PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    COX-II Inhibitor Nonsteroidal Anti-inflammatory Drugs (NSAIDs)
    Other Anti-migraine Agents

    BOXED WARNING

    Anticoagulant therapy, coagulopathy, ethanol ingestion, GI bleeding, GI perforation, peptic ulcer disease, tobacco smoking

    NSAIDs, including celecoxib, cause serious gastrointestinal (GI) adverse events including inflammation, bleeding, ulceration, and GI perforation of the esophagus, stomach, small intestine, or large intestine, which can be fatal. These serious adverse events can occur at any time, with or without warning symptoms, in patients treated with NSAIDs. Patients with a prior history of peptic ulcer disease and/or GI bleeding who use NSAIDs have a more than 10-fold increased risk for developing a GI bleed compared to patients without risk factors. Other factors that increase the risk of GI bleeding in patients treated with NSAIDs include longer duration of NSAID therapy, concomitant oral corticosteroids, anticoagulant therapy, aspirin, or selective serotonin reuptake inhibitors (SSRIs), tobacco smoking, ethanol ingestion, older age, and poor general health status. Most postmarketing reports of fatal GI events occurred in elderly or debilitated patients. Additionally, patients with advanced liver disease or coagulopathy are at increased risk for GI bleeding. To minimize GI risks in NSAID-treated patients, use the lowest effective dosage for the shortest possible duration, and avoid administration of more than 1 NSAID at a time. In the setting of concomitant low-dose aspirin use for cardiac prophylaxis, monitor patients more closely for evidence of GI bleeding. Avoid NSAID use in higher risk populations unless the benefits are expected to outweigh the risks of bleeding; consider alternate therapy other than NSAIDs in higher risk patients as well as those with active GI bleeding. Remain alert for signs and symptoms of GI ulceration and bleeding during NSAID therapy.

    Acute myocardial infarction, angina, cardiac arrhythmias, cardiac disease, cardiomyopathy, cerebrovascular disease, coronary artery bypass graft surgery (CABG), coronary artery disease, heart failure, hypertension, myocardial infarction, myocardial infarction or stroke, peripheral vascular disease, stroke, tachycardia, thromboembolism

    Celecoxib is contraindicated for the treatment of perioperative pain in the setting of coronary artery bypass graft surgery (CABG). An increased incidence of thromboembolism, including myocardial infarction and stroke, was found through analysis of data regarding the use of a COX-2 selective NSAID for the treatment of pain in the first 10 to 14 days after CABG surgery. Celecoxib, like all nonsteroidal anti-inflammatory drugs (NSAIDs), may exacerbate heart failure and hypertension and may cause an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. Avoid the use of celecoxib in patients with severe heart failure unless the benefits are expected to outweigh the risk of worsening heart failure. If celecoxib is used in patients with severe heart failure, monitor for signs of worsening heart failure. Trials demonstrated an approximately doubling of hospitalizations for heart failure in patients treated with selective and nonselective NSAIDs compared to placebo-treated patients. Additionally, fluid retention and edema have been observed with NSAID use. Caution is recommended when administering celecoxib to patients with cardiac disease, cardiomyopathy, cardiac arrhythmias (e.g., tachycardia), significant coronary artery disease (including acute myocardial infarction, angina, or history of myocardial infarction), peripheral vascular disease, cerebrovascular disease (e.g., stroke, transient ischemic attack), hypertension, pre-existing renal disease, or fluid retention. Closely monitor blood pressure during celecoxib receipt. Use the lowest effective dose for the shortest duration possible to minimize the potential risk for an adverse cardiovascular event. Inform patients to seek immediate medical attention if they experience any signs or symptoms of a cardiovascular thrombotic event. Myocardial infarction or stroke can occur as early as the first weeks of using a NSAID, and risk may increase with higher doses and longer duration of use. NSAIDs may increase the risk of a cardiovascular thrombotic event in patients with or without underlying heart disease or risk factors for heart disease. Patients with known heart disease or risk factors appear to have a greater likelihood of an event after NSAID use, likely due to a higher baseline risk. While comprehensive data regarding relative cardiovascular safety of any particular NSAID compared to other NSAIDs is not available, celecoxib 100 mg twice daily was shown to be non-inferior to ibuprofen 600 to 800 mg 3 times daily or naproxen 375 to 500 mg twice daily for the composite endpoint of cardiovascular death, nonfatal MI, and nonfatal stroke in osteoarthritis or rheumatoid arthritis adult patients with or at high risk for cardiovascular disease. Celecoxib had negligible effect on average 24-hour systolic blood pressure, while average 24-hour systolic pressures increased by 3.7 mmHg and 1.6 mmHg in patients taking ibuprofen and naproxen, respectively. The relative cardiovascular risks associated with celecoxib doses more than 200 mg/day are not known. There is no consistent evidence that concomitant use of aspirin mitigates the increased risk for cardiovascular thrombotic events. Guidelines state NSAIDs should not be administered to patients presenting with and hospitalized for ST-elevation myocardial infarction (STEMI) due to increased risk of mortality, reinfarction, hypertension, heart failure, and myocardial rupture associated with their use. Observational data from a national registry demonstrated that patients treated with NSAIDs in the post-MI period were at increased risk of reinfarction, cardiovascular-related death, and all-cause mortality beginning the first week of treatment. An increased relative risk of death in NSAID users continued during the follow-up period of 4 years. Data demonstrate that patients treated with NSAIDs were more likely to die in the first year following a myocardial infarction compared to those not treated with NSAIDs. Additionally, worsening angina and acute myocardial infarction can develop after starting or increasing the dose of amlodipine, particularly in patients with severe obstructive coronary artery disease.

    DEA CLASS

    Rx

    DESCRIPTION

    Oral, selective cyclooxygenase-2 (COX-2) inhibitor nonsteroidal anti-inflammatory drug (NSAID)
    Used for osteoarthritis, rheumatoid arthritis, juvenile rheumatoid arthritis (JRA), ankylosing spondylitis, primary dysmenorrhea, acute pain, and migraine with or without aura
    As with other NSAIDs, serious GI and CV adverse events may occur; use lowest effective dose for shortest possible duration

    COMMON BRAND NAMES

    Celebrex, ELYXYB

    HOW SUPPLIED

    Celebrex/Celecoxib Oral Cap: 50mg, 100mg, 200mg, 400mg
    ELYXYB Oral Sol: 1mL, 25mg

    DOSAGE & INDICATIONS

    For the treatment of osteoarthritis.
    Oral dosage
    Adults

    200 mg PO once daily or 100 mg PO twice daily. Use the lowest effective dosage for shortest duration consistent with individual treatment goals.

    For the relief of the signs and symptoms of rheumatoid arthritis.
    Oral dosage
    Adults

    100 or 200 mg PO twice daily. These doses were similarly effective in pre-marketing rheumatoid arthritis trials. The lowest effective dose of celecoxib should be sought for each patient. For patients weighing less than 50 kg, initiate therapy at the lowest recommended dose. Consider starting celecoxib at half the lowest recommended dose in patients who are poor CYP2C9 metabolizers.

    Geriatric

    Initiate therapy at the lowest recommended dose (See adult dosage).

    For the relief of the signs and symptoms of juvenile rheumatoid arthritis (JRA)/juvenile idiopathic arthritis (JIA) including pauciarticular, polyarticular juvenile idiopathic arthritis.
    Oral dosage
    Children >= 2 years and > 25 kg and Adolescents

    100 mg PO twice daily. Consider alternative therapy for poor CYP2C9 metabolizers.

    Children >= 2 years and 10—25 kg

    50 mg PO twice daily. Consider alternative therapy for poor CYP2C9 metabolizers.

    For the treatment of acute moderate pain or severe pain.
    Oral dosage
    Adults

    400 mg PO once initially, followed by an additional 200 mg PO once on day 1 if needed, then 200 mg PO twice daily as needed.

    For the relief of the signs and symptoms of ankylosing spondylitis.
    Oral dosage
    Adults

    200 mg PO once daily or 100 mg PO twice daily. Consider starting celecoxib at half the lowest recommended dose in patients who are poor CYP2C9 metabolizers. If no effect after 6 weeks, consider a 6-week trial of 400 mg PO daily. If no effect after 6 weeks, a response is unlikely; consider alternate treatment. The lowest effective dose of celecoxib should be sought for each patient.

    For the acute treatment of migraine with or without aura.
    Oral dosage (solution)
    Adults who are normal CYP2C9 metabolizers

    120 mg PO once daily for the fewest number of days per month as needed. Max: 120 mg/day. The safety and effectiveness of a second dose in a 24-hour period have not been established.

    Adults who are known or suspected to be poor CYP2C9 metabolizers

    60 mg PO once daily for the fewest number of days per month as needed. Max: 60 mg/day. The safety and effectiveness of a second dose in a 24-hour period have not been established.

    For the treatment of dysmenorrhea.
    Oral dosage
    Adults

    400 mg PO once initially, followed by an additional 200 mg PO once on day 1 if needed, then 200 mg PO twice daily as needed.

    MAXIMUM DOSAGE

    Adults

    800 mg/day PO for capsules; 120 mg/day PO for oral solution.

    Geriatric

    400 mg/day PO for capsules; 120 mg/day PO for oral solution.

    Adolescents

    200 mg/day PO for capsules for juvenile rheumatoid arthritis. Safety and efficacy have not been established for other indications or for oral solution.

    Children

    2 to 12 years weighing more than 25 kg: 200 mg/day PO for capsules for juvenile rheumatoid arthritis. Safety and efficacy have not been established for other indications or for oral solution.
    2 to 12 years weighing 10 to 25 kg: 100 mg/day PO for capsules for juvenile rheumatoid arthritis. Safety and efficacy have not been established for other indications or for oral solution.
    1 year: Safety and efficacy have not been established.

    Infants

    Safety and efficacy have not been established.

    Neonates

    Safety and efficacy have not been established.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    Reduce the daily dose of capsules by approximately 50% in patients with moderate hepatic impairment (Child-Pugh Class B). Do not exceed a daily dose of 60 mg of oral solution in patients with moderate hepatic impairment (Child-Pugh Class B). Celecoxib is not recommended in patients with severe hepatic impairment (Child-Pugh Class C).

    Renal Impairment

    No dosage adjustment is needed for patients with mild or moderate renal impairment. Celecoxib is not recommended in patients with severe renal impairment.

    ADMINISTRATION

    Oral Administration
    Oral Solid Formulations

    Capsules
    Doses up to 200 mg twice daily may be administered without regard to timing of meals. Administer higher doses with food to improve absorption.
    For patients who have difficulty swallowing capsules, the contents of a capsule may be emptied onto a level teaspoon of cool or room temperature applesauce and ingested immediately with water.
    Storage: The sprinkled capsule contents on applesauce is stable for up to 6 hours when refrigerated at 2 to 8 degrees C (35 to 45 degrees F).[56268]

    Oral Liquid Formulations

    Oral Solution
    Administer with or without food.

    STORAGE

    Celebrex:
    - Store at controlled room temperature (between 68 and 77 degrees F)
    ELYXYB:
    - Discard unused portion. Do not store for later use.
    - Do not freeze
    - Do not refrigerate
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F

    CONTRAINDICATIONS / PRECAUTIONS

    Sulfonamide hypersensitivity

    Celecoxib is contraindicated in patients with known hypersensitivity to celecoxib or its components or sulfonamide hypersensitivity.[56268] [65375] Celecoxib contains a sulfonamide side chain; however, celecoxib does not contain the aromatic amine or the N1-substituent that are present in sulfonamide antibiotics. These components of the chemical structures are thought to play essential roles in the pathogenesis of hypersensitivity reactions to sulfonamide antibiotics. Differences in chemical structure and subsequent metabolism provide rationale that the incidence of cross-sensitivity between celecoxib and sulfonamide antibiotics may be low.[26922] In a prospective trial, 6 patients with positive hypersensitivity results to sulfamethoxazole tolerated an oral celecoxib challenge of 10 mg and then 100 mg at 1 hour later. Additionally, 5 of the 6 patients continued to receive celecoxib uneventfully; a patient stopped therapy after 12 days due to GI adverse events. The other patient's physician did not prescribe celecoxib due to perceived risk.[28011] A meta-analysis of 11,008 patients from 14 trials demonstrated that the incidence of allergic reactions with celecoxib was not significantly different from placebo or active comparators (i.e., other NSAIDs). The subset of patients with a history of sulfonamide hypersensitivity had a 3- to 6-fold higher incidence of dermatologic reactions, in general, than did the entire arthritis trial cohort. Although the incidence of dermatologic reactions occurred with greater frequency in patients with sulfonamide hypersensitivity, the trend was consistent across all treatment groups (e.g., celecoxib, placebo, NSAIDs).[26923] In a retrospective cohort study of approximately 20,000 patients that examined cross-reactivity between sulfonamide antibiotics and nonantibiotics, the risk of an allergic reaction to a sulfonamide nonantibiotic was lower among patients with a history of sulfonamide antibiotic hypersensitivity than among patients with a history of penicillin hypersensitivity. Although celecoxib was not specifically included in this study, the evidence suggests that hypersensitivity reactions to sulfonamide nonantibiotics in patients with a history of sulfonamide hypersensitivity may be due to patient predisposition to hypersensitivity reactions rather than the chemical structure of the drug.[32382]

