for reduced efficacy of methadone and signs of opioid withdrawal if coadministration with elagolix is necessary; elagolix may induce methadone metabolism. Consider increasing the dose of methadone if clinically warranted, with consideration of the long half-life of methadone. If elagolix is discontinued, consider a dose reduction of methadone and frequently monitor for signs or respiratory depression and sedation. Methadone is a substrate of CYP 3A4 and 2C19. Elagolix is a weak to moderate CYP3A4 inducer and a weak CYP2C19 inhibitor. Concomitant use of methadone with CYP3A4 inducers can decrease methadone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Methohexital: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment.
Methylprednisolone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Metreleptin: (Major) Concurrent use of metreleptin with estrogens may produce unpredictable effects, including a decrease in estrogen efficacy or an increase in estrogen-related adverse effects. Women taking both estrogens and metreleptin should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed metreleptin. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of metreleptin. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect or an increase in adverse effects while on metreleptin, with dose adjustments made based on clinical response. Estrogens are CYP3A4 substrates and metreleptin may alter the formation of CYP enzymes. Concurrent administration may increase or decrease estrogen elimination.
Metronidazole: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Metyrapone: (Moderate) A subtherapeutic response to metyrapone can be seen in patients on estrogen therapy. When metapyrone is used as a diagnostic drug for testing hypothalamic-pituitary ACTH function, the effect of estrogen may need to be considered, or, another diagnostic test chosen. If possible, consider discontinuing the use of estrogen prior to and during testing. During use for Cushing's syndrome, estrogen therapy may increase cortisol levels, which may attenuate the response to metyrapone treatment. Monitor for evidence of clinical response to treatment, and adjust treatment as clinically indicated.
Midazolam: (Moderate) Monitor for altered response to midazolam therapy. Consider increasing the dose of midazolam and individualize therapy based on the patients response. Elagolix is a weak to moderate CYP3A4 inducer and has been shown to decrease the mean peak concentration (Cmax) and exposure (AUC) of midazolam in drug interaction studies. (Minor) Oral contraceptives can increase the effects of midazolam because oral contraceptives inhibit oxidative metabolism, thereby increasing serum concentrations of concomitantly administered benzodiazepines that undergo oxidation. Patients receiving oral contraceptive therapy should be observed for evidence of increased response to midazolam.
Midostaurin: (Contraindicated) Coadministration of elagolix with midostaurin is contraindicated as concurrent use may increase elagolix exposure. Elagolix is a substrate of OATP1B1 and midostaurin is an OATP1B1 inhibitor.
Mifepristone: (Major) Concomitant use of elagolix 200 mg twice daily and mifepristone for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and mifepristone to 6 months. Elagolix is a CYP3A substrate; mifepristone is a strong inhibitor of CYP3A. Coadministration may increase elagolix plasma concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Major) Mifepristone is a progesterone-receptor antagonist and will interfere with the effectiveness of hormonal contraceptives. Therefore, non-hormonal contraceptive methods should be used in Cushing's patients taking mifepristone.
Miglitol: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Miltefosine: (Moderate) Miltefosine-induced vomiting and/or diarrhea may affect absorption of oral contraceptives and compromise their efficacy. If vomiting or diarrhea occur during miltefosine therapy, advise females to use an additional non-oral method of effective contraception.
Mineral Oil: (Minor) While information regarding this interaction is limited, it appears that the simultaneous oral administration of estrogens and mineral oil may decrease the oral absorption of the estrogens, resulting in lower estrogen plasma concentrations. This interaction may be more likely with the chronic administration of mineral oil, as opposed to a single dose of mineral oil used for occasional constipation. In order to avoid an interaction, it would be prudent to separate administration times, giving estrogens 1 hour before or 2 hours after the oral administration of mineral oil.
Minocycline: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Minoxidil: (Minor) Estrogens can cause fluid retention, increasing blood pressure and thereby antagonizing the antihypertensive effects of minoxidil.
Mitapivat: (Major) Avoid coadministration of mitapivat with elagolix, if possible, due to decreased mitapivat efficacy. Coadministration decreases mitapivat concentrations. If concomitant use is necessary, up-titration of mitapivat may be required. Monitor hemoglobin and titrate the mitapivat dose based on response; do not exceed 100 mg PO twice daily. Mitapivat is a CYP3A substrate and elagolix is a moderate CYP3A inducer. Coadministration with another moderate CYP3A inducer decreased mitapivat overall exposure by 55% to 60%. (Major) Women taking both estrogens and mitapivat should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed mitapivat. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of mitapivat. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on mitapivat, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A substrates and mitapivat is a CYP3A inducer. Concurrent administration may increase estrogen elimination.
Mitotane: (Major) Avoid coadministration of mitotane with norethindrone if used for contraception; consider an alternate or additional form of contraception. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of mitotane. Patients taking hormonal replacement therapy may need to be monitored for reduced clinical effect while on mitotane, with dose adjustments made based on clinical efficacy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. Women taking hormonal replacement and mitotane should report breakthrough bleeding, hot flashes, or other symptoms to their prescribers. Norethindrone is a substrate of CYP3A4 and mitotane is a strong CYP3A4 inducer. Concurrent administration of mitotane with progestins, oral contraceptives, or non-oral combination contraceptives may reduce hormonal concentrations. This interaction does not apply to vaginal preparations of progesterone (e.g., Crinone, Endometrin). (Major) Women taking both estrogens and mitotane should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed mitotane. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of mitotane. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on mitotane, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and mitotane is a strong CYP3A4 inducer. Concurrent administration may increase estrogen elimination. (Moderate) Concomitant use of elagolix and mitotane may result in decreased concentrations of elagolix; monitor for decreased efficacy with coadministration. Elagolix is a CYP3A substrate; mitotane is a strong inducer of CYP3A.
Mivacurium: (Moderate) Plasma cholinesterase activity may be diminished by chronic administration of oral contraceptives; consider the possibility of prolonged neuromuscular block after administration of mivacurium in patients with reduced plasma cholinesterase activity. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
Mobocertinib: (Major) Avoid concomitant use of mobocertinib and elagolix. Coadministration may decrease mobocertinib exposure resulting in decreased efficacy. Mobocertinib is a CYP3A substrate and elagolix is a moderate CYP3A inducer. Use of a moderate CYP3A inducer is predicted to decrease the overall exposure of mobocertinib and its active metabolites by 58%. (Major) Women taking both estrogens and mobocertinib should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed mobocertinib. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of mobocertinib. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on mobocertinib, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A substrates and mobocertinib is a weak CYP3A inducer. Concurrent administration may increase estrogen elimination. (Major) Women taking both progestins and mobocertinib should report breakthrough bleeding to their prescribers. An alternate or additional form of contraception should be considered in patients prescribed mobocertinib. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for one month after discontinuation of mobocertinib. For patients on hormone replacement treatments (HRT) with progestins, monitor for altered clinical response, such as increased hot flashes, vaginal dryness, changes in withdrawal bleeding, or other signs of decreased hormonal efficacy. Progestins are CYP3A substrates and mobocertinib is a weak CYP3A inducer.
Modafinil: (Major) Modafinil may cause failure of oral contraceptives or hormonal contraceptive-containing implants or devices due to induction of CYP3A4 isoenzyme metabolism of the progestins in these products. An alternative method or an additional method of contraception should be utilized during modafinil therapy and continued for one month after modafinil discontinuation. If these drugs are used together, monitor patients for a decrease in clinical effects; patients should report breakthrough bleeding to their prescriber. Dosage adjustments may be necessary. (Moderate) Modafinil is an inducer of CYP3A hepatic enzymes. Estrogens are metabolized by CYP3A4. A decrease in estrogen concentrations, and thus efficacy, may occur in patients taking estrogens for hormone replacement therapy. If these drugs are used together, monitor patients for a decrease in clinical effects. Dosage adjustments may be necessary.
Mometasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Morphine: (Moderate) Combination oral contraceptives have been shown to decrease plasma concentrations of morphine, due to induction of conjugation. Monitor for decreased efficacy of morphine.
Morphine; Naltrexone: (Moderate) Combination oral contraceptives have been shown to decrease plasma concentrations of morphine, due to induction of conjugation. Monitor for decreased efficacy of morphine.
Moxifloxacin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Nafcillin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Nanoparticle Albumin-Bound Paclitaxel: (Moderate) Monitor for decreased efficacy of nab-paclitaxel if coadministration with elagolix is necessary due to the risk of decreased plasma concentrations of paclitaxel. Nab-paclitaxel is a CYP3A4 substrate and elagolix is a weak-to-moderate CYP3A4 inducer.
Nanoparticle Albumin-Bound Sirolimus: (Major) Avoid concomitant use of sirolimus and elagolix. Concomitant use may alter sirolimus exposure resulting in decreased efficacy or increased risk for sirolimus-related adverse effects. Sirolimus is a CYP3A and P-gp substrate and elagolix is a moderate CYP3A inducer and P-gp inhibitor.
Nefazodone: (Major) Concomitant use of elagolix 200 mg twice daily and nefazodone for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and nefazodone to 6 months. Elagolix is a CYP3A substrate; nefazodone is a strong inhibitor of CYP3A. Coadministration may increase elagolix plasma concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively.