    Acute bronchospasm, asthma, nasal polyps, NSAID hypersensitivity, salicylate hypersensitivity, serious rash, urticaria

    Celecoxib is contraindicated in patients with known salicylate hypersensitivity or NSAID hypersensitivity (e.g., anaphylactic reactions and serious skin reactions) and in patients with a history of asthma, urticaria, or other allergic-type reactions after taking aspirin or other NSAIDs. Severe, sometimes fatal, anaphylactic reactions to NSAIDs have been reported in such patients. A subpopulation of patients with asthma may have aspirin-sensitive asthma, which may include chronic rhinosinusitis complicated by nasal polyps, severe and potentially fatal acute bronchospasm, and/or intolerance to aspirin and other NSAIDs. Because cross-reactivity between aspirin and other NSAIDs has been reported, celecoxib is contraindicated in patients with aspirin-sensitive asthma. When celecoxib is used in patients with pre-existing asthma without known aspirin sensitivity, monitor patients for changes in the signs and symptoms of asthma. Celecoxib is contraindicated in patients with previous serious rash or skin reactions to NSAIDs. The use of NSAIDs, including celecoxib, may cause serious and potentially fatal skin reactions including exfoliative dermatitis, Stevens-Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), and acute generalized exanthematous pustulosis (AGEP). Educate patients about the signs and symptoms of serious skin reactions and to discontinue the use of celecoxib at the first appearance of skin rash or hypersensitivity. [65375]

    Anticoagulant therapy, coagulopathy, ethanol ingestion, GI bleeding, GI perforation, peptic ulcer disease, tobacco smoking

    NSAIDs, including celecoxib, cause serious gastrointestinal (GI) adverse events including inflammation, bleeding, ulceration, and GI perforation of the esophagus, stomach, small intestine, or large intestine, which can be fatal. These serious adverse events can occur at any time, with or without warning symptoms, in patients treated with NSAIDs. Patients with a prior history of peptic ulcer disease and/or GI bleeding who use NSAIDs have a more than 10-fold increased risk for developing a GI bleed compared to patients without risk factors. Other factors that increase the risk of GI bleeding in patients treated with NSAIDs include longer duration of NSAID therapy, concomitant oral corticosteroids, anticoagulant therapy, aspirin, or selective serotonin reuptake inhibitors (SSRIs), tobacco smoking, ethanol ingestion, older age, and poor general health status. Most postmarketing reports of fatal GI events occurred in elderly or debilitated patients. Additionally, patients with advanced liver disease or coagulopathy are at increased risk for GI bleeding. To minimize GI risks in NSAID-treated patients, use the lowest effective dosage for the shortest possible duration, and avoid administration of more than 1 NSAID at a time. In the setting of concomitant low-dose aspirin use for cardiac prophylaxis, monitor patients more closely for evidence of GI bleeding. Avoid NSAID use in higher risk populations unless the benefits are expected to outweigh the risks of bleeding; consider alternate therapy other than NSAIDs in higher risk patients as well as those with active GI bleeding. Remain alert for signs and symptoms of GI ulceration and bleeding during NSAID therapy.

    Acute myocardial infarction, angina, cardiac arrhythmias, cardiac disease, cardiomyopathy, cerebrovascular disease, coronary artery bypass graft surgery (CABG), coronary artery disease, heart failure, hypertension, myocardial infarction, myocardial infarction or stroke, peripheral vascular disease, stroke, tachycardia, thromboembolism

    Celecoxib is contraindicated for the treatment of perioperative pain in the setting of coronary artery bypass graft surgery (CABG). An increased incidence of thromboembolism, including myocardial infarction and stroke, was found through analysis of data regarding the use of a COX-2 selective NSAID for the treatment of pain in the first 10 to 14 days after CABG surgery. Celecoxib, like all nonsteroidal anti-inflammatory drugs (NSAIDs), may exacerbate heart failure and hypertension and may cause an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. Avoid the use of celecoxib in patients with severe heart failure unless the benefits are expected to outweigh the risk of worsening heart failure. If celecoxib is used in patients with severe heart failure, monitor for signs of worsening heart failure. Trials demonstrated an approximately doubling of hospitalizations for heart failure in patients treated with selective and nonselective NSAIDs compared to placebo-treated patients. Additionally, fluid retention and edema have been observed with NSAID use. Caution is recommended when administering celecoxib to patients with cardiac disease, cardiomyopathy, cardiac arrhythmias (e.g., tachycardia), significant coronary artery disease (including acute myocardial infarction, angina, or history of myocardial infarction), peripheral vascular disease, cerebrovascular disease (e.g., stroke, transient ischemic attack), hypertension, pre-existing renal disease, or fluid retention. Closely monitor blood pressure during celecoxib receipt. Use the lowest effective dose for the shortest duration possible to minimize the potential risk for an adverse cardiovascular event. Inform patients to seek immediate medical attention if they experience any signs or symptoms of a cardiovascular thrombotic event. Myocardial infarction or stroke can occur as early as the first weeks of using a NSAID, and risk may increase with higher doses and longer duration of use. NSAIDs may increase the risk of a cardiovascular thrombotic event in patients with or without underlying heart disease or risk factors for heart disease. Patients with known heart disease or risk factors appear to have a greater likelihood of an event after NSAID use, likely due to a higher baseline risk. While comprehensive data regarding relative cardiovascular safety of any particular NSAID compared to other NSAIDs is not available, celecoxib 100 mg twice daily was shown to be non-inferior to ibuprofen 600 to 800 mg 3 times daily or naproxen 375 to 500 mg twice daily for the composite endpoint of cardiovascular death, nonfatal MI, and nonfatal stroke in osteoarthritis or rheumatoid arthritis adult patients with or at high risk for cardiovascular disease. Celecoxib had negligible effect on average 24-hour systolic blood pressure, while average 24-hour systolic pressures increased by 3.7 mmHg and 1.6 mmHg in patients taking ibuprofen and naproxen, respectively. The relative cardiovascular risks associated with celecoxib doses more than 200 mg/day are not known. There is no consistent evidence that concomitant use of aspirin mitigates the increased risk for cardiovascular thrombotic events. Guidelines state NSAIDs should not be administered to patients presenting with and hospitalized for ST-elevation myocardial infarction (STEMI) due to increased risk of mortality, reinfarction, hypertension, heart failure, and myocardial rupture associated with their use. Observational data from a national registry demonstrated that patients treated with NSAIDs in the post-MI period were at increased risk of reinfarction, cardiovascular-related death, and all-cause mortality beginning the first week of treatment. An increased relative risk of death in NSAID users continued during the follow-up period of 4 years. Data demonstrate that patients treated with NSAIDs were more likely to die in the first year following a myocardial infarction compared to those not treated with NSAIDs. Additionally, worsening angina and acute myocardial infarction can develop after starting or increasing the dose of amlodipine, particularly in patients with severe obstructive coronary artery disease.

    Dehydration, hypovolemia, renal disease, renal failure, renal impairment

    No information is available from controlled clinical studies regarding the use of celecoxib in patients with severe renal impairment. The renal effects of celecoxib may hasten the progression of renal dysfunction in patients with pre-existing renal disease. Correct volume status in patients with dehydration or hypovolemia before starting celecoxib. Monitor renal function in patients with renal impairment,  dehydration, or hypovolemia during celecoxib use. Celecoxib is not recommended in patients with severe renal impairment or renal failure. Renal toxicity has been seen in patients in whom renal prostaglandins have a compensatory role in the maintenance of renal perfusion. In these patients, administration of an NSAID may cause a dose-dependent reduction in prostaglandin formation and, secondarily, in renal blood flow, which may precipitate overt renal decompensation. Patients at greatest risk of this reaction include those with impaired renal function, dehydration, hypovolemia, and those taking diuretics, angiotensin-converting enzyme inhibitors, or angiotensin receptor blockers. Discontinuation of NSAID therapy is usually followed by recovery to the pretreatment status.[56268] [65375]

    Hepatic disease

    Reduce the celecoxib dose in patients with moderate hepatic disease (Child-Pugh Class B). The use of celecoxib in patients with severe hepatic impairment (Child-Pugh Class C) has not been studied and is not recommended. Monitor renal function in patients with hepatic impairment. [65375]

    Infection

    The pharmacological activity of celecoxib in reducing inflammation, and possibly fever, may diminish the utility of diagnostic signs in detecting an infection.

    Children

    Because of the risk of disseminated intravascular coagulation with use of celecoxib in children with systemic-onset juvenile rheumatoid arthritis, monitor patients for signs and symptoms of abnormal clotting or bleeding, and inform patients and their caregivers to report symptoms as soon as possible.

    Geriatric

    Geriatric patients, compared to younger patients, are at greater risk for NSAID-associated serious cardiovascular, gastrointestinal, and/or renal adverse reactions. If the anticipated benefit for the elderly patient outweighs these potential risks, start dosing at the low end of the dosing range, use the shortest duration, and monitor patients for adverse effects. As with other NSAIDs, including those that selectively inhibit COX-2, there have been more spontaneous postmarketing reports of fatal GI events and acute renal failure in the elderly than in younger patients.[56268] [65375] According to the Beers Criteria, COX-2 inhibitors are considered potentially inappropriate medications (PIMs) in geriatric patients; avoid oral and parenteral COX-2 inhibitors in geriatric patients with the following conditions due to the potential for exacerbation or adverse effects: symptomatic heart failure (potential to promote fluid retention and exacerbate the condition) or chronic kidney disease Stage 4 or higher (CrCl less than 30 mL/minute) (may increase the risk of acute kidney injury and cause a further decline of renal function). Use with caution in patients with asymptomatic heart failure.[63923] The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities (LTCFs); COX-2 inhibitors should be reserved for symptoms and inflammatory conditions for which lower risk analgesics (e.g., acetaminophen) have either failed or are not clinically indicated. NSAIDs may cause GI bleeding in patients with a prior history of, or with increased risk for, GI bleeding. COX-2 inhibitors may reduce, but do not eliminate, the risk of GI bleeding. Like NSAIDs, COX-2 inhibitors may cause or worsen renal failure, increase blood pressure, or exacerbate heart failure. The concomitant use of aspirin can increase the adverse effects of COX-2 inhibitors on the GI tract.[60742]

    Poor metabolizers

    In adults who are known or suspected to be CYP2C9 poor metabolizers based on genotype or previous history/experience with other CYP2C9 substrates, initiate celecoxib treatment at 50% of the lowest recommended dose. In persons with juvenile rheumatoid arthritis (JRA) who are known or suspected to be CYP2C9 poor metabolizers, consider using alternative treatments. CYP2C9 activity is reduced in persons with genetic polymorphisms that lead to reduced enzyme activity, such as those homozygous for the CYP2C9*2 and CYP2C9*3 polymorphisms. Limited data in subjects with the homozygous CYP2C9*3/*3 genotype (n = 8) showed celecoxib systemic concentrations that were 3- to 7-fold higher compared to subjects with CYP2C9*1/*1 or *I/*3 genotypes. The pharmacokinetics of celecoxib have not been evaluated in subjects with other CYP2C9 polymorphisms, such as *2, *5, *6, *9 and *11.

    Pregnancy

    Avoid celecoxib use during the third trimester of pregnancy (starting at 30 weeks of gestation) due to the risk of premature closure of the fetal ductus arteriosus and persistent pulmonary hypertension in the neonate.[56268]  If NSAID treatment is deemed necessary between 20 to 30 weeks of pregnancy, limit use to the lowest effective dose and shortest duration possible. Consider ultrasound monitoring of amniotic fluid if NSAID treatment extends beyond 48 hours. Discontinue the NSAID if oligohydramnios occurs and follow up according to clinical practice. Use of NSAIDs around 20 weeks gestation or later in pregnancy may cause fetal renal dysfunction leading to oligohydramnios, and in some cases, neonatal renal impairment. These adverse outcomes are seen, on average, after days to weeks of treatment, although oligohydramnios has been infrequently reported as soon as 48 hours after NSAID initiation. Oligohydramnios is often, but not always, reversible with treatment discontinuation. Complications of prolonged oligohydramnios may include limb contractures and delayed lung maturation. In some postmarketing cases of impaired neonatal renal function, invasive procedures such as exchange transfusion or dialysis were required. Observational data regarding embryofetal risks of NSAID use during the first trimester is inconclusive. There are no adequate and well-controlled studies of celecoxib in pregnant women.[56268] 

    Breast-feeding

    Limited data from 3 published reports that included a total of 12 breast-feeding women showed low concentrations of celecoxib in breast milk. The calculated average daily infant dose was 10 to 40 mcg/kg/day, less than 1% of the weight-based therapeutic dose for a 2-year-old child. A report of 2 breast-fed infants who were 17 and 22 months did not show any adverse events. There is no information available regarding the effects of celecoxib on milk production. Consider the developmental and health benefits of breast-feeding along with the mother's clinical need for celecoxib and any potential adverse effects on the breast-fed infant from celecoxib or the underlying maternal condition.[56268] [65375] Alternative analgesic and anti-inflammatory drugs considered to be usually compatible with breast-feeding by previous American Academy of Pediatrics (AAP) recommendations include acetaminophen, ibuprofen, indomethacin, naproxen, and piroxicam.[27500]

    Infertility, reproductive risk

    NSAIDs, such as celecoxib, may pose a reproductive risk by delaying or preventing prostaglandin-mediated rupture of ovarian follicles, which has been associated with reversible infertility. Small studies of women treated with NSAIDs demonstrated a reversible delay in ovulation. Consider withdrawal of NSAIDs in women who have difficulties conceiving or who are undergoing infertility evaluation.

    ADVERSE REACTIONS

    Severe

    peptic ulcer / Delayed / 1.5-5.9
    stroke / Early / 0-3.4
    myocardial infarction / Delayed / 0.1-3.4
    bronchospasm / Rapid / 0.1-1.9
    hearing loss / Delayed / 0.1-1.9
    hyperkalemia / Delayed / 0.1-0.9
    tendon rupture / Delayed / 0.1-0.9
    ileus / Delayed / 0-0.1
    GI obstruction / Delayed / 0-0.1
    GI perforation / Delayed / 0-0.1
    GI bleeding / Delayed / 0-0.1
    pancreatitis / Delayed / 0-0.1
    intracranial bleeding / Delayed / 0-0.1
    renal failure (unspecified) / Delayed / 0-0.1
    heart failure / Delayed / 0-0.1
    ventricular fibrillation / Early / 0-0.1
    pulmonary embolism / Delayed / 0-0.1
    odynophagia / Delayed / Incidence not known
    esophageal stricture / Delayed / Incidence not known
    esophageal ulceration / Delayed / Incidence not known
    hepatic failure / Delayed / Incidence not known
    angioedema / Rapid / Incidence not known
    anaphylactoid reactions / Rapid / Incidence not known
    proteinuria / Delayed / Incidence not known
    renal papillary necrosis / Delayed / Incidence not known
    azotemia / Delayed / Incidence not known
    interstitial nephritis / Delayed / Incidence not known
    toxic epidermal necrolysis / Delayed / Incidence not known
    exfoliative dermatitis / Delayed / Incidence not known
    Stevens-Johnson syndrome / Delayed / Incidence not known
    Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) / Delayed / Incidence not known
    acute generalized exanthematous pustulosis (AGEP) / Delayed / Incidence not known
    erythema multiforme / Delayed / Incidence not known
    bradycardia / Rapid / Incidence not known
    vasculitis / Delayed / Incidence not known
    thrombosis / Delayed / Incidence not known
    thromboembolism / Delayed / Incidence not known
    pancytopenia / Delayed / Incidence not known
    disseminated intravascular coagulation (DIC) / Delayed / Incidence not known
    aplastic anemia / Delayed / Incidence not known
    agranulocytosis / Delayed / Incidence not known
    aseptic meningitis / Delayed / Incidence not known
    cyanosis / Early / Incidence not known
    methemoglobinemia / Early / Incidence not known

    Moderate

    hypertension / Early / 0.1-12.5
    elevated hepatic enzymes / Delayed / 0.1-6.0
    peripheral edema / Delayed / 2.1-4.5
    dyspnea / Early / 0.1-2.8
    melena / Delayed / 0.1-1.9
    constipation / Delayed / 0.1-1.9
    hemorrhoids / Delayed / 0.1-1.9
    stomatitis / Delayed / 0.1-1.9
    gastritis / Delayed / 0.1-1.9
    dysphagia / Delayed / 0.1-1.9
    esophagitis / Delayed / 0.1-1.9
    anemia / Delayed / 0.1-1.9
    hematuria / Delayed / 0.1-1.9
    nephrolithiasis / Delayed / 0.1-1.9
    cystitis / Delayed / 0.1-1.9
    dysuria / Early / 0.1-1.9
    edema / Delayed / 0.1-1.9
    hypokalemia / Delayed / 0.1-1.9
    erythema / Early / 0.1-1.9
    contact dermatitis / Delayed / 0.1-1.9
    sinus tachycardia / Rapid / 0.1-1.9
    angina / Early / 0.1-1.9
    chest pain (unspecified) / Early / 0.1-1.9
    hypercholesterolemia / Delayed / 0.1-1.9
    palpitations / Early / 0.1-1.9
    migraine / Early / 0.1-1.9
    hypertonia / Delayed / 0.1-1.9
    depression / Delayed / 0.1-1.9
    synovitis / Delayed / 0.1-1.9
    hot flashes / Early / 0.1-1.9
    hyperglycemia / Delayed / 0.1-1.9
    hypernatremia / Delayed / 0.1-0.9
    colitis / Delayed / 0-0.1
    cholelithiasis / Delayed / 0-0.1
    phlebitis / Rapid / 0-0.1
    thrombocytopenia / Delayed / 0-0.1
    ataxia / Delayed / 0-0.1
    hypoglycemia / Early / 0-0.1
    hepatitis / Delayed / Incidence not known
    jaundice / Delayed / Incidence not known
    hyponatremia / Delayed / Incidence not known
    medication overuse headache / Delayed / Incidence not known
    withdrawal / Early / Incidence not known
    leukopenia / Delayed / Incidence not known
    infertility / Delayed / Incidence not known

    Mild

    headache / Early / 10.0-15.8
    diarrhea / Early / 4.0-10.5
    fever / Early / 0.1-9.0
    dyspepsia / Early / 8.8-8.8
    infection / Delayed / 0.1-8.1
    abdominal pain / Early / 4.0-8.0
    nausea / Early / 3.5-7.0
    cough / Delayed / 0.1-7.0
    arthralgia / Delayed / 0.1-7.0
    vomiting / Early / 0.1-6.0
    pharyngitis / Delayed / 2.3-6.0
    sinusitis / Delayed / 5.0-5.0
    gastroesophageal reflux / Delayed / 0.1-4.7
    dysgeusia / Early / 3.0-3.0
    back pain / Delayed / 2.8-2.8
    insomnia / Early / 2.3-2.3
    flatulence / Early / 2.2-2.2
    rash / Early / 2.2-2.2
    dizziness / Early / 1.0-2.0
    rhinitis / Early / 2.0-2.0
    xerostomia / Early / 0.1-1.9
    eructation / Early / 0.1-1.9
    anorexia / Delayed / 0.1-1.9
    tenesmus / Delayed / 0.1-1.9
    epistaxis / Delayed / 0.1-1.9
    ecchymosis / Delayed / 0.1-1.9
    urticaria / Rapid / 0.1-1.9
    increased urinary frequency / Early / 0.1-1.9
    weight gain / Delayed / 0.1-1.9
    alopecia / Delayed / 0.1-1.9
    xerosis / Delayed / 0.1-1.9
    pruritus / Rapid / 0.1-1.9
    maculopapular rash / Early / 0.1-1.9
    photosensitivity / Delayed / 0.1-1.9
    diaphoresis / Early / 0.1-1.9
    tinnitus / Delayed / 0.1-1.9
    paresthesias / Delayed / 0.1-1.9
    hypoesthesia / Delayed / 0.1-1.9
    vertigo / Early / 0.1-1.9
    muscle cramps / Delayed / 0.1-1.9
    anxiety / Delayed / 0.1-1.9
    drowsiness / Early / 0.1-1.9
    laryngitis / Delayed / 0.1-1.9
    myalgia / Early / 0.1-1.9
    syncope / Early / 0-0.1
    pyrosis (heartburn) / Early / Incidence not known
    anosmia / Delayed / Incidence not known