Nelfinavir: (Major) Concomitant use of elagolix 200 mg twice daily and nelfinavir for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and nelfinavir to 6 months. Monitor for elagolix-related side effects and reduced response to nelfinavir. Elagolix is a CYP3A substrate and a weak to moderate CYP3A4 inducer; nelfinavir is a strong inhibitor of CYP3A and a CYP3A4 substrate. Coadministration may increase elagolix plasma concentrations and decrease nelfinavir concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Major) Many anti-retroviral protease inhibitors may interact with hormonal agents like norethindrone, due to their actions on CYP metabolism, particularly CYP3A4. Data on the effects that protease inhibitors have on the serum concentrations of norethindrone are complex and are based mostly off of data with norethindrone-containing contraceptives. Nelfinavir increases the metabolism of hormonal contraception; coadministration with a combined oral contraceptive containing norethindrone results in an 18% decrease in norethindrone plasma concentrations. Women receiving hormonal contraceptives or hormone replacement with norethindrone while receiving nelfinavir should be instructed to report any breakthrough bleeding or other adverse effects to their prescribers. It may be prudent for women who receive norethindrone-containing contraceptives concurrently with nelfinavir to use an additional method of contraception to protect against unwanted pregnancy. Additionally, because hormonal contraceptives do not protect against the transmission of HIV/AIDS and other sexually transmitted diseases, women who receive hormonal contraceptives concurrently with PIs should use an additional barrier method of contraception such as condoms. (Moderate) Nelfinavir has been shown to increase the metabolism of ethinyl estradiol; a similar interaction may occur with other estrogens used for hormone replacement therapy. Patients should report any breakthrough bleeding or adverse events to their prescribers.
Neomycin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Neratinib: (Major) Avoid concomitant use of elagolix with neratinib due to decreased efficacy of neratinib. Neratinib is a CYP3A4 substrate and elagolix is a moderate CYP3A4 inducer. Simulations using physiologically based pharmacokinetic (PBPK) models suggest that another moderate CYP3A4 inducer may decrease neratinib exposure by 52%.
Nevirapine: (Moderate) Nevirapine may decrease plasma concentrations of oral contraceptives and non-oral combination contraceptives (i.e., ethinyl estradiol and norethindrone). However, despite lower exposures, literature suggests that use of nevirapine has no effect on pregnancy rates among HIV-infected women on combined oral contraceptives. Thus, the manufacturer states that no dose adjustments are needed when these drugs are used for contraception in combination with nevirapine. When these oral contraceptives are used for hormone replacement and given with nevirapine, the therapeutic effect of the hormonal therapy should be monitored. (Moderate) Women taking both estrogens and nevirapine should report breakthrough bleeding to their prescribers. Nevirapine may decrease plasma concentrations of hormonal contraceptives. However, despite lower exposures, literature suggests that use of nevirapine has no effect on pregnancy rates among HIV-infected women on combined oral contraceptives. Thus, the manufacturer states that no dose adjustments are needed when these drugs are used for contraception in combination with nevirapine. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on nevirapine, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and nevirapine is a weak CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Nilotinib: (Moderate) Nilotinib is a competitive inhibitor of UGT1A1 and CYP3A4. Estradiol is a substrate of UGT1A1. Increased concentrations of estradiol may occur following coadministration with nilotinib.
Nirmatrelvir; Ritonavir: (Major) Concomitant use of elagolix 200 mg twice daily and ritonavir for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and ritonavir to 6 months. Monitor for elagolix-related side effects and reduced response to ritonavir. Elagolix is a CYP3A substrate and a weak to moderate CYP3A4 inducer; ritonavir is a strong inhibitor of CYP3A and a CYP3A4 substrate. Coadministration may increase elagolix plasma concentrations and decrease ritonavir concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Moderate) Many anti-retroviral protease inhibitors may interact with hormonal agents like norethindrone, due to their actions on CYP metabolism, particularly CYP3A4. Data on the effects that protease inhibitors have on the serum concentrations of norethindrone are complex and are based mostly off of data with norethindrone-containing contraceptives. For example, ritonavir (also found in combinations like lopinavir; ritonavir, and used as a booster in many HIV treatment regimens) may decrease the metabolism of norethindrone, raising norethindrone concentrations. Women receiving norethindrone for hormone replacement or contraception should report potential hormonal adverse effects (e.g., bleeding pattern changes, acne, emotional lability) or any changes in efficacy (e.g., noted changes in bleeding patterns) to their prescribers. Because norethindrone-containing contraceptives do not protect against the transmission of HIV/AIDS and other sexually transmitted diseases, women who receive norethindrone contraception concurrently with ritonavir should use an additional barrier method of contraception such as condoms. (Moderate) Monitor for a diminished response to nirmatrelvir if concomitant use of elagolix is necessary. Concomitant use of nirmatrelvir and elagolix may reduce the therapeutic effect of nirmatrelvir. Nirmatrelvir is a CYP3A substrate and elagolix is a moderate CYP3A inducer. (Moderate) Ritonavir has been shown to increase the metabolism of ethinyl estradiol. Ritonavir is a substrate and inhibitor of CYP3A4. It is not known if the effects of protease inhibitors are similar on estradiol; however, estradiol is metabolized by CYP3A4, similar to ethinyl estradiol.
Nisoldipine: (Major) Avoid coadministration of nisoldipine with elagolix due to decreased plasma concentrations of nisoldipine. Nisoldipine is a CYP3A4 substrate and enzalutamide is a elagolix weak to moderate CYP3A4 inducer. Coadministration with a strong CYP3A4 inducer lowered nisoldipine plasma concentrations to undetectable levels.
Nitrofurantoin: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Nitroprusside: (Minor) The administration of estrogens may increase blood pressure, and thereby antagonizing the antihypertensive effects of nitroprusside.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Norethindrone: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Norethindrone; Ethinyl Estradiol: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Norgestimate; Ethinyl Estradiol: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Norgestrel: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Ofloxacin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Olanzapine; Fluoxetine: (Minor) As fluoxetine inhibits CYP3A4 activity, serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when coadministered with either estrogens or combined hormonal contraceptives.
Olaparib: (Major) Avoid coadministration of olaparib with elagolix due to the risk of decreasing the efficacy of olaparib. Olaparib is a CYP3A substrate and elagolix is a weak to moderate CYP3A4 inducer; concomitant use may decrease olaparib exposure. Coadministration with a moderate CYP3A inducer is predicted to decrease the olaparib Cmax by 31% and the AUC by 60%.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Olopatadine; Mometasone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Olutasidenib: (Major) Avoid concurrent use of olutasidenib and elagolix due to the risk of decreased olutasidenib exposure which may reduce its efficacy. Olutasidenib is a CYP3A substrate and elagolix is a moderate CYP3A inducer.
Omadacycline: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Omaveloxolone: (Major) Advise patients taking estrogen hormones for contraception to consider an alternate or additional form of contraception, such as nonhormonal and/or barrier methods, during and for at least 1 month following discontinuation of omaveloxolone. Higher-dose hormonal regimens containing a minimum of 30 mcg of ethinyl estradiol or equivalent may also be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on omaveloxolone, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A substrates and omaveloxolone is a CYP3A inducer. Concurrent administration may increase estrogen elimination. (Major) Advise patients taking progestin hormones for contraception to consider an alternate or additional form of contraception, such as nonhormonal and/or barrier methods, during and for at least 1 month following discontinuation of omaveloxolone. Higher-dose hormonal regimens may also be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on omaveloxolone, with dose adjustments made based on clinical response. Progestins are CYP3A substrates and omaveloxolone is a CYP3A inducer. Concurrent administration may increase progestin elimination. (Major) Avoid concurrent use of omaveloxolone and elagolix. Concurrent use may decrease omaveloxolone exposure which may reduce its efficacy. Omaveloxolone is a CYP3A substrate and elagolix is a moderate CYP3A inducer.
Omeprazole: (Moderate) Coadministration of elagolix with omeprazole may increase plasma concentrations of omeprazole. Consider dosage reduction of omeprazole when elagolix is used concomitantly with higher doses of omeprazole, e.g., in patients with Zollinger-Ellison syndrome; however, no dose adjustments are needed for omeprazole at doses of 40 mg once daily or lower. Elagolix is a weak CYP2C19 inhibitor and omeprazole is a CYP2C19 sensitive substrate.
Omeprazole; Amoxicillin; Rifabutin: (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Coadministration of elagolix with omeprazole may increase plasma concentrations of omeprazole. Consider dosage reduction of omeprazole when elagolix is used concomitantly with higher doses of omeprazole, e.g., in patients with Zollinger-Ellison syndrome; however, no dose adjustments are needed for omeprazole at doses of 40 mg once daily or lower. Elagolix is a weak CYP2C19 inhibitor and omeprazole is a CYP2C19 sensitive substrate. (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Omeprazole; Sodium Bicarbonate: (Moderate) Coadministration of elagolix with omeprazole may increase plasma concentrations of omeprazole. Consider dosage reduction of omeprazole when elagolix is used concomitantly with higher doses of omeprazole, e.g., in patients with Zollinger-Ellison syndrome; however, no dose adjustments are needed for omeprazole at doses of 40 mg once daily or lower. Elagolix is a weak CYP2C19 inhibitor and omeprazole is a CYP2C19 sensitive substrate.
Oral Contraceptives: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Oritavancin: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Ospemifene: (Major) Ospemifene should not be used concomitantly with estrogens. The safety of concomitant use of ospemifene with estrogens or estrogen agonists/antagonists has not been studied.
Oxacillin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Oxcarbazepine: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bl eeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Major) Women taking both estrogens and oxcarbazepine should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed oxcarbazepine. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of oxcarbazepine. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and oxcarbazepine is a CYP3A4 inducer. Concurrent administration has been shown to decrease the exposure of some estrogens by approximately 50%.