    DRUG INTERACTIONS

    Abciximab: (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Acebutolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Acetaminophen; Aspirin, ASA; Caffeine: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection.
    Acetaminophen; Aspirin: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection.
    Acetaminophen; Aspirin; Diphenhydramine: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection.
    Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Concomitant use of dihydrocodeine with celecoxib may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Celecoxib is an inhibitor of CYP2D6.
    Acetaminophen; Chlorpheniramine: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Acetaminophen; Codeine: (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6.
    Acetaminophen; Hydrocodone: (Moderate) Concomitant use of hydrocodone with celecoxib may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of celecoxib could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If celecoxib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Celecoxib is an inhibitor of CYP2D6.
    Acetohexamide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Acyclovir: (Moderate) Monitor patients for signs of worsening renal function during coadministration of acyclovir and nonsteroidal antiinflammatory drugs. Coadministration may increase the risk for drug-induced nephrotoxicity.
    Adefovir: (Moderate) Chronic coadministration of adefovir with nephrotoxic drugs, such as nonsteroidal antiinflammatory drugs may increase the risk of developing nephrotoxicity even in patients who have normal renal function. The use of adefovir with NSAIDs may be done cautiously. As stated in the current adefovir prescribing information, 'Ibuprofen (800 mg PO three times daily), when given concomitantly with adefovir dipivoxil, increased the adefovir Cmax by 33% and AUC by 23%, as well as urinary recovery. The increase appears to be due to higher oral bioavailability, not a reduction in renal clearance of adefovir.' In an in vitro investigation, the antiviral effect of adefovir was unaltered and the renal proximal tubule accumulation of adefovir was inhibited by the presence of a NSAID. Adefovir is efficiently transported by the human renal organic anion transporter 1, and the presence of this transporter appears to mediate the accumulation of the drug in renal proximal tubules. The in vitro study suggests that the use of a NSAID with adefovir may potentially reduce the nephrotoxic potential of adefovir. Of course, NSAIDs are associated with nephrotoxicity of their own; therefore, further data on the interaction between NSAIDs and adefovir in humans are needed.
    Aldesleukin, IL-2: (Major) Aldesleukin, IL-2 may cause nephrotoxicity. Concurrent administration of drugs possessing nephrotoxic effects, such as nonsteroidal antiinflammatory agents (NSAIDs), with Aldesleukin, IL-2 may increase the risk of kidney dysfunction. In addition, reduced kidney function secondary to Aldesleukin, IL-2 treatment may delay elimination of concomitant medications and increase the risk of adverse events from those drugs.
    Alendronate: (Minor) Monitor for gastrointestinal adverse events during concurrent use of alendronate and nonsteroidal antiinflammatory drugs. Both medications have been associated with gastrointestinal irritation although data suggest concomitant use introduces little additional risk for adverse effects for most patients.
    Alendronate; Cholecalciferol: (Minor) Monitor for gastrointestinal adverse events during concurrent use of alendronate and nonsteroidal antiinflammatory drugs. Both medications have been associated with gastrointestinal irritation although data suggest concomitant use introduces little additional risk for adverse effects for most patients.
    Aliskiren: (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren.
    Aliskiren; Amlodipine: (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren.
    Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren.
    Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren.
    Aliskiren; Valsartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren.
    Alpelisib: (Moderate) Monitor for decreased efficacy of celecoxib during coadministration of alpelisib as plasma concentrations of celecoxib may be decreased. Celecoxib is a sensitive CYP2C9 substrate; in vitro data suggest alpelisib is a CYP2C9 inducer.
    Alpha-blockers: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Alteplase: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
    Altretamine: (Major) Altretamine causes mild to moderate dose-related myelosuppression. Due to the thrombocytopenic effects of altretamine, an additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Ambenonium Chloride: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Amikacin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal antiinflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as amikacin.
    Amiloride: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Aminolevulinic Acid: (Moderate) Agents that inhibit prostaglandin synthesis such as nonsteroidal antiinflammatory drugs (NSAIDs), could decrease the efficacy of photosensitizing agents used in photodynamic therapy. Avoidance of NSAIDs before and during photodynamic therapy may be advisable.
    Amiodarone: (Minor) Since celecoxib is metabolized by cytochrome P450 2C9, concurrent administration with amiodarone, which can inhibit this enzyme, may result in increased levels of celecoxib. The clinical significance of this interactions has not been established.
    Amitriptyline: (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with celecoxib is necessary; a dose reduction of amitriptyline may be necessary. Concurrent use may increase the plasma concentrations of amitriptyline. Amitriptyline is a CYP2D6 substrate and celecoxib is a CYP2D6 inhibitor.
    Amlodipine; Benazepril: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Amlodipine; Olmesartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Amlodipine; Valsartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Amoxapine: (Moderate) A dosage adjustment may be warranted for amoxapine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of amoxapine. Celecoxib is a CYP2D6 inhibitor, and amoxapine is a CYP2D6 substrate.
    Amphotericin B cholesteryl sulfate complex (ABCD): (Moderate) Concurrent use of amphotericin B and other nephrotoxic medications, including nonsteroidal antiinflammatory drugs (NSAIDs), may enhance the potential for drug-induced renal toxicity. Monitor renal function carefully during concurrent therapy. Amphotericin B dosage reduction may be necessary if renal impairment occurs.
    Amphotericin B lipid complex (ABLC): (Moderate) Concurrent use of amphotericin B and other nephrotoxic medications, including nonsteroidal antiinflammatory drugs (NSAIDs), may enhance the potential for drug-induced renal toxicity. Monitor renal function carefully during concurrent therapy. Amphotericin B dosage reduction may be necessary if renal impairment occurs.
    Amphotericin B liposomal (LAmB): (Moderate) Concurrent use of amphotericin B and other nephrotoxic medications, including nonsteroidal antiinflammatory drugs (NSAIDs), may enhance the potential for drug-induced renal toxicity. Monitor renal function carefully during concurrent therapy. Amphotericin B dosage reduction may be necessary if renal impairment occurs.
    Amphotericin B: (Moderate) Concurrent use of amphotericin B and other nephrotoxic medications, including nonsteroidal antiinflammatory drugs (NSAIDs), may enhance the potential for drug-induced renal toxicity. Monitor renal function carefully during concurrent therapy. Amphotericin B dosage reduction may be necessary if renal impairment occurs.
    Anagrelide: (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Angiotensin II receptor antagonists: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Angiotensin-converting enzyme inhibitors: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Antithrombin III: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Apalutamide: (Moderate) Monitor for decreased efficacy of celecoxib if coadministration with apalutamide is necessary; a celecoxib dosage adjustment may be necessary. Celecoxib is a CYP2C9 substrate and apalutamide is a weak CYP2C9 inducer. Coadministration may decrease plasma concentrations of celecoxib.
    Apixaban: (Major) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Aprepitant, Fosaprepitant: (Minor) Use caution if celecoxib and aprepitant are used concurrently and monitor for a possible decrease in the efficacy of celecoxib. After administration, fosaprepitant is rapidly converted to aprepitant and shares the same drug interactions. Celecoxib is a CYP2C9 substrate and aprepitant is a CYP2C9 inducer. Administration of a CYP2C9 substrate, tolbutamide, on days 1, 4, 8, and 15 with a 3-day regimen of oral aprepitant (125 mg/80 mg/80 mg) decreased the tolbutamide AUC by 23% on day 4, 28% on day 8, and 15% on day 15. The AUC of tolbutamide was decreased by 8% on day 2, 16% on day 4, 15% on day 8, and 10% on day 15 when given prior to oral administration of aprepitant 40 mg on day 1, and on days 2, 4, 8, and 15. The effects of aprepitant on tolbutamide were not considered significant. When a 3-day regimen of aprepitant (125 mg/80 mg/80 mg) given to healthy patients on stabilized chronic warfarin therapy (another CYP2C9 substrate), a 34% decrease in S-warfarin trough concentrations was noted, accompanied by a 14% decrease in the INR at five days after completion of aprepitant.
    Aprotinin: (Moderate) The manufacturer recommends using aprotinin cautiously in patients that are receiving drugs that can affect renal function, such as NSAIDs, as the risk of renal impairment may be increased.
    Argatroban: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Aripiprazole: (Major) Monitor for aripiprazole-related adverse reactions during concurrent use of celecoxib. Reduce the oral aripiprazole dosage to one-quarter (25%) of the usual dose with subsequent adjustments based upon clinical response in patients also receiving a CYP3A inhibitor. Adults receiving a combination of a CYP3A inhibitor and celecoxib for more than 14 days should have their Abilify Maintena dose reduced from 400 mg/month to 200 mg/month or from 300 mg/month to 160 mg/month, respectively. There are no dosing recommendations for Aristada or Aristada Initio during use of a mild to moderate CYP2D6 inhibitor alone. Aripiprazole is a substrate for CYP2D6 and CYP3A; celecoxib is a weak CYP2D6 inhibitor.
    Arsenic Trioxide: (Minor) Some antineoplastic agents cause thrombocytopenia, and patients with thrombocytopenia are at increased risk of bleeding complications. Celecoxib does not generally affect platelet counts, prothrombin time, or partial thromboplastin time, and does not inhibit platelet aggregation at indicated dosages. It is unclear if celecoxib is associated with less risk than other NSAIDs due to its lack of platelet inhibitory effects; bleeding events have occurred with celecoxib.
    Aspirin, ASA: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection.
    Aspirin, ASA; Butalbital; Caffeine: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection. (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6.
    Aspirin, ASA; Caffeine: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection.
    Aspirin, ASA; Caffeine; Orphenadrine: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection.
    Aspirin, ASA; Carisoprodol: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection.
    Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection. (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6.
    Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection.
    Aspirin, ASA; Dipyridamole: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection. (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Aspirin, ASA; Omeprazole: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection.
    Aspirin, ASA; Oxycodone: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection.
    Aspirin, ASA; Pravastatin: (Major) Concomitant use of analgesic doses of aspirin and celecoxib is generally not recommended due to the increased risk of bleeding. Concurrent use of analgesic doses of aspirin with NSAIDs does not produce a greater therapeutic effect compared to the use of NSAIDs alone. Celecoxib (200 to 400 mg/day) did not interfere with the cardioprotective antiplatelet effect of aspirin (100 to 325 mg) in 2 studies in healthy volunteers and in patients with osteoarthritis and established heart disease. Celecoxib is not a substitute for low dose aspirin for cardiovascular protection.
    Atenolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Atenolol; Chlorthalidone: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Concurrent use of phenyl salicylate and celecoxib is generally not recommended due to the increased risks of bleeding and nephrotoxicity. Concurrent use of phenyl salicylate and NSAIDs does not produce greater therapeutic effect compared to the use of NSAIDs alone.
    Atropine; Edrophonium: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Azathioprine: (Moderate) NSAIDs should be used with caution in patients receiving immunosuppressives as they may mask fever, pain, swelling and other signs and symptoms of an infection.
    Azelastine; Fluticasone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Azilsartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Azilsartan; Chlorthalidone: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Bacitracin: (Major) Avoid concurrent use of bacitracin with nonsteroidal antiinflammatory drugs. Coadministration may increase the risk for drug-induced nephrotoxicity.
    Balsalazide: (Moderate) Monitor patients for signs of worsening renal function during coadministration of balsalazide and celecoxib. Coadministration may increase the risk for drug-induced nephrotoxicity. Balsalazide is converted to mesalamine in the gastrointestinal tract; nephrotoxicity has been observed during mesalamine treatment.
    Beclomethasone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Benazepril: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Bendroflumethiazide; Nadolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Concurrent use of phenyl salicylate and celecoxib is generally not recommended due to the increased risks of bleeding and nephrotoxicity. Concurrent use of phenyl salicylate and NSAIDs does not produce greater therapeutic effect compared to the use of NSAIDs alone.
    Beta-blockers: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Betamethasone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Betaxolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Betrixaban: (Major) Monitor patients closely and promptly evaluate any signs or symptoms of bleeding if betrixaban and nonsteroidal antiinflammatory drugs (NSAIDs) are used concomitantly. Coadministration of betrixaban and NSAIDs may increase the risk of bleeding.
    Bictegravir; Emtricitabine; Tenofovir Alafenamide: (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
    Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Minor) Since celecoxib is metabolized by cytochrome P450 2C9, concurrent administration with metronidazole, which can inhibit this enzyme, may result in increased levels of celecoxib. The clinical significance of this interaction has not been established.
    Bismuth Subsalicylate: (Major) Avoid concomitant use of celecoxib with salicylates, such as bismuth subsalicylate, due to an increased risk of gastrointestinal toxicity, with little or no increase in efficacy.
    Bismuth Subsalicylate; Metronidazole; Tetracycline: (Major) Avoid concomitant use of celecoxib with salicylates, such as bismuth subsalicylate, due to an increased risk of gastrointestinal toxicity, with little or no increase in efficacy. (Minor) Since celecoxib is metabolized by cytochrome P450 2C9, concurrent administration with metronidazole, which can inhibit this enzyme, may result in increased levels of celecoxib. The clinical significance of this interaction has not been established.
    Bisoprolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Bivalirudin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Brexpiprazole: (Moderate) Monitor patients closely for brexpiprazole-related adverse reactions and consider a dosage reduction of brexpiprazole if coadministration with celecoxib is necessary. Celecoxib may enhance the systemic exposure and toxicity of brexpiprazole. In vitro studies indicate that celecoxib is an inhibitor of CYP2D6. Brexpiprazole is a CYP2D6 substrate.
    Brimonidine; Timolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Budesonide: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Budesonide; Formoterol: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Bumetanide: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
    Bupivacaine; Meloxicam: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Busulfan: (Major) Due to the thrombocytopenic effects of busulfan, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6.
    Calcium Carbonate; Risedronate: (Minor) Monitor for gastrointestinal adverse events during concurrent use of risedronate and nonsteroidal antiinflammatory drugs. Both medications have been associated with gastrointestinal irritation although data suggest concomitant use introduces little additional risk for adverse effects for most patients.
    Calcium Phosphate, Supersaturated: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
    Calcium-channel blockers: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Candesartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Cannabidiol: (Moderate) Consider a dose reduction of celecoxib as clinically appropriate, if adverse reactions occur when administered with cannabidiol. Increased celecoxib exposure is possible. Celecoxib is a CYP2C9 substrate. In vitro data predicts inhibition of CYP2C9 by cannabidiol potentially resulting in clinically significant interactions.
    Capreomycin: (Major) Because capreomycin is primarily eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including nonsteroidal antiinflammatory drugs (NSAIDs), may increase serum concentrations of either drug. Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered.
    Captopril: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Carbetapentane; Chlorpheniramine: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Carbetapentane; Chlorpheniramine; Phenylephrine: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Carmustine, BCNU: (Major) Due to the thrombocytopenic effects of carmustine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. These additive effects may not occur for at least 6 weeks after the administration of carmustine due to the delayed myelosuppressive effects of carmustine.
    Carteolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Carvedilol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Cefotaxime: (Minor) Cefotaxime's product label states that cephalosporins may potentiate the adverse renal effects of nephrotoxic agents, such as aminoglycosides, nonsteroidal antiinflammatory drugs (NSAIDs), and loop diuretics. Carefully monitor renal function, especially during prolonged therapy or use of high aminoglycoside doses. The majority of reported cases involve the combination of aminoglycosides and cephalothin or cephaloridine, which are associated with dose-related nephrotoxicity as singular agents. Limited but conflicting data with other cephalosporins have been noted.
    Celecoxib; Tramadol: (Moderate) Monitor for reduced efficacy of tramadol, signs of opioid withdrawal, seizures, or serotonin syndrome if coadministration with celecoxib is necessary. If celecoxib is discontinued, consider a dose reduction of tramadol and frequently monitor for signs of respiratory depression and sedation. Tramadol is a CYP2D6 substrate and celecoxib is a CYP2D6 inhibitor. Concomitant use of tramadol with CYP2D6 inhibitors can increase the plasma concentration of tramadol and decrease the plasma concentration of the active metabolite M1. Since M1 is a more potent mu-opioid agonist, decreased M1 exposure could result in decreased therapeutic effects, and may result in signs and symptoms of opioid withdrawal in patients who have developed physical dependence to tramadol. Increased tramadol exposure can result in increased or prolonged therapeutic effects and increased risk for serious adverse events including seizures and serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Chlorambucil: (Major) Due to the thrombocytopenic effects of chlorambucil, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Chlordiazepoxide; Amitriptyline: (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with celecoxib is necessary; a dose reduction of amitriptyline may be necessary. Concurrent use may increase the plasma concentrations of amitriptyline. Amitriptyline is a CYP2D6 substrate and celecoxib is a CYP2D6 inhibitor.
    Chlorpheniramine: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Chlorpheniramine; Codeine: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate. (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6.
    Chlorpheniramine; Dextromethorphan: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate. (Moderate) Concomitant use of dihydrocodeine with celecoxib may increase dihydrocodeine plasma concentrations, but decrease the plasma concentration of the active metabolite, dihydromorphine, resulting in reduced efficacy or symptoms of opioid withdrawal. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of dihydrocodeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease dihydrocodeine plasma concentrations and increase dihydromorphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Dihydrocodeine is primarily metabolized by CYP2D6 to dihydromorphine, and by CYP3A4. Celecoxib is an inhibitor of CYP2D6.
    Chlorpheniramine; Hydrocodone: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate. (Moderate) Concomitant use of hydrocodone with celecoxib may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of celecoxib could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If celecoxib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Celecoxib is an inhibitor of CYP2D6.
    Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers. (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Chlorpheniramine; Phenylephrine: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Chlorpheniramine; Pseudoephedrine: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate.
    Chlorpropamide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Choline Salicylate; Magnesium Salicylate: (Major) Avoid concomitant use of celecoxib with salicylates, such as magnesium salicylate, due to an increased risk of gastrointestinal toxicity, with little or no increase in efficacy. (Major) Concurrent use of choline salicylate and celecoxib is generally not recommended due to the increased risks of bleeding and nephrotoxicity. Concurrent use of choline salicylate and NSAIDs does not produce greater therapeutic effect compared to the use of NSAIDs alone.
    Cholinesterase inhibitors: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Ciclesonide: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Cidofovir: (Contraindicated) The concomitant administration of cidofovir and nonsteroidal antiinflammatory drugs (NSAIDs) is contraindicated due to the potential for increased nephrotoxicity. NSAIDs should be discontinued 7 days prior to beginning cidofovir.
    Cilostazol: (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Cimetidine: (Minor) Since celecoxib is metabolized by cytochrome P450 2C9, concurrent administration with cimetidine, which can inhibit this enzyme, may result in increased levels of celecoxib. The clinical significance of this interaction has not been established.
    Citalopram: (Moderate) Monitor for signs and symptoms of bleeding during concomitant selective serotonin reuptake inhibitor (SSRI) and nonsteroidal antiinflammatory drug (NSAID) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding.
    Cladribine: (Major) Due to the thrombocytopenic effects of cladribine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Clofarabine: (Major) Due to the thrombocytopenic effects of clofarabine, an additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Clomipramine: (Moderate) A dosage adjustment may be warranted for clomipramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of clomipramine. Celecoxib is a CYP2D6 inhibitor, and clomipramine is a CYP2D6 substrate.
    Clopidogrel: (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Clozapine: (Moderate) A dosage adjustment may be warranted for clozapine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of clozapine. Celecoxib is a CYP2D6 inhibitor, and clozapine is a CYP2D6 substrate.
    Codeine: (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6.
    Codeine; Guaifenesin: (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6.
    Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6.
    Codeine; Phenylephrine; Promethazine: (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6.
    Codeine; Promethazine: (Moderate) Concomitant use of codeine with celecoxib may increase codeine plasma concentrations, but decrease the plasma concentration of the active metabolite, morphine, resulting in reduced efficacy or symptoms of opioid withdrawal. It is recommended to avoid this combination when codeine is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage increase of codeine until stable drug effects are achieved. Discontinuation of celecoxib could decrease codeine plasma concentrations and increase morphine plasma concentrations resulting in prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If celecoxib is discontinued, monitor the patient carefully and consider reducing the opioid dosage if appropriate. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Celecoxib is an inhibitor of CYP2D6.
    Colistimethate, Colistin, Polymyxin E: (Major) The administration of colistimethate sodium may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when used concurrently. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including nonsteroidal antiinflammatory drugs (NSAIDs), may theoretically increase serum concentrations of either drug.
    Colistin: (Major) The administration of colistimethate sodium may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when used concurrently. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including nonsteroidal antiinflammatory drugs (NSAIDs), may theoretically increase serum concentrations of either drug.
    Corticosteroids: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Cortisone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Cyclosporine: (Moderate) Serum creatinine,potassium concentrations, and cyclosporine concentrations should be closely monitored when systemic cyclosporine is given with nonsteroidal antiinflammatory drugs (NSAIDs). Renal dysfunction associated with cyclosporine may be potentiated by concurrent usage of NSAIDs. The effects of NSAIDs on the production of renal prostaglandins may cause changes in the elimination of cyclosporine. Potentiation of renal dysfunction may especially occur in a dehydrated patient. Patients should be monitored for signs and symptoms of cyclosporine toxicity and infection, as NSAIDs may mask fever, pain, or swelling.
    Cytarabine, ARA-C: (Major) The main toxic effect of cytarabine, ARA-C is bone marrow suppression with leukopenia, thrombocytopenia and anemia. Due to the thrombocytopenic effects of cytarabine, an additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Dipyridamole can block membrane transport of cytarabine in tumor cells, therefore decreasing its antineoplastic activity.
    Dabigatran: (Major) Educate patients about the signs of increased bleeding and the need to report these signs to a healthcare provider immediately if coadministration of dabigatran and a nonsteroidal antiinflammatory drug (NSAID) is necessary. Dabigatran can cause significant and, sometimes, fatal bleeding. This risk may be increased by concurrent use of chronic NSAID therapy.
    Dabrafenib: (Major) The concomitant use of dabrafenib and celecoxib may lead to decreased celecoxib concentrations and loss of efficacy. Use of an alternative agent is recommended. If concomitant use of these agents is unavoidable, monitor patients for loss of celecoxib efficacy; a celecoxib dose adjustment may be necessary. Dabrafenib is a weak CYP2C9 inducer and celecoxib is a sensitive CYP2C9 substrate. Concomitant use of dabrafenib with a single dose of another sensitive CYP2C9 substrate decreased the AUC value of the sensitive CYP2C9 substrate by 37%.
    Dacarbazine, DTIC: (Major) Leukopenia and thrombocytopenia are common toxicities of dacarbazine, DTIC. Due to the thrombocytopenic effects of dacarbazine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Dalteparin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Darifenacin: (Moderate) Monitor patients closely for darifenacin-related adverse reactions and consider a dosage reduction of darifenacin if coadministration with celecoxib is necessary. Celecoxib may enhance the systemic exposure and toxicity of darifenacin. In vitro studies indicate that celecoxib is an inhibitor of CYP2D6. Darifenacin is a CYP2D6 substrate.
    Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
    Dasatinib: (Major) Due to the thrombocytopenic and possible platelet inhibiting effects of dasatinib, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors (including aspirin), strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Caution should be exercised if patients are required to take medications that inhibit platelet function or anticoagulants concomitantly with dasatinib.
    Deferasirox: (Moderate) Because gastric ulceration and GI bleeding have been reported in patients taking deferasirox, use caution when coadministering with other drugs known to increase the risk of peptic ulcers or gastric hemorrhage including NSAIDs. In addition, coadministration of deferasirox with other potentially nephrotoxic drugs, including NSAIDs, may increase the acute renal failure. Monitor serum creatinine and/or creatinine clearance in patients who are receiving deferasirox and nephrotoxic drugs concomitantly
    Deflazacort: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Delavirdine: (Minor) Delavirdine inhibits CYP2C9 and may increase concentrations of other drugs metabolized by this enzyme, including celecoxib.
    Desipramine: (Moderate) A dosage adjustment may be warranted for desipramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of desipramine. Celecoxib is a CYP2D6 inhibitor, and desipramine is a CYP2D6 substrate.
    Desirudin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Desmopressin: (Major) Additive hyponatremic effects may be seen in patients treated with desmopressin and drugs associated with hyponatremia including NSAIDs. Use combination with caution, and monitor patients for signs and symptoms of hyponatremia. A woman who took both desmopressin and ibuprofen was found in a comatose state. As her serum sodium concentration was 121 mmol/L, and her plasma osmolality was low in the presence of a high-normal urine osmolality and normal sodium excretion, she was treated with fluid restriction. Her serum sodium concentration was 124 mmol/L within a day and was 135 mmol/L by the second day. The woman had previously received desmopressin without the development of clinical symptoms of hyponatremia
    Desvenlafaxine: (Moderate) Platelet aggregation may be impaired by desvenlafaxine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Patients should be monitored for signs and symptoms of bleeding while taking desvenlafaxine with NSAIDs.
    Dexamethasone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Diclofenac: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Diclofenac; Misoprostol: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Diflunisal: (Major) Avoid concomitant use of diflunisal with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Digoxin: (Moderate) Monitor digoxin concentrations before and during concomitant use of celecoxib and reduce the digoxin dose if necessary. Elevated digoxin concentrations and prolonged digoxin half-life have been observed when celecoxib has been coadministered with digoxin.
    Diphenhydramine; Ibuprofen: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Diphenhydramine; Naproxen: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Dipyridamole: (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Docetaxel: (Major) Due to the thrombocytopenic effects of docetaxel, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors (including aspirin), strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Dolasetron: (Moderate) Monitor patients closely for dolasetron-related adverse reactions and consider a dosage reduction of dolasetron if coadministration with celecoxib is necessary. Celecoxib may enhance the systemic exposure and toxicity of dolasetron. In vitro studies indicate that celecoxib is an inhibitor of CYP2D6. Dolasetron is a CYP2D6 substrate.
    Donepezil: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Donepezil; Memantine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Doravirine; Lamivudine; Tenofovir disoproxil fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
    Dorzolamide; Timolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Doxazosin: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Doxepin: (Moderate) Monitor for an increase in doxepin-related adverse reactions if concomitant use of celecoxib is necessary. Concomitant use may increase doxepin exposure; doxepin is primarily metabolized by CYP2C19 and CYP2D6 and celecoxib is a CYP2D6 inhibitor.
    Doxorubicin Liposomal: (Major) Avoid coadministration of celecoxib and doxorubicin due to increased systemic exposure of doxorubicin resulting in increased treatment-related adverse reactions. Celecoxib is a CYP2D6 inhibitor, and doxorubicin is a CYP2D6 substrate. Clinically significant interactions have been reported when doxorubicin was coadministered with inhibitors of CYP2D6, resulting in increased concentration and clinical effect of doxorubicin.
    Doxorubicin: (Major) Avoid coadministration of celecoxib and doxorubicin due to increased systemic exposure of doxorubicin resulting in increased treatment-related adverse reactions. Celecoxib is a CYP2D6 inhibitor, and doxorubicin is a CYP2D6 substrate. Clinically significant interactions have been reported when doxorubicin was coadministered with inhibitors of CYP2D6, resulting in increased concentration and clinical effect of doxorubicin.
    Drospirenone: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended.
    Drospirenone; Estetrol: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended.
    Drospirenone; Estradiol: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended.
    Drospirenone; Ethinyl Estradiol: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended.
    Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended.
    Duloxetine: (Moderate) Monitor for signs and symptoms of bleeding during concomitant duloxetine and nonsteroidal antiinflammatory drug (NSAID) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding.