Oxycodone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with elagolix is necessary; consider increasing the dose of oxycodone as needed. If elagolix is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Pacritinib: (Major) Avoid concurrent use of pacritinib with elagolix due to the risk of decreased pacritinib exposure which may impair efficacy. Pacritinib is a CYP3A substrate and elagolix is a moderate CYP3A inducer.
Palovarotene: (Major) Avoid concomitant use of palovarotene and elagolix. Concurrent use may decrease palovarotene exposure which may reduce its efficacy. Palovarotene is a CYP3A substrate and elagolix is a moderate CYP3A inducer.
Paromomycin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Pegaspargase: (Major) Avoid the concomitant use of pegaspargase and oral hormonal contraceptives due to the potential for decreased contraceptive efficacy and risk of fetal harm from pegaspargase. Women of reproductive potential should use an effective non-hormonal method of birth control during therapy and for at least 3 months after the last pegaspargase dose.
Pemigatinib: (Major) Avoid coadministration of pemigatinib and elagolix due to the risk of decreased pemigatinib exposure which may reduce its efficacy. Pemigatinib is a CYP3A4 substrate and elagolix is a moderate CYP3A4 inducer. Coadministration with a moderate CYP3A4 inducer is predicted to decrease pemigatinib exposure by more than 50%.
Penicillin G Benzathine: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillins and their derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use (i.e., amoxicillin, chloramphenicol, neomycin, nitrofurantoin, sulfonamides, etc.) may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Penicillin G Benzathine; Penicillin G Procaine: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillins and their derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use (i.e., amoxicillin, chloramphenicol, neomycin, nitrofurantoin, sulfonamides, etc.) may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Penicillin G Procaine: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillins and their derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use (i.e., amoxicillin, chloramphenicol, neomycin, nitrofurantoin, sulfonamides, etc.) may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Penicillin G: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillins and their derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use (i.e., amoxicillin, chloramphenicol, neomycin, nitrofurantoin, sulfonamides, etc.) may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Penicillin V: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillins and their derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use (i.e., amoxicillin, chloramphenicol, neomycin, nitrofurantoin, sulfonamides, etc.) may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Pentobarbital: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment.
Perampanel: (Major) Start perampanel at a higher initial dose of 4 mg once daily at bedtime if perampanel is added to elagolix therapy; increase the dose as tolerated in 2 mg increments no more than weekly, based on clinical response. If elagolix is added or withdrawn from perampanel therapy, closely monitor patient response; a dosage adjustment may be necessary. Perampanel is a CYP3A substrate and elagolix is a moderate CYP3A inducer.
Perindopril; Amlodipine: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Pertuzumab; Trastuzumab; Hyaluronidase: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Pexidartinib: (Major) Avoid the concomitant use of pexidartinib and hormone-containing contraceptives; the effectiveness of hormonal contraceptives may be decreased resulting in contraceptive failure. Females of reproductive potential should avoid pregnancy during and for 1 month after treatment with pexidartinib. Advise these patients to use an effective, non-hormonal method of contraception. Pexidartinib is a moderate CYP3A inducer and many oral contraceptives are metabolized by CYP3A.
Phenobarbital: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment. (Moderate) Concomitant use of elagolix and phenobarbital may result in decreased concentrations of elagolix; monitor for decreased efficacy with coadministration. Elagolix is a CYP3A substrate; phenobarbital is a strong inducer of CYP3A.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment. (Moderate) Concomitant use of elagolix and phenobarbital may result in decreased concentrations of elagolix; monitor for decreased efficacy with coadministration. Elagolix is a CYP3A substrate; phenobarbital is a strong inducer of CYP3A.
Phentermine; Topiramate: (Major) Women taking both estrogens and topiramate should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed topiramate, especially for patients receiving topiramate doses greater than 200 mg per day. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of topiramate. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on topiramate, with dose adjustments made based on clinical efficacy. Concurrent administration may increase estrogen elimination. (Moderate) Patients taking progestin hormones for contraception may consider an alternate or additional form of contraception, such as nonhormonal and/or barrier methods, during and for 1 month following discontinuation of topiramate. Higher-dose hormonal regimens may also be considered. Monitor patients taking these hormones for other indications for reduced clinical effect while on topiramate; adjust drug dosage as appropriate based on clinical response. Progestins are CYP3A substrates and topiramate is a CYP3A inducer. Pharmacokinetic drug interaction studies have generally shown minimal impact on progestin concentrations especially at topiramate doses of 200 mg/day or less.
Phenytoin: (Major) Women taking both estrogens and phenytoin/fosphenytoin should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed phenytoin/fosphenytoin. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of phenytoin/fosphenytoin. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on phenytoin/fosphenytoin, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and phenytoin/fosphenytoin is a strong CYP3A4 inducer. Concurrent administration may increase estrogen elimination. Additionally, epileptic women taking both anticonvulsants and hormonal contraceptives may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. (Moderate) Concomitant use of elagolix and phenytoin may result in decreased concentrations of elagolix; monitor for decreased efficacy with coadministration. Elagolix is a CYP3A substrate; phenytoin is a strong inducer of CYP3A.
Pimavanserin: (Major) Because pimavanserin is primarily metabolized by CYP3A4 and CYP3A5, the manufacturer recommends avoiding concomitant use of pimavanserin with moderate CYP3A4 inducers, such as elagolix. Moderate inducers of CYP3A4 can reduce pimavanserin exposure, potentially decreasing the effectiveness of pimavanserin.
Pioglitazone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Pioglitazone; Glimepiride: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Pioglitazone; Metformin: (Minor) Monitor blood glucose periodically in patients on metformin for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Patients receiving antidiabetic agents like metformin should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued. Progestins can impair glucose tolerance. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Piperacillin; Tazobactam: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Pirtobrutinib: (Major) Avoid concurrent use of pirtobrutinib and elagolix due to the risk of decreased pirtobrutinib exposure which may reduce its efficacy. If concomitant use is necessary, an empiric pirtobrutinib dosage increase is required. If the current dosage is 200 mg once daily, increase the dose to 300 mg; if the current dosage is 50 mg or 100 mg once daily, increase the dose by 50 mg. Pirtobrutinib is a CYP3A substrate and elagolix is a moderate CYP3A inducer. Concomitant use with other moderate CYP3A inducers reduced pirtobrutinib overall exposure by 27% and 49%.
Pitolisant: (Major) Advise patients to use an alternative, non-hormonal contraceptive during and for at least 21 days after discontinuation of pitolisant. Pitolisant is a weak CYP3A4 inducer and may decrease the plasma exposure of hormonal contraceptives resulting in decreased efficacy.
Plazomicin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Polymyxin B: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Posaconazole: (Major) Concomitant use of elagolix 200 mg twice daily and posaconazole for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and posaconazole to 6 months. Elagolix is a CYP3A substrate; posaconazole is a strong inhibitor of CYP3A. Coadministration may increase elagolix plasma concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Minor) Estrogens are partially metabolized by CYP3A4. Drugs that inhibit CYP3A4 such as systemic azole antifungals (fluconazole, itraconazole, ketoconazole, miconazole, posaconazole, and voriconazole) may increase plasma concentrations of estrogens and cause estrogen-related side effects such as nausea and breast tenderness. Patients receiving estrogens should be monitored for an increase in adverse events.
Pralsetinib: (Major) Avoid concomitant use of elagolix with pralsetinib due to the risk of altered pralsetinib exposure which may reduce its efficacy or increase the risk of adverse reactions. Pralsetinib is a CYP3A and P-gp substrate and elagolix is a moderate CYP3A inducer and P-gp inhibitor. Coadministration with another moderate CYP3A inducer decreased the pralsetinib overall exposure by 45% and coadministration with another P-gp inhibitor increased the overall exposure of pralsetinib by 81%.
Pramlintide: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Prasterone, Dehydroepiandrosterone, DHEA (Dietary Supplements): (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy. (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with progestins.
Prasterone, Dehydroepiandrosterone, DHEA (FDA-approved): (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy. (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with progestins.
Praziquantel: (Moderate) Monitor for reduced response to praziquantel if coadministered with elagolix. Concomitant use may produce therapeutically ineffective concentrations of praziquantel. In vitro and drug interactions studies suggest that the CYP3A4 isoenzyme is the major enzyme involved in praziquantel metabolism. Elagolix is a weak to moderate CYP3A4 inducer.
Prednisolone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Prednisone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Pretomanid: (Major) Avoid coadministration of pretomanid with elagolix as concurrent use may decrease pretomanid exposure which may lead to decreased efficacy. Pretomanid is a CYP3A4 substrate; elagolix is a weak to moderate CYP3A4 inducer. Coadministration with another moderate CYP3A4 inducer decreased pretomanid exposure by 35%. (Major) Avoid coadministration of pretomanid with oral contraceptives, especially in patients with impaired hepatic function, due to increased risk for hepatotoxicity. Monitor for evidence of hepatotoxicity if coadministration is necessary. If new or worsening hepatic dysfunction occurs, discontinue hepatotoxic medications.
Primidone: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment. (Moderate) Concomitant use of elagolix and primidone may result in decreased concentrations of elagolix; monitor for decreased efficacy with coadministration. Elagolix is a CYP3A substrate; phenobarbital, the active metabolite of primidone, is a strong inducer of CYP3A.