    Edoxaban: (Major) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Edrophonium: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Efavirenz: (Minor) Efavirenz inhibits CYP2C9 and CYP2C19 in the range of observed efavirenz plasma concentrations. Efavirenz may inhibit the metabolism of the celecoxib since it is a substrate for CYP2C9.
    Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions. (Minor) Efavirenz inhibits CYP2C9 and CYP2C19 in the range of observed efavirenz plasma concentrations. Efavirenz may inhibit the metabolism of the celecoxib since it is a substrate for CYP2C9.
    Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment. (Minor) Efavirenz inhibits CYP2C9 and CYP2C19 in the range of observed efavirenz plasma concentrations. Efavirenz may inhibit the metabolism of the celecoxib since it is a substrate for CYP2C9.
    Elexacaftor; tezacaftor; ivacaftor: (Minor) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as celecoxib. In vitro studies showed ivacaftor to be a weak inhibitor of CYP2C9. Co-administration may lead to increased exposure to CYP2C9 substrates; however, the clinical impact of this has not yet been determined.
    Eliglustat: (Moderate) In extensive CYP2D6 metabolizers (EM) with mild hepatic impairment, coadministration of celecoxib and eliglustat requires dosage reduction of eliglustat to 84 mg PO once daily. Celecoxib is a weak CYP2D6 inhibitor; eliglustat is a CYP3A and CYP2D6 substrate. Coadministration with CYP2D6 inhibitors, such as celecoxib, may increase eliglustat exposure and the risk of serious adverse events (e.g., QT prolongation and cardiac arrhythmias).
    Eltrombopag: (Moderate) Eltrombopag is a UDP-glucuronyltransferase inhibitor. NSAIDs are a substrate of UDP-glucuronyltransferases. The significance or effect of this interaction is not known; however, elevated concentrations of the NSAID are possible. Monitor patients for adverse reactions if eltrombopag is administered with an NSAID.
    Elvitegravir: (Moderate) The plasma concentrations of celecoxib may be decreased when administered concurrently with elvitegravir. Patients may experience a decreased analgesic effect when these drugs are coadministered. Elvitegravir is a CYP2C9 inducer, while celecoxib is a CYP2C9 substrate.
    Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions. (Moderate) The plasma concentrations of celecoxib may be decreased when administered concurrently with elvitegravir. Patients may experience a decreased analgesic effect when these drugs are coadministered. Elvitegravir is a CYP2C9 inducer, while celecoxib is a CYP2C9 substrate.
    Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions. (Moderate) The plasma concentrations of celecoxib may be decreased when administered concurrently with elvitegravir. Patients may experience a decreased analgesic effect when these drugs are coadministered. Elvitegravir is a CYP2C9 inducer, while celecoxib is a CYP2C9 substrate.
    Emtricitabine: (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
    Emtricitabine; Rilpivirine; Tenofovir alafenamide: (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
    Emtricitabine; Rilpivirine; Tenofovir Disoproxil Fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
    Emtricitabine; Tenofovir alafenamide: (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
    Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment. (Moderate) Monitor for nonsteroidal antiinflammatory drug (NSAID) or emtricitabine-related adverse events during concomitant use. Concomitant use may increase NSAID or emtricitabine concentrations. Coadministration of drugs that reduce renal function or compete for active tubular secretion, such as NSAIDs and emtricitabine, may increase the risk of adverse reactions.
    Enalapril, Enalaprilat: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Enalapril; Felodipine: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Encainide: (Moderate) Monitor patients closely for encainide-related adverse reactions and consider a dosage reduction of encainide if coadministration with celecoxib is necessary. Celecoxib may enhance the systemic exposure and toxicity of encainide. In vitro studies indicate that celecoxib is an inhibitor of CYP2D6. Encainide is a CYP2D6 substrate.
    Enoxaparin: (Major) Whenever possible, discontinue agents which may enhance the risk of hemorrhage, including nonsteroidal antiinflammatory drugs, before initiation of enoxaparin therapy. If coadministration is essential, conduct close clinical and laboratory monitoring.
    Entecavir: (Moderate) The manufacturer of entecavir recommends monitoring for adverse effects when coadministered with NSAIDs. Entecavir is primarily eliminated by the kidneys; NSAIDs can affect renal function. Concurrent administration may increase the serum concentrations of entecavir and adverse events.
    Eplerenone: (Major) Monitor serum potassium and serum creatinine concentrations within 3 to 7 days of initiating coadministration of eplerenone and nonsteroidal antiinflammatory drugs (NSAIDs), and monitor blood pressure. The concomitant use of other potassium-sparing antihypertensives with NSAIDs has been shown to reduce the antihypertensive effect in some patients and result in severe hyperkalemia in patients with impaired renal function. Patients who develop hyperkalemia may continue eplerenone with proper dose adjustment; eplerenone dose reduction decreases potassium concentrations.
    Epoprostenol: (Moderate) NSAIDs may decrease the effect of antihypertensive agents through various mechanisms, including renal and peripheral vasoactive pathways.
    Eprosartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Eptifibatide: (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Erlotinib: (Moderate) Monitor for symptoms of gastrointestinal (GI) perforation (e.g., severe abdominal pain, fever, nausea, and vomiting) if coadministration of erlotinib with nonsteroidal antiinflammatory drugs (NSAIDs) is necessary. Permanently discontinue erlotinib in patients who develop GI perforation. The pooled incidence of GI perforation clinical trials of erlotinib ranged from 0.1% to 0.4%, including fatal cases. Patients receiving concomitant NSAIDs may be at increased risk of perforation.
    Escitalopram: (Moderate) Monitor for signs and symptoms of bleeding during concomitant selective serotonin reuptake inhibitor (SSRI) and nonsteroidal antiinflammatory drug (NSAID) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding.
    Esmolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Ethacrynic Acid: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
    Ethanol: (Major) Advise patients to avoid alcohol and alcohol-containing products while taking NSAIDs. Concomitant ingestion of alcohol with NSAIDs increases the risk of developing gastric irritation and GI mucosal bleeding. Alcohol is a mucosal irritant and NSAIDs decrease platelet aggregation. Routine ingestion of alcohol and NSAIDs can cause significant GI bleeding, which may or may not be overt. Even occasional concomitant use of NSAIDs and alcohol should be avoided. Chronic alcohol ingestion is often associated with hypoprothrombinemia and this condition increases the risk of bleeding.
    Ethiodized Oil: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Etidronate: (Minor) Monitor for gastrointestinal adverse events during concurrent use of etidronate and nonsteroidal antiinflammatory drugs. Both medications have been associated with gastrointestinal irritation although data suggest concomitant use introduces little additional risk for adverse effects for most patients.
    Etodolac: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Fenofibric Acid: (Minor) At therapeutic concentrations, fenofibric acid is a mild-to-moderate inhibitor of CYP2C9. Concomitant use of fenofibric acid with CYP2C9 substrates, such as celecoxib, has not been formally studied. Fenofibric acid may theoretically increase plasma concentrations of CYP2C9 substrates and could lead to toxicity for drugs that have a narrow therapeutic range. Monitor the therapeutic effect of celecoxib during coadministration with fenofibric acid.
    Fenoprofen: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Flavocoxid, Flavocoxid; Citrated Zinc Bisglycinate: (Major) Flavocoxid exerts similar pharmacologic characteristics to other systemic NSAIDs. Additive pharmacodynamic effects, including a potential for additive adverse cardiac and GI effects, may be seen if flavocoxid is used with NSAIDs. In general, the concurrent use of flavocoxid and NSAIDs should be avoided.
    Flecainide: (Moderate) Monitor for an increase in flecainide-related adverse reactions, including QT prolongation, if coadministration with celecoxib is necessary. Flecainide is a CYP2D6 substrate and celecoxib is a weak CYP2D6 inhibitor. Plasma concentrations of flecainide may increase, especially in extensive CYP2D6 metabolizers.
    Floxuridine: (Major) Due to the thrombocytopenic effects of floxuridine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Fluconazole: (Moderate) The dose of celecoxib may need to be reduced in patients receiving fluconazole. Fluconazole significantly inhibits the metabolism of celecoxib via CYP2C9. Fluconazole at 200 mg per day resulted in a two-fold increase in celecoxib plasma concentration after a single 200 mg dose of celecoxib.
    Fludrocortisone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Flunisolide: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Fluorouracil, 5-FU: (Major) Due to the thrombocytopenic effects of fluorouracil, 5-FU, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Fluoxetine: (Moderate) Monitor for signs and symptoms of bleeding during concomitant selective serotonin reuptake inhibitor (SSRI) and nonsteroidal antiinflammatory drug (NSAID) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding.
    Fluphenazine: (Moderate) A dosage adjustment may be warranted for fluphenazine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of fluphenazine. Celecoxib is a CYP2D6 inhibitor, and fluphenazine is a CYP2D6 substrate.
    Flurbiprofen: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Fluticasone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Fluticasone; Salmeterol: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Fluticasone; Umeclidinium; Vilanterol: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Fluticasone; Vilanterol: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Fluvoxamine: (Moderate) Monitor for signs and symptoms of bleeding during concomitant selective serotonin reuptake inhibitor (SSRI) and nonsteroidal antiinflammatory drug (NSAID) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding.
    Fondaparinux: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Formoterol; Mometasone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Foscarnet: (Minor) The risk of renal toxicity may be increased if foscarnet is used in conjuction with other nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor renal function carefully during concurrent therapy.
    Fosinopril: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Furosemide: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
    Galantamine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Ganciclovir: (Minor) Concurrent use of nephrotoxic agents, such as NSAIDs, with ganciclovir should be done cautiously to avoid additive nephrotoxicity. Monitor renal function carefully if concomitant therapy is required.
    Garlic, Allium sativum: (Minor) Garlic, Allium sativum may produce clinically-significant antiplatelet effects; until more data are available, garlic should be used cautiously in patients receiving drugs with a known potential risk for bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs).
    Gentamicin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal anti-inflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as gentamicin.
    Ginger, Zingiber officinale: (Minor) Patients receiving regular therapy with nonsteroidal antiinflammatory drugs (NSAIDs) should use ginger with caution, due to a theoretical risk of bleeding resulting from additive pharmacology related to the COX enzymes. However, clinical documentation of interactions is lacking. Several pungent constituents of ginger (Zingiber officinale) are reported to inhibit arachidonic acid (AA) induced platelet activation in human whole blood. The constituent (8)-paradol is the most potent inhibitor of COX-1 and exhibits the greatest anti-platelet activity versus other gingerol analogues. The mechanism of ginger-associated platelet inhibition may be related to decreased COX-1/Thomboxane synthase enzymatic activity.
    Ginkgo, Ginkgo biloba: (Moderate) Monitor for signs or symptoms of bleeding with coadministration of ginkgo biloba and NSAIDs as an increased bleeding risk may occur. Although data are mixed, ginkgo biloba is reported to inhibit platelet aggregation and several case reports describe bleeding complications with ginkgo biloba, with or without concomitant drug therapy.
    Glimepiride: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Glimepiride; Rosiglitazone: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Glipizide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Glipizide; Metformin: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Glyburide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Glyburide; Metformin: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Gold: (Moderate) Due to the inhibition of renal prostaglandins by NSAIDs, concurrent use with other nephrotoxic agents, such as gold compounds, may lead to additive nephrotoxicity. Monitor renal function carefully during concurrent therapy.
    Guaifenesin; Hydrocodone: (Moderate) Concomitant use of hydrocodone with celecoxib may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of celecoxib could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If celecoxib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Celecoxib is an inhibitor of CYP2D6.
    Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with celecoxib may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of celecoxib could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If celecoxib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Celecoxib is an inhibitor of CYP2D6.
    Guanabenz: (Moderate) NSAIDs may decrease the effect of antihypertensive agents through various mechanisms, including renal and peripheral vasoactive pathways.
    Guanfacine: (Moderate) NSAIDs may decrease the effect of antihypertensive agents through various mechanisms, including renal and peripheral vasoactive pathways.
    Haloperidol: (Moderate) A dosage adjustment may be warranted for haloperidol if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of haloperidol. Celecoxib is a CYP2D6 inhibitor, and haloperidol is a CYP2D6 substrate.
    Heparin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Homatropine; Hydrocodone: (Moderate) Concomitant use of hydrocodone with celecoxib may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of celecoxib could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If celecoxib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Celecoxib is an inhibitor of CYP2D6.
    Hyaluronidase, Recombinant; Immune Globulin: (Moderate) Immune Globulin (IG) products have been reported to be associated with renal dysfunction, acute renal failure, osmotic nephrosis, and death. Patients predisposed to acute renal failure include patients receiving known nephrotoxic drugs like nonsteroidal anti-inflammatory drugs (NSAIDs) and salicylates. Coadminister IG products at the minimum concentration available and the minimum rate of infusion practicable. Also, closely monitor renal function.
    Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Hydrocodone: (Moderate) Concomitant use of hydrocodone with celecoxib may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of celecoxib could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If celecoxib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Celecoxib is an inhibitor of CYP2D6.
    Hydrocodone; Ibuprofen: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers. (Moderate) Concomitant use of hydrocodone with celecoxib may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of celecoxib could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If celecoxib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Celecoxib is an inhibitor of CYP2D6.
    Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of hydrocodone with celecoxib may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of celecoxib could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If celecoxib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Celecoxib is an inhibitor of CYP2D6.
    Hydrocortisone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Major) Concurrent use of phenyl salicylate and celecoxib is generally not recommended due to the increased risks of bleeding and nephrotoxicity. Concurrent use of phenyl salicylate and NSAIDs does not produce greater therapeutic effect compared to the use of NSAIDs alone.
    Ibandronate: (Moderate) Monitor renal function and for gastrointestinal adverse events during concurrent use of intravenous or oral ibandronate, respectively, and nonsteroidal antiinflammatory drugs. Acute renal failure has been observed with intravenous ibandronate and concomitant use of other nephrotoxic agents may increase this risk. Additionally, the oral formulations of both medications have been associated with gastrointestinal irritation although data suggest concomitant use introduces little additional risk for adverse effects for most patients