Probenecid; Colchicine: (Major) Avoid concomitant use of colchicine and elagolix due to the risk for increased colchicine exposure which may increase the risk for adverse effects. Concomitant use is contraindicated in patients with renal or hepatic impairment. Additionally, this combination is contraindicated if colchicine is being used for cardiovascular risk reduction. If concomitant use is necessary outside of these scenarios, consider a colchicine dosage reduction. Specific dosage reduction recommendations are available for colchicine tablets for some indications; it is unclear if these dosage recommendations are appropriate for other products or indications. For colchicine tablets being used for gout prophylaxis, reduce the dose from 0.6 mg twice daily to 0.3 mg once daily or from 0.6 mg once daily to 0.3 mg once every other day. For colchicine tablets being used for gout treatment, reduce the dose from 1.2 mg followed by 0.6 mg to 0.6 mg without an additional dose. For colchicine tablets being used for Familial Mediterranean Fever, the maximum daily dose is 0.6 mg. Colchicine is a P-gp substrate and elagolix is a P-gp inhibitor.
Quizartinib: (Major) Avoid concomitant use of elagolix with quizartinib due to the risk of decreased quizartinib exposure which may reduce its efficacy. Quizartinib is a CYP3A substrate and elagolix is a moderate CYP3A inducer. Coadministration with another moderate CYP3A inducer decreased the quizartinib overall exposure by 90%.
Rabeprazole: (Minor) Coadministration of elagolix with rabeprazole may theoretically increase plasma concentrations of rabeprazole. Monitor for rabeprazole-related adverse effects during coadministration with elagolix. Elagolix is a weak CYP2C19 inhibitor and rabeprazole is a CYP2C19 sensitive substrate.
Raloxifene: (Major) The concurrent use of raloxifene and systemic estrogens or other hormone replacement therapy has not been studied in prospective clinical trials. Thus, concomitant use of raloxifene with systemic estrogens is not recommended.
Ranolazine: (Contraindicated) Coadministration of elagolix and ranolazine is contraindicated. Concurrent use may decrease elagolix exposure resulting in reduced therapeutic response. Ranolazine is a CYP3A4 substrate; elagolix is a weak to moderate CYP3A4 inducer. Coadministration of a strong CYP3A4 inducer decreased the plasma concentrations of ranolazine by approximately 95%.
Relugolix: (Major) Avoid concomitant use of relugolix and oral elagolix. Concomitant use may increase relugolix exposure and the risk of relugolix-related adverse effects. If concomitant use is unavoidable, administer elagolix at least 6 hours after relugolix and monitor for adverse reactions. Relugolix is a P-gp substrate and elagolix is a P-gp inhibitor.
Relugolix; Estradiol; Norethindrone acetate: (Major) Avoid concomitant use of relugolix and oral elagolix. Concomitant use may increase relugolix exposure and the risk of relugolix-related adverse effects. If concomitant use is unavoidable, administer elagolix at least 6 hours after relugolix and monitor for adverse reactions. Relugolix is a P-gp substrate and elagolix is a P-gp inhibitor. (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Ribociclib: (Major) Concomitant use of elagolix 200 mg twice daily and ribociclib for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and ribociclib to 6 months. Elagolix is a CYP3A substrate; ribociclib is a strong inhibitor of CYP3A. Coadministration may increase elagolix plasma concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively.
Ribociclib; Letrozole: (Major) Avoid concomitant use of estrogens and letrozole. Estrogen-containing therapies may reduce the effectiveness of aromatase inhibitors, such as letrozole. (Major) Concomitant use of elagolix 200 mg twice daily and ribociclib for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and ribociclib to 6 months. Elagolix is a CYP3A substrate; ribociclib is a strong inhibitor of CYP3A. Coadministration may increase elagolix plasma concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively.
Rifabutin: (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Rifampin: (Contraindicated) The use of rifampin with elagolix is contraindicated. Concomitant use of elagolix and organic anion transporting polypeptide (OATP) 1B1 inhibitors such as rifampin increase exposure to elagolix. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. During drug interaction studies, a single dose of rifampin increased the mean AUC of elagolix by 5.58-fold. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. While induction of CYP3A by rifampin may also occur, particularly with continued use, it appears that elagolix is more influenced by the OATP1B1 activity of rifampin as AUC remained elevated by a mean of 1.65-fold with continued use of rifampin. (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Major) Women taking both progestins and rifampin should report breakthrough bleeding to their prescribers. An alternate or additional form of contraception should be considered in patients prescribed rifampin. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for one month after discontinuation of rifampin. For patients on hormone replacement treatments (HRT) with progestins, monitor for altered clinical response, such as increased hot flashes, vaginal dryness, changes in withdrawal bleeding, or other signs of decreased hormonal efficacy. Progestins are CYP3A4 substrates and rifampin is a strong CYP3A4 inducer.
Rifamycins: (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination.
Rifapentine: (Major) Women taking both estrogens and rifamycins should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed rifamycins. In some cases, it may be advisable for patients to change to non-hormonal methods of birth control during rifamycin therapy. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of rifamycins. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on rifamycins, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and rifamycins are a CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Major) Women taking both progestins and rifapentine should report breakthrough bleeding to their prescribers. An alternate or additional form of contraception should be considered in patients prescribed rifapentine. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for one month after discontinuation of rifapentine. For patients on hormone replacement treatments (HRT) with progestins, monitor for altered clinical response, such as increased hot flashes, vaginal dryness, changes in withdrawal bleeding, or other signs of decreased hormonal efficacy. Progestins are CYP3A4 substrates and rifapentine is a strong CYP3A4 inducer. (Moderate) Monitor for decreased efficacy of elagolix if coadministration with rifapentine is necessary. Concurrent use may decrease elagolix exposure. Elagolix is a CYP3A4 substrate; rifapentine is a strong CYP3A4 inducer.
Rifaximin: (Moderate) Monitor for an increase in rifaximin-related adverse reactions if coadministration with elagolix is necessary. Concomitant use may increase rifaximin exposure. In patients with hepatic impairment, a potential additive effect of reduced metabolism may further increase systemic rifaximin exposure. Rifaximin is a P-gp substrate and elagolix is a P-gp inhibitor. Coadministration with another P-gp inhibitor increased rifaximin overall exposure by 124-fold.
Rilpivirine: (Major) The concomitant use of elagolix and rilpivirine may lead to decreased rilpivirine concentrations and loss of virologic response. Consider use of an alternative agent. If concomitant use of these agents is unavoidable, monitor patients for loss of rilpivirine efficacy. Elagolix is a weak to moderate CYP3A4 inducer and rilpivirine is a moderately sensitive CYP3A4 substrate.
Riluzole: (Moderate) Monitor patients for increased riluzole-related adverse events, such as gastrointestinal symptoms and elevated hepatic enzymes, when hormonal contraceptives are prescribed concurrently. Serum concentrations of riluzole, a CYP1A2 substrate, may increase when oral contraceptives, moderate CYP1A2 inhibitors, are used concurrently. In vitro findings suggest an increase in riluzole exposure is likely when a CYP1A2 inhibitor is given.
Rimegepant: (Major) Avoid coadministration of rimegepant with elagolix; concurrent use may alter rimegepant exposure. Rimegepant is a CYP3A4 and P-gp substrate and elagolix is a weak to moderate CYP3A4 inducer and P-gp inhibitor.
Ripretinib: (Major) Avoid coadministration of ripretinib with elagolix. If concomitant use is unavoidable, increase the frequency of ripretinib dosing from 150 mg once daily to 150 mg twice daily; monitor for clinical response and tolerability. Resume once daily dosing of ripretinib 14 days after discontinuation of elagolix. Coadministration is predicted to decrease the exposure of ripretinib and its active metabolite (DP-5439), which may decrease ripretinib anti-tumor activity. Ripretinib and DP-5439 are metabolized by CYP3A and elagolix is a moderate CYP3A inducer. Drug interaction modeling studies suggest coadministration with a moderate CYP3A inducer may decrease ripretinib exposure by 56%.
Ritonavir: (Major) Concomitant use of elagolix 200 mg twice daily and ritonavir for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and ritonavir to 6 months. Monitor for elagolix-related side effects and reduced response to ritonavir. Elagolix is a CYP3A substrate and a weak to moderate CYP3A4 inducer; ritonavir is a strong inhibitor of CYP3A and a CYP3A4 substrate. Coadministration may increase elagolix plasma concentrations and decrease ritonavir concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Moderate) Many anti-retroviral protease inhibitors may interact with hormonal agents like norethindrone, due to their actions on CYP metabolism, particularly CYP3A4. Data on the effects that protease inhibitors have on the serum concentrations of norethindrone are complex and are based mostly off of data with norethindrone-containing contraceptives. For example, ritonavir (also found in combinations like lopinavir; ritonavir, and used as a booster in many HIV treatment regimens) may decrease the metabolism of norethindrone, raising norethindrone concentrations. Women receiving norethindrone for hormone replacement or contraception should report potential hormonal adverse effects (e.g., bleeding pattern changes, acne, emotional lability) or any changes in efficacy (e.g., noted changes in bleeding patterns) to their prescribers. Because norethindrone-containing contraceptives do not protect against the transmission of HIV/AIDS and other sexually transmitted diseases, women who receive norethindrone contraception concurrently with ritonavir should use an additional barrier method of contraception such as condoms. (Moderate) Ritonavir has been shown to increase the metabolism of ethinyl estradiol. Ritonavir is a substrate and inhibitor of CYP3A4. It is not known if the effects of protease inhibitors are similar on estradiol; however, estradiol is metabolized by CYP3A4, similar to ethinyl estradiol.
Rituximab; Hyaluronidase: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Rivaroxaban: (Minor) Coadministration of rivaroxaban and elagolix may result in increases in rivaroxaban exposure and may increase bleeding risk. Elagolix is an inhibitor of P-gp, and rivaroxaban is a substrate of P-gp. If these drugs are administered concurrently, monitor the patient for signs and symptoms of bleeding.
Roflumilast: (Moderate) Coadminister oral contraceptives containing gestodene and ethinyl estradiol and roflumilast cautiously, as the combination has resulted in increased drug exposure to roflumilast in pharmacokinetic study. In an open-label crossover study in 20 healthy adult volunteers, coadministration of a single dose of oral roflumilast 500 mcg with repeated doses of a fixed combination oral contraceptive containing 0.075 mg gestodene and 0.03 mg ethinyl estradiol to steady state resulted in a 38% increase in Cmax of roflumilast and a 12% decrease in Cmax of the active metabolite roflumilast N-oxide. Roflumilast and roflumilast N-oxide AUCs were increased by 51% and 14%, respectively. A similar interaction is expected with oral contraceptives and ethinyl estradiol; etonogestrel.
Ropinirole: (Moderate) Concomitant use of ropinirole and higher doses of estrogens may increase the exposure of ropinirole. A dose adjustment of ropinirole may be needed when estrogen therapy is initiated or discontinued. Some estrogens have reduced ropinirole oral clearance by 36%.
Rosiglitazone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Rosuvastatin: (Moderate) Monitor for a decrease in rosuvastatin efficacy during concomitant use with elagolix and adjust the rosuvastatin dose as appropriate. Concomitant use has been observed to decrease rosuvastatin overall exposure by 40%.
Rosuvastatin; Ezetimibe: (Moderate) Monitor for a decrease in rosuvastatin efficacy during concomitant use with elagolix and adjust the rosuvastatin dose as appropriate. Concomitant use has been observed to decrease rosuvastatin overall exposure by 40%.
Rufinamide: (Major) Coadministration of hormonal contraceptives with rufinamide may reduce hormone concentrations and therefore reduce the clinical efficacy of hormonal contraceptives. If coadministration is necessary, recommend patients use additional non-hormonal forms of contraception. Hormonal contraceptives are metabolized by CYP3A4 and rufinamide is a weak CYP3A4 inducer.
Saquinavir: (Major) Concomitant use of elagolix 200 mg twice daily and saquinavir for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and saquinavir to 6 months. Monitor for elagolix-related side effects and reduced response to saquinavir. Elagolix is a CYP3A substrate and a weak to moderate CYP3A4 inducer; saquinavir is a strong inhibitor of CYP3A and a CYP3A4 substrate. Coadministration may increase elagolix plasma concentrations and decrease saquinavir concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Moderate) Saquinavir has been shown to increase the metabolism of ethinyl estradiol; a similar interaction may occur with other estrogens used for hormone replacement therapy. Patients should report any breakthrough bleeding or adverse events to their prescribers.
Sarilumab: (Moderate) Utilize caution with concomitant use of sarilumab and CYP3A4 substrate drugs, such as combined hormonal oral contraceptives, where a decrease in effectiveness is undesirable. Inhibition of IL-6 signaling by sarilumab may restore CYP450 activities to higher levels leading to increased metabolism of drugs that are CYP450 substrates as compared to metabolism prior to treatment. This effect on CYP450 enzyme activity may persist for several weeks after stopping sarilumab. In vitro, sarilumab has the potential to affect expression of multiple CYP enzymes, including CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2 D6, and CYP3A4.
Saxagliptin: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Secobarbital: (Major) Women taking both estrogens and barbiturates should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed barbiturates. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of barbiturates. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on barbiturates, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and barbiturate are strong CYP3A4 inducers. Concurrent administration may increase estrogen elimination. (Moderate) Barbiturates can accelerate the hepatic clearance of progestins. For hormonal contraceptives, this interaction could result in unintended pregnancy or breakthrough bleeding. For patients regularly taking a barbiturate, an alternative or back-up method of contraception may be advisable to ensure contraceptive reliability during the use of the barbiturate, and for 1 month following the discontinuation of barbiturate use. The exception is the use of levonorgestrel progestin IUDs, which have not been reported to interact and appear to maintain reliable efficacy. Pregnancy has been reported during therapy with both estrogen- and/or progestin-based oral contraceptives in patients receiving barbiturates (e.g., phenobarbital). For patients taking progestins for other indications, like hormone replacement, monitor the patient for signs and symptoms of reduced therapeutic efficacy or need for dosage adjustment.
Segesterone Acetate; Ethinyl Estradiol: (Major) During use of elagolix, females of childbearing potential should use non-hormonal methods of contraception for the duration of treatment and for 28 days following the discontinuation of therapy. Estrogen-containing injectable, implantable, transdermal, vaginal or oral contraceptives are expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives on elagolix is not known. However, elagolix is a weak to moderate inducer of CYP3A4, and many estrogens and progestins are metabolized via this enzyme. Thus, elagolix may decrease plasma concentrations of hormonal contraceptives. Coadministration of elagolix 200 mg twice daily and a combined oral contraceptive (COC) containing 0.1 mg levonorgestrel decreases the plasma concentrations of levonorgestrel by 27%, potentially affecting contraceptive efficacy. Coadministration of elagolix with COCs containing norethindrone acetate did not show reduction in plasma concentrations of norethindrone. Elagolix may also increase contraceptive concentrations. Coadministration of a COC (containing 20 mcg ethinyl estradiol/0.1 mg levonorgestrel) following administration of elagolix 200 mg twice daily for 14 days increases the plasma ethinyl estradiol concentration by 2.2-fold compared to this COC alone; this may lead to increased risk of ethinyl estradiol-related adverse events including thromboembolic disorders and vascular events.
Selpercatinib: (Major) Avoid coadministration of selpercatinib and elagolix due to the risk of decreased selpercatinib exposure which may reduce its efficacy. Selpercatinib is a CYP3A4 substrate and elagolix is a moderate CYP3A4 inducer. Coadministration with other moderate CYP3A4 inducers is predicted to decrease selpercatinib exposure by 40% to 70%.
Selumetinib: (Major) Avoid coadministration of selumetinib and elagolix due to the risk of decreased selumetinib exposure which may reduce its efficacy. Selumetinib is a CYP3A4 substrate and elagolix is a moderate CYP3A4 inducer. Coadministration with a moderate CYP3A4 inducer is predicted to decrease selumetinib exposure by 38%.
SGLT2 Inhibitors: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Sildenafil: (Moderate) Monitor for reduced therapeutic effect of sildenafil if coadministered with elagolix. Concurrent use may decrease sildenafil plasma concentrations. Sildenafil is a sensitive CYP3A4 substrate; elagolix is a weak to moderate CYP3A4 inducer. Population pharmacokinetic analysis of data from patients in clinical trials indicated approximately 3-fold the sildenafil clearance when it was coadministered with weak CYP3A inducers.
Siltuximab: (Moderate) Caution is warranted when siltuximab is used in patients taking CYP3A4 substrates, such as oral contraceptives, in which a decreased effect would be undesirable. Cytochrome P450s in the liver are down regulated by infection and inflammation stimuli, including cytokines such as interleukin-6 (IL-6). Inhibition of IL-6 signaling by siltuximab may restore CYP450 activities to higher levels leading to increased metabolism of drugs that are CYP450 substrates as compared to metabolism prior to treatment. The effect of siltuximab on CYP450 enzyme activity can persist for several weeks after stopping therapy.
Siponimod: (Moderate) Concomitant use of siponimod and elagolix is not recommended for patients with CYP2C9*1/*3 and *2/*3 genotypes due to a significant decrease in siponimod exposure. Siponimod is a CYP2C9 and CYP3A4 substrate; elagolix is a moderate CYP3A4 inducer. Across different CYP2C9 genotypes, a moderate CYP3A4 inducer decreased the exposure of siponimod by up to 52% according to in silico evaluation.
Sirolimus: (Moderate) Monitor sirolimus concentrations and adjust sirolimus dosage as appropriate during concomitant use of elagolix. Concomitant use may alter sirolimus exposure resulting in decreased efficacy or increased risk for sirolimus-related adverse effects. Sirolimus is a CYP3A and P-gp substrate and elagolix is a moderate CYP3A inducer and P-gp inhibitor.
Sitagliptin: (Minor) Progestins can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for changes in diabetic control when hormone therapy is instituted or discontinued.
Sofosbuvir; Velpatasvir: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as velpatasvir is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Velpatasvir is an inhibitor of OATP1B1. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density.
Sofosbuvir; Velpatasvir; Voxilaprevir: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as velpatasvir is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Velpatasvir is an inhibitor of OATP1B1. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as voxilaprevir is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Voxilaprevir is an inhibitor of OATP1B1. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density.
Solifenacin: (Minor) Monitor for decreased efficacy of solifenacin if coadministration with elagolix is necessary. Solifenacin is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Studies have not been conducted to evaluate the effect of CYP3A4 inducers on solifenacin, but inducers of CYP3A4 may decrease solifenacin plasma concentrations.
Somapacitan: (Moderate) Patients receiving oral estrogen replacement may require higher somapacitan dosages. Oral estrogens may reduce the serum insulin-like growth factor 1 (IGF-1) response to somapacitan. Women receiving oral estrogen replacement should receive a higher initial somapacitan dose; initiate somapacitan therapy at a dose of 2 mg once weekly. Titrate doses after that as recommended.
Somatrogon: (Moderate) Monitor for a decrease in somatrogon efficacy during concurrent use of somatrogon and oral estrogens; a higher somatrogon dose may be needed. Oral estrogens may reduce the serum insulin-like growth factor 1 (IGF-1) response to somatrogon.
Somatropin, rh-GH: (Moderate) Somatropin can induce the activity of cytochrome-mediated metabolism of antipyrine clearance. Because estrogens are also metabolized in this way, somatropin may alter the metabolism of estrogens. In addition, growth-hormone deficient women also treated with estrogen replacement therapy require substantially more somatropin therapy to obtain comparable effects when compared to women not taking estrogen. Patients should be monitored for changes in efficacy of either drug when somatropin and estrogens are coadministered.
Sonidegib: (Major) Avoid the concomitant use of sonidegib and elagolix; sonidegib exposure may be significantly decreased and its efficacy reduced. Sonidegib is a CYP3A substrate and elagolix is a moderate CYP3A inducer. Physiologic-based pharmacokinetics (PBPK) simulations indicate that a moderate CYP3A inducer would decrease the sonidegib AUC by 56% if administered for 14 days and by 69% if the moderate CYP3A inducer is administered for more than 14 days.