    Ibritumomab Tiuxetan: (Major) During and after therapy, avoid the concomitant use of Yttrium (Y)-90 ibrutumomab tiuxetan with drugs that interfere with platelet function such as nonsteroidal antiinflammatory drugs (NSAIDs); the risk of bleeding may be increased. If coadministration with NSAIDs is necessary, monitor platelet counts more frequently for evidence of thrombocytopenia.
    Ibuprofen lysine: (Major) Because ibuprofen lysine exerts similar pharmacologic characteristics to other systemic NSAIDs, including COX-2 inhibitors, additive pharmacodynamic effects, including a potential increase for additive adverse GI effects, may be seen if ibuprofen lysine is used with other NSAIDs. In general, concurrent use of ibuprofen lysine and another NSAID should be avoided.
    Ibuprofen: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Ibuprofen; Famotidine: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Ibuprofen; Oxycodone: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Ibuprofen; Pseudoephedrine: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Iloprost: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Imipramine: (Moderate) A dosage adjustment may be warranted for imipramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of imipramine. Celecoxib is a CYP2D6 inhibitor, and imipramine is a CYP2D6 substrate.
    Immune Globulin IV, IVIG, IGIV: (Moderate) Immune Globulin (IG) products have been reported to be associated with renal dysfunction, acute renal failure, osmotic nephrosis, and death. Patients predisposed to acute renal failure include patients receiving known nephrotoxic drugs like nonsteroidal anti-inflammatory drugs (NSAIDs) and salicylates. Coadminister IG products at the minimum concentration available and the minimum rate of infusion practicable. Also, closely monitor renal function.
    Indapamide: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Indomethacin: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Inotersen: (Moderate) Use caution with concomitant use of inotersen and nonsteroidal antiinflammatory drugs (NSAIDs) due to the risk of glomerulonephritis and nephrotoxicity as well as the potential risk of bleeding from thrombocytopenia. Consider discontinuation of NSAIDs in a patient taking inotersen with a platelet count of less than 50,000 per microliter.
    Iodipamide Meglumine: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Iodixanol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Iohexol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Iomeprol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Ionic Contrast Media: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Iopamidol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Iopromide: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Ioversol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Ioxaglate Meglumine; Ioxaglate Sodium: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Irbesartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Moderate) Rifampin has been reported to induce the hepatic metabolism of celecoxib via cytochrome P450 2C9. It is possible that patients treated with celecoxib and rifampin may have a reduced response to celecoxib.
    Isoniazid, INH; Rifampin: (Moderate) Rifampin has been reported to induce the hepatic metabolism of celecoxib via cytochrome P450 2C9. It is possible that patients treated with celecoxib and rifampin may have a reduced response to celecoxib.
    Isosulfan Blue: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Ivacaftor: (Minor) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as celecoxib. In vitro studies showed ivacaftor to be a weak inhibitor of CYP2C9. Co-administration may lead to increased exposure to CYP2C9 substrates; however, the clinical impact of this has not yet been determined.
    Ivosidenib: (Moderate) Monitor for loss of efficacy of celecoxib during coadministration of ivosidenib; a celecoxib dose adjustment may be necessary. Celecoxib is a sensitive substrate of CYP2C9; ivosidenib may induce CYP2C9 leading to decreased celecoxib concentrations.
    Kanamycin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal anti-inflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as kanamycin.
    Ketoprofen: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Ketorolac: (Contraindicated) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors.
    Labetalol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Lamivudine; Tenofovir Disoproxil Fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
    Lansoprazole; Naproxen: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Leflunomide: (Moderate) In vitro studies indicate that the M1 metabolite of leflunomide inhibits cytochrome P450 2C9, the enzyme responsible for the metabolism of many NSAIDs. Leflunomide altered protein binding and thus, increased the free fraction of ibuprofen by 13% to 50%. The clinical significance of the interactions with NSAIDs is unknown. There was extensive concomitant use of NSAIDs in phase III clinical studies of leflunomide in the treatment of rheumatoid arthritis, and no clinical differential effects were observed. However, because some NSAIDs have been reported to cause hepatotoxic effects, some caution may be warranted in their use with leflunomide.
    Lepirudin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Levobetaxolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Levobunolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Levomilnacipran: (Moderate) Platelet aggregation may be impaired by SNRIs such as levomilnacipran due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Monitor for signs and symptoms of bleeding in patients taking levomilnacipran and NSAIDs.
    Lisinopril: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Lithium: (Moderate) Monitor serum lithium concentrations during concomitant nonsteroidal anti-inflammatory (NSAID) use; reduce the lithium dose based on serum lithium concentrations and clinical response. NSAIDs decrease renal blood flow, resulting in decreased renal clearance and increased serum lithium concentrations.
    Lofexidine: (Moderate) A dosage adjustment may be warranted for lofexidine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of lofexidine. Celecoxib is a CYP2D6 inhibitor, and lofexidine is a CYP2D6 substrate.
    Lomustine, CCNU: (Major) Due to the bone marrow suppressive and thrombocytopenic effects of lomustine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Losartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Lumacaftor; Ivacaftor: (Minor) Although the clinical significance of this interaction is unknown, concurrent use of celecoxib and lumacaftor; ivacaftor may alter celecoxib exposure; caution and close monitoring are advised if these drugs are used together. Celecoxib is a substrate of CYP2C9; in vitro data suggest that lumacaftor; ivacaftor may induce and/or inhibit CYP2C9. The net effect of lumacaftor; ivacaftor on CYP2C9-mediated metabolism is not clear, but CYP2C9 substrate exposure may be affected.
    Lumacaftor; Ivacaftor: (Minor) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as celecoxib. In vitro studies showed ivacaftor to be a weak inhibitor of CYP2C9. Co-administration may lead to increased exposure to CYP2C9 substrates; however, the clinical impact of this has not yet been determined.
    Macimorelin: (Major) Avoid use of macimorelin with drugs that directly affect pituitary growth hormone secretion, such as nonsteroidal antiinflammatory drugs (NSAIDs). Healthcare providers are advised to discontinue NSAID therapy and observe a sufficient washout period before administering macimorelin. Use of these medications together may impact the accuracy of the macimorelin growth hormone test.
    Magnesium Salicylate: (Major) Avoid concomitant use of celecoxib with salicylates, such as magnesium salicylate, due to an increased risk of gastrointestinal toxicity, with little or no increase in efficacy.
    Magnesium Sulfate; Potassium Sulfate; Sodium Sulfate: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
    Mannitol: (Major) Avoid use of mannitol and nonsteroidal anti-inflammatory drugs (NSAIDs), if possible. If use together is necessary, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Concomitant administration of nephrotoxic drugs, such as NSAIDs, increases the risk of renal failure after administration of mannitol. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
    Maprotiline: (Moderate) A dosage adjustment may be warranted for maprotiline if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of maprotiline. Celecoxib is a CYP2D6 inhibitor, and maprotiline is a CYP2D6 substrate.
    Mecamylamine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Mechlorethamine, Nitrogen Mustard: (Major) Mechlorethamine, nitrogen mustard is highly toxic and is associated with lymphocytopenia, granulocytopenia, and thrombocytopenia. Due to the thrombocytopenic effects of mechlorethamine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Meclizine: (Moderate) A dosage adjustment may be warranted for meclizine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of meclizine. Celecoxib is a CYP2D6 inhibitor, and meclizine is a CYP2D6 substrate.
    Meclofenamate Sodium: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Mefenamic Acid: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Meloxicam: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Mesalamine, 5-ASA: (Minor) The concurrent use of mesalamine with known nephrotoxic agents such as nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of nephrotoxicity.
    Methadone: (Moderate) Consider a reduced dose of methadone with frequent monitoring for respiratory depression and sedation if concurrent use of celecoxib is necessary. If celecoxib is discontinued, consider increasing the methadone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Methadone is a CYP2D6 substrate, and coadministration with CYP2D6 inhibitors like celecoxib can increase methadone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of methadone. If celecoxib is discontinued, methadone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to methadone.
    Methamphetamine: (Moderate) A dosage adjustment may be warranted for methamphetamine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of methamphetamine. Celecoxib is a CYP2D6 inhibitor, and methamphetamine is a CYP2D6 substrate.
    Methotrexate: (Major) Do not administer nonsteroidal anti-inflammatory drugs (NSAIDs) before or concomitantly with high doses of methotrexate, such as used in the treatment of osteosarcoma. Concomitant administration of some NSAIDs with high dose methotrexate therapy has been reported to elevate and prolong serum methotrexate concentrations, resulting in deaths from severe hematologic and gastrointestinal toxicity. Use caution when NSAIDs are administered concomitantly with lower doses of methotrexate as they have been reported to reduce the tubular secretion of methotrexate in an animal model and may enhance its toxicity. Despite potential interactions, patients with rheumatoid arthritis (RA) are often receiving concurrent treatment with NSAIDs without apparent problems. However, these doses are lower than those used in psoriasis or malignancy; higher methotrexate doses may lead to unexpected toxicity in combination with NSAIDs. NSAIDs may be continued in patients with RA receiving treatment with methotrexate, although the possibility of increased toxicity has not been fully explored.
    Methyldopa: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Methylprednisolone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Methylsulfonylmethane, MSM: (Moderate) Patients taking methylsulfonylmethane, MSM have reported increased bruising or blood in the stool. These effects have not been confirmed in published medical literature or during clinical studies. Use methylsulfonylmethane, MSM with caution in patients who are taking drugs with the potential for additive bleeding, including nonsteroidal antiinflammatory drugs (NSAIDs). During an available, published clinical trials in patients with osteoarthritis, patients with bleeding disorders or using anticoagulants or platelet inhibiting drugs were excluded from enrollment. Patients who choose to consume methylsulfonylmethane, MSM while receiving NSAIDs should be observed for potential bleeding.
    Metoclopramide: (Moderate) A dosage adjustment may be warranted for metoclopramide if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of metoclopramide. Celecoxib is a CYP2D6 inhibitor, and metoclopramide is a CYP2D6 substrate.
    Metoprolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Metronidazole: (Minor) Since celecoxib is metabolized by cytochrome P450 2C9, concurrent administration with metronidazole, which can inhibit this enzyme, may result in increased levels of celecoxib. The clinical significance of this interaction has not been established.
    Mexiletine: (Moderate) A dosage adjustment may be warranted for mexiletine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of mexiletine. Celecoxib is a CYP2D6 inhibitor, and mexiletine is a CYP2D6 substrate.
    Mifepristone: (Moderate) Mifepristone significantly increased exposure of drugs metabolized by CYP2C8/2C9 in interaction studies. Therefore, when mifepristone is used chronically, as in the treatment of Cushing's syndrome, use caution with coadministered CYP2C8/2C9 substrates, including the NSAIDs. Use the lowest doses of the substrate and patients should be monitored closely for adverse reactions.
    Milnacipran: (Moderate) Platelet aggregation may be impaired by milnacipran due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Monitor for signs and symptoms of bleeding in patients taking milnacipran and NSAIDs.
    Mitoxantrone: (Major) Due to the thrombocytopenic effects of mitoxantrone, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Moexipril: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Mometasone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Nabumetone: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Nadolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Naproxen: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Naproxen; Esomeprazole: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Naproxen; Pseudoephedrine: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Nebivolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Nebivolol; Valsartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible. (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Nelarabine: (Major) Due to the thrombocytopenic effects of nelarabine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Neomycin: (Minor) It is possible that additive nephrotoxicity may occur in patients who receive NSAIDs concurrently with other nephrotoxic agents, such as aminoglycosides.
    Neostigmine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Nitisinone: (Major) A dosage adjustment of celecoxib may be necessary when administered with nitisinone as concurrent use may result in increased celecoxib exposure. Celecoxib is a sensitive CYP2C9 substrate; nitisinone is a moderate CYP2C9 inhibitor. Concurrent use of celecoxib with another moderate CYP2C9 inhibitor increased celecoxib exposure by 2-fold. FDA-approved labeling for nitisinone recommends reducing the dose of sensitive CYP2C9 substrates by 50% with subsequent dosage adjustments to maintain therapeutic drug concentrations.
    Non-Ionic Contrast Media: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
    Nortriptyline: (Moderate) A dosage adjustment may be warranted for nortriptyline if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of nortriptyline. Celecoxib is a CYP2D6 inhibitor, and nortriptyline is a sensitive CYP2D6 substrate.
    Olanzapine; Fluoxetine: (Moderate) Monitor for signs and symptoms of bleeding during concomitant selective serotonin reuptake inhibitor (SSRI) and nonsteroidal antiinflammatory drug (NSAID) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding.
    Olmesartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Olopatadine; Mometasone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Olsalazine: (Moderate) Monitor patients for signs of worsening renal function during coadministration of olsalazine and celecoxib. Coadministration may increase the risk for drug-induced nephrotoxicity. Olsalazine is converted to mesalamine in the gastrointestinal tract; nephrotoxicity has been observed during mesalamine treatment.
    Omacetaxine: (Major) Avoid the concomitant use of omacetaxine and nonsteroidal antiinflammatory drugs (NSAIDs) when the platelet count is less than 50,000 cells/microliter due to an increased risk of bleeding.
    Oritavancin: (Moderate) Celecoxib is metabolized by CYP2C9; oritavancin is a weak CYP2C9 inhibitor. Coadministration may result in elevated celecoxib plasma concentrations. If these drugs are administered concurrently, monitor patients for signs of celecoxib toxicity, such as dizziness, stomach upset, or nausea.
    Oxaprozin: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Paclitaxel: (Major) Due to the thrombocytopenic effects of paclitaxel, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Pamidronate: (Moderate) Monitor renal function during concomitant pamidronate and nonsteroidal antiinflammatory drug use due to risk for additive nephrotoxicity.
    Paroxetine: (Moderate) Monitor for signs and symptoms of bleeding during concomitant selective serotonin reuptake inhibitor (SSRI) and nonsteroidal antiinflammatory drug (NSAID) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding.
    Penbutolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Pentamidine: (Major) Avoid concurrent or sequential use of pentamidine with celecoxib. Coadministration may increase the risk for drug-induced nephrotoxicity. Closely monitor renal function if coadministration is unavoidable. Celecoxib may enhance the exposure and toxicity of pentamidine. Celecoxib is a CYP2D6 inhibitor, and pentamidine is a CYP2D6 substrate.