Sotagliflozin: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Sotorasib: (Major) Women taking both estrogens and sotorasib should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed sotorasib. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of sotorasib. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on sotorasib, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and sotorasib is a moderate CYP3A4 inducer. Concurrent administration may increase estrogen elimination.
Soy Isoflavones: (Moderate) Theoretically, the soy isoflavones may compete with or have additive effects with, drugs that have estrogenic activity or which selectively modulate estrogen receptors. The soy isoflavones have a diphenolic structure similar to that of the potent synthetic and natural estrogens. All isoflavones are competitive ligands of in vitro estrogen receptor assays and appear to function as selective estrogen receptor modifiers (SERMs). However, the estrogenic potencies of the soy isoflavones genistein and daidzein are much weaker than that of native estradiol. Soy isoflavones should be used with caution in patients taking estrogens, including combined hormonal and oral contraceptives, since the effects of combining soy isoflavone dietary supplements with estrogens are not clear.
St. John's Wort, Hypericum perforatum: (Major) As with other CYP3A4 inducers, St. John's wort may reduce the therapeutic efficacy of progestin-only contraceptives or other progestin-based hormonal therapies. Patients should report irregular menstrual bleeding or other hormone-related symptoms to their health care providers if they are taking St. John's wort concurrently with their hormones. Avoidance of St. John's wort is recommended. This interaction does not apply to vaginal preparations of progesterone (e.g., Crinone, Endometrin). (Major) Women taking both estrogens and St. John's Wort should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed St. John's Wort. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of St. John's Wort. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on St. John's Wort, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and St. John's Wort is a strong CYP3A4 inducer. Concurrent administration may increase estrogen elimination. (Moderate) Concomitant use of elagolix and St. John's Wort may result in decreased concentrations of elagolix; monitor for decreased efficacy with coadministration. Elagolix is a CYP3A substrate; St. John's Wort is a strong inducer of CYP3A.
Streptogramins: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available. Additionally, dalfopristin; quinupristin is a major inhibitor of cytochrome P450 3A4 and may decrease the elimination of drugs metabolized by this enzyme including ethinyl estradiol and norethindrone. In addition, drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Consider monitoring serum potassium concentrations during the first month of dosing in high-risk patients who take strong CYP3A4 inhibitors long-term and concomitantly.
Streptomycin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Succinylcholine: (Moderate) Plasma cholinesterase activity may be diminished by chronic administration of oral contraceptives; consider the possibility of prolonged neuromuscular block after administration of succinylcholine in patients with reduced plasma cholinesterase activity. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
Sufentanil: (Moderate) Because the dose of the sufentanil sublingual tablets cannot be titrated, consider an alternate opiate if elagolix must be administered. Monitor for reduced efficacy of sufentanil injection and signs of opioid withdrawal if coadministration with elagolix is necessary; consider increasing the dose of sufentanil injection as needed. If elagolix is discontinued, consider a dose reduction of sufentanil injection and frequently monitor for signs or respiratory depression and sedation. Sufentanil is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease sufentanil concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Sugammadex: (Major) If an oral contraceptive is taken the same day sugammadex is administered, the patient must use an additional, non-hormonal contraceptive method or back-up method of contraception for the next 7 days. Sugammadex may bind to progestogen, resulting in a decrease in progestogen exposure. The administration of a bolus dose of sugammadex results in actions that are essentially equivalent to missing one or more doses of contraceptives containing estrogen or progestogen, including combination oral contraceptives, non-oral combination contraceptives, or progestins.
Sulfadiazine: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Sulfamethoxazole; Trimethoprim, SMX-TMP, Cotrimoxazole: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Sulfasalazine: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Sulfonamides: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Sulfonylureas: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Tacrolimus: (Moderate) Monitor tacrolimus whole blood trough concentrations when tacrolimus is administered with elagolix; a tacrolimus dose adjustment may be needed. Concurrent administration may decrease tacrolimus whole blood concentrations. Tacrolimus is metabolized mainly by CYP3A enzymes; elagolix is a weak to moderate CYP3A4 inducer.
Talazoparib: (Moderate) Monitor for an increase in talazoparib-related adverse reactions if coadministration with elagolix is necessary. Talazoparib is a P-gp substrate and elagolix is a P-gp inhibitor.
Tazemetostat: (Major) Avoid coadministration of tazemetostat with elagolix as concurrent use may decrease tazemetostat exposure, which may reduce its efficacy. Tazemetostat is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. (Major) Women taking both estrogens and tazemetostat should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed tazemetostat. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 6 months after discontinuation of tazemetostat. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on tazemetostat, with dose adjustments made based on clinical efficacy. Estrogens are CYP3A4 substrates and tazemetostat is a CYP3A4 inducer. Concurrent administration may increase estrogen elimination. (Major) Women taking both progestins and tazemetostat should report breakthrough bleeding to their prescribers. An alternate or additional form of contraception should be considered in patients prescribed tazemetostat. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of tazemetostat. For patients on hormone replacement treatments (HRT) with progestins, monitor for altered clinical response, such as increased hot flashes, vaginal dryness, changes in withdrawal bleeding, or other signs of decreased hormonal efficacy. Progestins are CYP3A4 substrates and tazemetostat is a weak CYP3A4 inducer.
Tedizolid: (Moderate) It was previously thought that antibiotics may decrease the effectiveness of oral contraceptives containing estrogens due to stimulation of estrogen metabolism or a reduction in estrogen enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with oral contraceptives (OCs) and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma levels of oral contraceptives. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review of the subject concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Telavancin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Telmisartan; Amlodipine: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with elagolix is necessary. Amlodipine is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
Teriflunomide: (Contraindicated) Concomitant use of elagolix and strong organic anion transporting polypeptide (OATP) 1B1 inhibitors such as teriflunomide is contraindicated. Use of elagolix with drugs that inhibit OATP1B1 may increase elagolix plasma concentrations. Elagolix is a substrate of CYP3A, P-gp, and OATP1B1. Teriflunomide inhibits OATP1B1 in vivo and is expected to increase concentrations of drugs that are substrates for OATP1B1. Another OATP1B1 potent inhibitor increased elagolix AUC in the range of 2- to 5.58-fold. Increased elagolix concentrations increase the risk for dose-related side effects, including loss of bone mineral density. (Moderate) Teriflunomide may increase the effects of oral contraceptives. Following consecutive teriflunomide doses, mean ethinyl estradiol Cmax and AUC increased 1.58- and 1.54-fold, respectively, during coadministration. Levonorgestrel Cmax increased 1.33-fold and AUC 1.41-fold during coadministration. Use caution when selecting the type and dose of oral contraceptives in patients taking teriflunomide.
Testolactone: (Contraindicated) Estrogens could interfere competitively with the pharmacologic action of the aromatase inhibitors. The goal of aromatase inhibitor therapy is to decrease circulating estrogen concentrations and inhibit the growth of hormonally-responsive cancers. Estrogen therapy is not recommended during aromatase inhibitor treatment, due to opposing pharmacologic actions. Aromatase inhibitors (e.g., aminoglutethimide, anastrozole, exemestane, letrozole, testolactone, vorozole) exhibit their antiestrogenic effects by reducing the peripheral conversion of adrenally synthesized androgens (e.g., androstenedione) to estrogens through inhibition of the aromatase enzyme. In addition, in women receiving long-term aromatase inhibitor therapy, atrophic vaginitis due to estrogen suppression is common; atrophic vaginitis due to aromatase inhibitor therapy is sometimes treated with vaginal estrogen as the systemic exposure of estrogen from vaginal preparations is thought to be low. In a study of 7 women on aromatase inhibitor therapy, estrogen concentrations rose significantly after the addition of vaginally administered estrogen for atrophic vaginitis. Estrogen concentrations increased from a mean baseline level of < 5 pmol/l to 72 pmol/l after 2 weeks and to < 35 pmol/l at 4 weeks. Although the study was small, estrogen concentrations rose significantly in 6/7 patients. Clinicians should be aware that serum estrogen concentrations may increase with the use of vaginal estrogen preparations; alternative treatments for atrophic vaginitis in patients taking aromatase inhibitors should be considered.
Tetracycline: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Thalidomide: (Moderate) Thalidomide and hormone contraceptives should be used cautiously due an increased risk of thromboembolism. The pharmacokinetic parameters of norethindrone/estradiol were not affected when a single dose of norethindrone 1 mg/estradiol 75 micrograms was administered in 10 healthy women who were receiving thalidomide 200 mg/day (at steady state levels).
Thiazolidinediones: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis. (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Thyroid hormones: (Minor) The administration of estrogens can increase circulating concentrations of thyroxine-binding globulin, sex hormone-binding globulin, and cortisol-binding globulin. Increased amounts of thyroxine-binding globulin may result in a reduced clinical response to thyroid hormones. Some hypothyroid patients on estrogen may require larger doses of thyroid hormones. Monitor thyroid-stimulating hormone (TSH) level and follow the recommendation for thyroid hormone replacement.
Tigecycline: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Tinidazole: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Tipranavir: (Major) Concomitant use of elagolix 200 mg twice daily and tipranavir for more than 1 month is not recommended. Limit concomitant use of elagolix 150 mg once daily and tipranavir to 6 months. Monitor for elagolix-related side effects and reduced response to tipranavir. Elagolix is a CYP3A substrate and a weak to moderate CYP3A4 inducer; tipranavir is a strong inhibitor of CYP3A and a CYP3A4 substrate. Coadministration may increase elagolix plasma concentrations and decrease tipranavir concentrations. In drug interaction studies, coadministration of elagolix with another strong CYP3A inhibitor increased the Cmax and AUC of elagolix by 77% and 120%, respectively. (Major) It is not known if tipranavir alters the metabolism of norethindrone-only contraception; tipranavir has been reported to reduce efficacy of other hormonal contraceptives. Data on the effects that protease inhibitors have on the serum concentrations of norethindrone are complex and are based mostly off of data with norethindrone-containing contraceptives. Women receiving norethindrone hormone replacement or contraceptives with tipranavir should be instructed to report any breakthrough bleeding or other adverse effects to their prescribers. Alternate methods of non-hormonal contraception are recommended in patients receiving tipranavir. Because hormonal contraceptives do not protect against the transmission of HIV/AIDS and other sexually transmitted diseases, women who receive hormonal contraceptives concurrently with tipranavir should use an additional barrier method of contraception such as condoms. (Moderate) Tipranavir has been shown to increase the metabolism of ethinyl estradiol; a similar interaction may occur with other estrogens used for hormone replacement therapy. Patients should report any breakthrough bleeding or adverse events to their prescribers.
Tirzepatide: (Major) Advise patients receiving tirzepatide and oral contraceptives to switch to a non-oral contraceptive method or to add a barrier method of contraception for 4 weeks after initiation and for 4 weeks after each dose escalation of tirzepatide. Tirzepatide delays gastric emptying and may reduce the rate and extent of estrogen and progestin absorption which may reduce efficacy. Gastric emptying delays are greatest after the first dose of tirzepatide and diminish over time. Hormonal contraceptives that are not administered orally should not be affected. Additionally, estrogens can impair glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day.
Tizanidine: (Major) Avoid concomitant use of tizanidine and oral contraceptives as increased tizanidine exposure may occur. If use together is necessary, initiate tizanidine with a single 2 mg dose and increase by 2 to 4 mg/day based on clinical response. Discontinue tizanidine if hypotension, bradycardia, or excessive drowsiness occurs. A retrospective analysis of population pharmacokinetic data found that the clearance of tizanidine was 50% lower in females taking oral contraceptives compared to those not on oral contraceptives.
Tobacco: (Major) Advise patients to avoid cigarette smoking while taking estrogen hormones. Cigarette smoking increases the risk of serious cardiovascular events, such as myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism. Combined hormonal contraceptives are contraindicated in females who are over 35 years of age and smoke.
Tobramycin: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Tocilizumab: (Moderate) Utilize caution with concomitant use of tocilizumab and CYP3A4 substrate drugs, such as combined hormonal oral contraceptives, where a decrease in effectiveness is undesirable. Inhibition of IL-6 signaling by tocilizumab may restore CYP450 activities to higher levels leading to increased metabolism of drugs that are CYP450 substrates as compared to metabolism prior to treatment. This effect on CYP450 enzyme activity may persist for several weeks after stopping tocilizumab. In vitro, tocilizumab has the potential to affect expression of multiple CYP enzymes, including CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4.
Tolazamide: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Tolbutamide: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Topiramate: (Major) Women taking both estrogens and topiramate should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed topiramate, especially for patients receiving topiramate doses greater than 200 mg per day. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of topiramate. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on topiramate, with dose adjustments made based on clinical efficacy. Concurrent administration may increase estrogen elimination. (Moderate) Patients taking progestin hormones for contraception may consider an alternate or additional form of contraception, such as nonhormonal and/or barrier methods, during and for 1 month following discontinuation of topiramate. Higher-dose hormonal regimens may also be considered. Monitor patients taking these hormones for other indications for reduced clinical effect while on topiramate; adjust drug dosage as appropriate based on clinical response. Progestins are CYP3A substrates and topiramate is a CYP3A inducer. Pharmacokinetic drug interaction studies have generally shown minimal impact on progestin concentrations especially at topiramate doses of 200 mg/day or less.
Topotecan: (Major) Avoid coadministration of elagolix with oral topotecan due to increased topotecan exposure; elagolix may be administered with intravenous topotecan. Oral topotecan is a substrate of P-glycoprotein (P-gp) and elagolix is a P-gp inhibitor. Oral administration within 4 hours of another P-gp inhibitor increased the dose-normalized AUC of topotecan lactone and total topotecan 2-fold to 3-fold compared to oral topotecan alone.
Toremifene: (Major) The use of estrogens, including oral contraceptives, with toremifene is controversial and is generally considered contraindicated in most, but not all, circumstances. The use of estrogens may aggravate conditions for which toremifene is prescribed. Toremifene exerts its effects by blocking estrogen receptors. Since toremifene and estrogens are pharmacological opposites, they are not usually given concurrently.
Tramadol: (Moderate) Monitor for reduced efficacy of tramadol and signs of opioid withdrawal if coadministration with elagolix is necessary; consider increasing the dose of tramadol as needed. If elagolix is discontinued, consider a dose reduction of tramadol and frequently monitor for signs or respiratory depression and sedation. Tramadol is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease tramadol levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Tramadol; Acetaminophen: (Moderate) Monitor for reduced efficacy of tramadol and signs of opioid withdrawal if coadministration with elagolix is necessary; consider increasing the dose of tramadol as needed. If elagolix is discontinued, consider a dose reduction of tramadol and frequently monitor for signs or respiratory depression and sedation. Tramadol is a CYP3A4 substrate and elagolix is a weak to moderate CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease tramadol levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Trandolapril; Verapamil: (Minor) Verapamil inhibits CYP3A4 activity. Serum estrogen concentrations and estrogenic-related side effects (e.g., nausea, breast tenderness) may potentially increase when verapamil is coadministered with either estrogens or combined hormonal contraceptives.
Tranexamic Acid: (Contraindicated) Tranexamic acid is contraindicated in women who are using combination hormonal contraception containing an estrogen and a progestin. Use with other estrogens is also not recommended. Estrogens increase the hepatic synthesis of prothrombin and factors VII, VIII, IX, and X and decrease antithrombin III; estrogens also increase norepinephrine-induced platelet aggregability. A positive relationship of estrogens to thromboembolic disease has been demonstrated, and the US FDA has suggested class labeling of combined OCs and non-oral combination contraceptives in accordance with this data. OC products containing >= 50-mcg ethinyl estradiol are associated with the greatest risk of thromboembolic complications. Therefore, do not coadminister estrogens, combined hormonal oral contraceptives, or non-oral combination contraceptives together with tranexamic acid. Tranexamic acid is an antifibrinolytic agent, and concomitant use can further exacerbate the thrombotic risk associated with these estrogen-containing hormonal products; in post-market use of tranexamic acid, cases of thromboembolic events have been reported, with cases occurring in those patients concomitantly receiving combined hormonal contraceptives containing both an estrogen and a progestin.
Trastuzumab; Hyaluronidase: (Minor) Estrogens, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients receiving these medications may require larger amounts of hyaluronidase for equivalent dispersing effect.
Triamcinolone: (Moderate) Monitor for corticosteroid-related adverse events if corticosteroids are used with estrogens. Concurrent use may increase the exposure of corticosteroids. Estrogens may decrease the hepatic clearance of corticosteroids thereby increasing their effect.
Tricyclic antidepressants: (Minor) The oxidative metabolism of tricyclic antidepressants may be decreased by ethinyl estradiol. Increased antidepressant serum concentrations may occur. Ethinyl estradiol has been reported to intensify side effects from imipramine. Patients should be monitored for increased tricyclic antidepressant side effects if an estrogen is added. Current evidence indicates that this interaction may be related to the estrogen dosage, with larger doses (i.e., >= 50 mcg ethinyl estradiol/day) causing a more significant interaction.
Trimethoprim: (Moderate) It would be prudent to recommend alternative or additional contraception when oral contraceptives (OCs) are used in conjunction with antibiotics. It was previously thought that antibiotics may decrease the effectiveness of OCs containing estrogens due to stimulation of metabolism or a reduction in enterohepatic circulation via changes in GI flora. One retrospective study reviewed the literature to determine the effects of oral antibiotics on the pharmacokinetics of contraceptive estrogens and progestins, and also examined clinical studies in which the incidence of pregnancy with OCs and antibiotics was reported. It was concluded that the antibiotics ampicillin, ciprofloxacin, clarithromycin, doxycycline, metronidazole, ofloxacin, roxithromycin, temafloxacin, and tetracycline did not alter plasma concentrations of OCs. Antituberculous drugs (e.g., rifampin) were the only agents associated with OC failure and pregnancy. Based on the study results, these authors recommended that back-up contraception may not be necessary if OCs are used reliably during oral antibiotic use. Another review concurred with these data, but noted that individual patients have been identified who experienced significant decreases in plasma concentrations of combined OC components and who appeared to ovulate; the agents most often associated with these changes were rifampin, tetracyclines, and penicillin derivatives. These authors concluded that because females most at risk for OC failure or noncompliance may not be easily identified and the true incidence of such events may be under-reported, and given the serious consequence of unwanted pregnancy, that recommending an additional method of contraception during short-term antibiotic use may be justified. During long-term antibiotic administration, the risk for drug interaction with OCs is less clear, but alternative or additional contraception may be advisable in selected circumstances. Data regarding progestin-only contraceptives or for newer combined contraceptive deliveries (e.g., patches, rings) are not available.
Trofinetide: (Contraindicated) Coadministration of elagolix wit
How Supplied

ORIAHNN Oral Cap: 300-1-0.5mg

Maximum Dosage
Adults

Elagolix 600 mg/day PO, estradiol 1 mg/day PO, and norethindrone acetate 0.5 mg/day PO.

Geriatric

Safety and efficacy have not been established.

Adolescents

Safety and efficacy have not been established.

Children

Safety and efficacy have not been established.

Infants

Not indicated.

Mechanism Of Action

Elagolix is used to reduce bleeding associated with uterine leiomyomas (fibroids) in premenopausal women. Estradiol; norethindrone is combined with elagolix to achieve a balance between the reduction of heavy bleeding and the associated hypoestrogenic adverse effects of elagolix.
Elagolix: Elagolix is an oral reversible gonadotropin-releasing hormone (GnRH) receptor antagonist that inhibits endogenous GnRH signaling by binding competitively to GnRH receptors in the pituitary gland. Elagolix administration results in dose-dependent suppression of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), leading to decreased blood concentrations of the ovarian sex hormones, estradiol and progesterone. The action of elagolix reduces the bleeding associated with uterine fibroids, which are ovarian hormone dependent.
Estradiol: Estradiol acts by binding to nuclear receptors that are expressed in estrogen-responsive tissues (e.g., female organs, breasts, hypothalamus, pituitary). Estrogens are responsible for the growth and development of female sex organs and the maintenance of sex characteristics including growth of axillary and pubic hair and shaping of body contours and skeleton. Estrogens appear to prevent osteoporosis, primarily by preserving bone mineral density (BMD) in the spine and in the hip. The addition of exogenous estradiol may reduce the increase in bone resorption and resultant bone loss that can occur due to a decrease in circulating estrogen from elagolix alone.
Norethindrone acetate: At the cellular level, norethindrone diffuses freely into target cells and binds to the progesterone receptors in the female reproductive tract, mammary gland, hypothalamus, and pituitary. Progestins, when added to estrogen therapies, attenuate some of the positive effects of estrogens on HDL-cholesterol, but LDL-cholesterol benefits are retained. Norethindrone is a progestin of low progestational and slight androgenic and estrogenic activity. Progestins such as norethindrone act by binding to nuclear receptors that are expressed in progesterone responsive tissues. The norethindrone component may protect the uterus from the potential adverse endometrial effects of unopposed estrogen, including endometrial carcinoma.

Pharmacokinetics

The elagolix; estradiol; norethindrone acetate product is administered orally.
Elagolix: Elagolix is 80% bound to plasma proteins. The blood to plasma ratio is 0.6. The apparent mean volume of distribution at steady state is large, showing extensive tissue distribution. Elagolix is eliminated primarily through hepatic metabolism. The major metabolic pathway is via CYP3A4; minor pathways include CYP2D6, CYP2C8, and uridine glucuronosyl transferases (UGTs). Disposition of the drug is also dependent on hepatic organic anion transporting polypeptide (OATP) 1B1. Less than 3% of an elagolix dose is excreted in the urine and 90% is excreted in the feces. The terminal phase elimination half-life is approximately 5.9 +/- 2.1 hours.
Estradiol: Estradiol is widely distributed and is 98% protein-bound, primarily to albumin and sex hormone-binding globulin (SHBG). Estradiol, estrone, and estriol undergo glucuronide and sulfate conjugation to a variety of minor metabolites that are excreted in the urine. The terminal phase elimination half-life is approximately 14.5 +/- 6.6 hours.
Norethindrone acetate: Norethindrone is widely distributed and is 97% protein-bound, primarily to albumin and sex hormone-binding globulin (SHBG). Approximately 10% of norethindrone is metabolized by oxidative reduction, and the remainder via conjugation to the sulfate and glucuronate salts. Excretion of norethindrone as inactive metabolites occurs via the urine. The terminal phase elimination half-life is approximately 9.2 +/- 4 hours.
 
Affected Cytochrome P450 (CYP450) isoenzymes and drug transporters: CYP3A4, OATP1B1, P-glycoprotein (P-gp), CYP2C19
Elagolix: Elagolix is a substrate of CYP3A4, P-gp, and OATP1B1. Medications that inhibit or induce CYP3A4 can affect elagolix exposure. Disposition of the drug is dependent on OATP1B1. Potent OATP1B1 inhibitors are expected to significantly increase elagolix concentrations and exposure. The effect of concomitant use of P-gp inhibitors or inducers on the pharmacokinetics of elagolix is unknown. In addition, elagolix may influence the pharmacokinetics of other drugs. Elagolix is a weak to moderate inducer of CYP3A4 and is also an inhibitor of P-gp. Elagolix is a weak inhibitor of CYP2C19. Elagolix coadministration may increase plasma concentrations of drugs that are CYP2C19 substrates.
Estradiol: In vitro and in vivo studies indicate that estrogens are partially metabolized by CYP3A4. Interactions with drugs that are inhibitors or inducers of CYP3A4 are possible.
Norethindrone acetate: In vitro and in vivo studies indicate that progestins are partially metabolized by CYP3A4. Interactions with drugs that are inhibitors or inducers of CYP3A4 are possible.

Oral Route

Pharmacokinetic data after oral administration of this product regimen are provided.
Elagolix: The mean Cmax [peak concentration (% CV)] is 1,200 (45) ng/mL following an elagolix dose of 300 mg PO twice daily. The time to peak concentration (Tmax) is 1.5 hours. The mean AUC (% CV) for 300 mg PO twice daily is 2,826 (44) ng x hour/mL. The AUC and Cmax are decreased by 24% and 36%, respectively, after ingestion a high-fat meal; however, the drug may be given with or without food.
Estradiol: The mean Cmax [peak concentration (% CV)] is 0.06 (52) ng/mL following an estradiol dose of 1 mg PO once daily. The time to peak concentration (Tmax) is 2 hours. The mean AUC (% CV) is 0.86 (38) ng x hour/mL. There was no change in the AUC after ingestion a high-fat meal and the Cmax decreased by 23% after ingestion a high-fat meal; however, the drug may be given with or without food.
Norethindrone acetate: The mean Cmax [peak concentration (% CV)] is 6.1 (35) ng/mL following a norethindrone dose of 0.5 mg PO once daily. The time to peak concentration (Tmax) is 1 hour. The mean AUC (% CV) is 23.8 (48) ng x hour/mL. The AUC increased by 23% after ingestion of a high-fat meal and the Cmax decreased by 50% after the ingestion of a high-fat meal; however, the drug may be given with or without food.

Pregnancy And Lactation
Pregnancy

Elagolix; estradiol; norethindrone acetate is contraindicated for use during pregnancy. Exposure to elagolix; estradiol; norethindrone acetate early in pregnancy may increase the risk of early pregnancy loss. Discontinue elagolix; estradiol; norethindrone acetate if pregnancy occurs during treatment. The limited human data with the use of elagolix in pregnant women are insufficient to determine whether there is a risk for major birth defects or miscarriage. In clinical trials, there was 1 pregnancy reported in the 453 women who received elagolix; estradiol; norethindrone acetate; the pregnancy resulted in spontaneous abortion and the estimated fetal exposure to this product occurred during the first 18 days of pregnancy. There is a pregnancy registry that monitors outcomes in women who become pregnant while treated with elagolix; estradiol; norethindrone acetate. Encourage pregnant patients to enroll by calling 1-833-782-7241.

Elagolix; estradiol; norethindrone is associated with reproductive risk. Based on the mechanism of action of elagolix, there is a risk of early pregnancy loss if elagolix; estradiol; norethindrone is administered during pregnancy. Exclude pregnancy before initiating treatment with elagolix; estradiol; norethindrone or start elagolix; estradiol; norethindrone within 7 days from the onset of menses. Perform pregnancy testing if pregnancy is suspected during treatment with elagolix; estradiol; norethindrone and discontinue treatment if pregnancy is confirmed. Elagolix; estradiol; norethindrone may delay the ability to recognize the occurrence of a pregnancy because it may cause menstrual irregularity, reducing the intensity, duration, and amount of menstrual bleeding. Discuss contraception requirements with the patient. Advise women to use non-hormonal contraception during treatment with elagolix; estradiol; norethindrone and for 28 days after discontinuing elagolix; estradiol; norethindrone. Advise the breast-feeding female to use non-hormonal contraception until discontinuing breast-feeding.