    Pentosan: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Pentostatin: (Major) Due to the thrombocytopenic effects of pentostatin, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Perindopril: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Perindopril; Amlodipine: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Perphenazine: (Moderate) A dosage adjustment may be warranted for perphenazine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of perphenazine. Celecoxib is a CYP2D6 inhibitor, and perphenazine is a CYP2D6 substrate.
    Perphenazine; Amitriptyline: (Moderate) A dosage adjustment may be warranted for perphenazine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of perphenazine. Celecoxib is a CYP2D6 inhibitor, and perphenazine is a CYP2D6 substrate. (Moderate) Monitor for an increase in amitriptyline-related adverse reactions if coadministration with celecoxib is necessary; a dose reduction of amitriptyline may be necessary. Concurrent use may increase the plasma concentrations of amitriptyline. Amitriptyline is a CYP2D6 substrate and celecoxib is a CYP2D6 inhibitor.
    Phenoxybenzamine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Phentolamine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Photosensitizing agents (topical): (Moderate) Agents that inhibit prostaglandin synthesis such as nonsteroidal antiinflammatory drugs (NSAIDs), could decrease the efficacy of photosensitizing agents used in photodynamic therapy. Avoidance of NSAIDs before and during photodynamic therapy may be advisable.
    Physostigmine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Pimozide: (Moderate) A dosage adjustment may be warranted for pimozide if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of pimozide. Celecoxib is a CYP2D6 inhibitor, and pimozide is a CYP2D6 substrate.
    Pindolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Pioglitazone; Glimepiride: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Piroxicam: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Platelet Inhibitors: (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Pneumococcal Vaccine, Polyvalent: (Moderate) Concomitant administration of antipyretics, such as nonsteroidal antiinflammatory drugs (NSAIDS), may decrease an individual's immunological response to the pneumococcal vaccine. A post-marketing study conducted in Poland using a non-US vaccination schedule (2, 3, 4, and 12 months of age) evaluated the impact of prophylactic oral acetaminophen on antibody responses to Prevnar 13. Data show that acetaminophen, given at the time of vaccination and then dosed at 6 to 8 hour intervals for 3 doses on a scheduled basis, reduced the antibody response to some serotypes after the third dose of Prevnar 13 when compared to the antibody responses of infants who only received antipyretics 'as needed' for treatment. However, reduced antibody responses were not observed after the fourth dose of Prevnar 13 with prophylactic acetaminophen.
    Polyethylene Glycol; Electrolytes: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
    Polyethylene Glycol; Electrolytes; Ascorbic Acid: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
    Polymyxin B: (Major) The chronic coadministration of systemic polymyxins may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when used concurrently. Monitor patients for changes in renal function if these drugs are coadministered. Since Polymyxin B is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including nonsteroidal antiinflammatory drugs (NSAIDs), may theoretically increase serum concentrations of either drug.
    Potassium: (Moderate) Monitor serum potassium concentrations closely if potassium supplements and nonsteroidal anti-inflammatory drugs (NSAIDs) are used together. Concomitant use may increase the risk of hyperkalemia.
    Pralatrexate: (Major) Renal elimination accounts for approximately 34% of the overall clearance of pralatrexate. Concomitant administration of drugs that undergo substantial renal clearance, such as nonsteroidal antiinflammatory drugs (NSAIDs), may result in delayed clearance of pralatrexate.
    Prasugrel: (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Prazosin: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Prednisolone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Prednisone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Probenecid: (Major) Probenecid can decrease the renal clearance of nonsteroidal antiinflammatory agents (NSAIDs). Reduction of the NSAID dose may be necessary when it is used together with probenecid.
    Probenecid; Colchicine: (Major) Probenecid can decrease the renal clearance of nonsteroidal antiinflammatory agents (NSAIDs). Reduction of the NSAID dose may be necessary when it is used together with probenecid.
    Procarbazine: (Major) Due to the thrombocytopenic effects of procarbazine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Propafenone: (Moderate) Monitor for increased propafenone toxicity if coadministered with celecoxib; concurrent use may increase propafenone exposure and therefore increase the risk of proarrhythmias. Avoid simultaneous use of propafenone and celecoxib with a CYP3A4 inhibitor. Propafenone is a CYP3A4 and CYP2D6 substrate and celecoxib is a weak CYP2D6 inhibitor.
    Propranolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Protriptyline: (Moderate) A dosage adjustment may be warranted for protriptyline if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of protriptyline. Celecoxib is a CYP2D6 inhibitor, and protriptyline is a CYP2D6 substrate.
    Pyridostigmine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Quinapril: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Quinolones: (Moderate) Use quinolones and nonsteroidal anti-inflammatory drugs (NSAIDs) concomitantly with caution due to potential increased risk of CNS stimulation and convulsive seizures. NSAIDs in combination with very high doses of quinolones have been shown to provoke convulsions in preclinical studies and postmarketing.
    Ramipril: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Reserpine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Reteplase, r-PA: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
    Rifampin: (Moderate) Rifampin has been reported to induce the hepatic metabolism of celecoxib via cytochrome P450 2C9. It is possible that patients treated with celecoxib and rifampin may have a reduced response to celecoxib.
    Risedronate: (Minor) Monitor for gastrointestinal adverse events during concurrent use of risedronate and nonsteroidal antiinflammatory drugs. Both medications have been associated with gastrointestinal irritation although data suggest concomitant use introduces little additional risk for adverse effects for most patients.
    Rivaroxaban: (Major) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
    Rivastigmine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Rucaparib: (Moderate) Monitor for an increase in celecoxib-related adverse reactions if coadministration with rucaparib is necessary. Celecoxib is a CYP2C9 substrate and rucaparib is a weak CYP2C9 inhibitor.
    Sacubitril; Valsartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Salsalate: (Major) Concurrent use of salsalate and celecoxib is generally not recommended due to the increased risks of bleeding and nephrotoxicity. Concurrent use of salsalate and NSAIDs does not produce greater therapeutic effect compared to the use of NSAIDs alone.
    Selective serotonin reuptake inhibitors: (Moderate) Monitor for signs and symptoms of bleeding during concomitant selective serotonin reuptake inhibitor (SSRI) and nonsteroidal antiinflammatory drug (NSAID) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding.
    Sertraline: (Moderate) Monitor for signs and symptoms of bleeding during concomitant selective serotonin reuptake inhibitor (SSRI) and nonsteroidal antiinflammatory drug (NSAID) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding.
    Sodium Phosphate Monobasic Monohydrate; Sodium Phosphate Dibasic Anhydrous: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
    Sodium picosulfate; Magnesium oxide; Anhydrous citric acid: (Moderate) Use caution when prescribing sodium picosulfate; magnesium oxide; anhydrous citric acid in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
    Sotalol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Spironolactone: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
    Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant spironolactone and nonsteroidal antiinflammatory drug (NSAID) use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
    Streptomycin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal anti-inflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as streptomycin.
    Sulfasalazine: (Moderate) Monitor patients for signs of worsening renal function during coadministration of sulfasalazine and celecoxib. Coadministration may increase the risk for drug-induced nephrotoxicity.
    Sulfinpyrazone: (Moderate) Sulfinpyrazone is an inhibitor of CYP2C9 and may lead to increased plasma levels of NSAIDs. During concurrent therapy, monitor for potential NSAID-induced toxicity, such as GI irritation or bleeding.
    Sulfonylureas: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Sulindac: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Sumatriptan; Naproxen: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Tacrine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
    Tacrolimus: (Moderate) Monitor patients for signs of worsening renal function during coadministration of tacrolimus and nonsteroidal antiinflammatory drugs. Coadministration may increase the risk for drug-induced nephrotoxicity.
    Telavancin: (Minor) Concurrent or sequential use of telavancin with drugs that inhibit renal prostaglandins such as nonsteroidal antiinflammatory drugs (NSAIDS) may lead to additive nephrotoxicity. Closely monitor renal function and adjust telavancin doses based on calculated creatinine clearance.
    Telbivudine: (Moderate) Drugs that alter renal function such as NSAIDs may alter telbivudine plasma concentrations because telbivudine is eliminated primarily by renal excretion. Monitor renal function before and during telbivudine treatment.
    Telmisartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Telmisartan; Amlodipine: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Temozolomide: (Major) Myelosuppression, primarily neutropenia and thrombocytopenia, is the dose-limiting toxicity of temozolomide. Due to the thrombocytopenic effects of temozolomide, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Tenecteplase: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
    Teniposide: (Major) Dose-limiting bone marrow suppression is the most significant toxicity associated with teniposide, and may include thrombocytopenia. An additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Salicylates also displace protein-bound teniposide in fresh human serum to a small but significant extent. Because of the extremely high binding of teniposide to plasma proteins, these small decreases in binding could cause substantial increases in plasma free drug concentrations that could result in potentiation of teniposide toxicity, including bone marrow suppression.
    Tenofovir Alafenamide: (Moderate) Monitor for changes in renal function if tenofovir alafenamide is administered in combination with nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Tenofovir is primarily excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. Coadministration of tenofovir alafenamide with a drug that reduces renal function or competes for active tubular secretion may increase concentrations of tenofovir and other renally eliminated drugs, thus, increasing the risk of adverse reactions.
    Tenofovir Disoproxil Fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
    Terazosin: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
    Tezacaftor; Ivacaftor: (Minor) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as celecoxib. In vitro studies showed ivacaftor to be a weak inhibitor of CYP2C9. Co-administration may lead to increased exposure to CYP2C9 substrates; however, the clinical impact of this has not yet been determined.
    Thiazide diuretics: (Moderate) Monitor blood pressure as well as for signs of worsening renal function and loss of diuretic efficacy, including antihypertensive effects, during concomitant nonsteroidal antiinflammatory drug (NSAID) and thiazide diuretic use. NSAIDs may cause a dose-dependent reduction in renal blood flow, which may precipitate overt renal decompensation, and concomitant diuretic use increases the risk of this reaction. NSAIDs have been shown to reduce the natriuretic effect of thiazide diuretics and are associated with fluid retention which may blunt the cardiovascular effects of diuretics.
    Thioguanine, 6-TG: (Major) Due to the thrombocytopenic effects of thioguanine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Thioridazine: (Contraindicated) Coadministration of celecoxib and thioridazine is contraindicated due to the potential for celecoxib to enhance the exposure and toxicity of thioridazine. Elevated thioridazine concentrations would be expected to augment the prolongation of the QTc interval associated with thioridazine and may increase the risk of serious cardiac arrhythmias, such as torsade de pointes. Celecoxib is a CYP2D6 inhibitor, and thioridazine is a CYP2D6 substrate.
    Thrombolytic Agents: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
    Ticagrelor: (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Ticlopidine: (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Timolol: (Moderate) Monitor blood pressure during concomitant beta-blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of beta-blockers may be diminished by NSAIDs.
    Tirofiban: (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Tobacco: (Major) Advise patients to avoid smoking tobacco while taking nonsteroidal anti-inflammatory drugs (NSAIDs). Concomitant use of NSAIDs with tobacco smoking may enhance the risk of gastrointestinal side effects, including peptic ulcer and GI bleeding. Patients using tobacco and NSAIDs concurrently should be monitored closely for GI adverse reactions.
    Tobramycin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal anti-inflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as tobramycin.
    Tolazamide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Tolbutamide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
    Tolmetin: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
    Tolterodine: (Moderate) Monitor patients closely for tolterodine-related adverse reactions and consider a dosage reduction of tolterodine if coadministration with celecoxib is necessary. Celecoxib may enhance the systemic exposure and toxicity of tolterodine. In vitro studies indicate that celecoxib is an inhibitor of CYP2D6. Tolterodine is a CYP2D6 substrate.
    Torsemide: (Moderate) If celecoxib (an NSAID) and torsemide (a diuretic) are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy; side effects from celecoxib may also increase. The concomitant use of celecoxib, a sensitive substrate of CYP2C9, and torsemide, a CYP2C9 inhibitor, may result in increased plasma concentrations of celecoxib. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
    Tositumomab: (Major) The tositumomab therapeutic regimen frequently causes severe and prolonged thrombocytopenia. The potential benefits of medications that interfere with platelet function and/or anticoagulation should be weighed against the potential increased risk of bleeding and hemorrhage. An additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
    Tramadol: (Moderate) Monitor for reduced efficacy of tramadol, signs of opioid withdrawal, seizures, or serotonin syndrome if coadministration with celecoxib is necessary. If celecoxib is discontinued, consider a dose reduction of tramadol and frequently monitor for signs of respiratory depression and sedation. Tramadol is a CYP2D6 substrate and celecoxib is a CYP2D6 inhibitor. Concomitant use of tramadol with CYP2D6 inhibitors can increase the plasma concentration of tramadol and decrease the plasma concentration of the active metabolite M1. Since M1 is a more potent mu-opioid agonist, decreased M1 exposure could result in decreased therapeutic effects, and may result in signs and symptoms of opioid withdrawal in patients who have developed physical dependence to tramadol. Increased tramadol exposure can result in increased or prolonged therapeutic effects and increased risk for serious adverse events including seizures and serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Tramadol; Acetaminophen: (Moderate) Monitor for reduced efficacy of tramadol, signs of opioid withdrawal, seizures, or serotonin syndrome if coadministration with celecoxib is necessary. If celecoxib is discontinued, consider a dose reduction of tramadol and frequently monitor for signs of respiratory depression and sedation. Tramadol is a CYP2D6 substrate and celecoxib is a CYP2D6 inhibitor. Concomitant use of tramadol with CYP2D6 inhibitors can increase the plasma concentration of tramadol and decrease the plasma concentration of the active metabolite M1. Since M1 is a more potent mu-opioid agonist, decreased M1 exposure could result in decreased therapeutic effects, and may result in signs and symptoms of opioid withdrawal in patients who have developed physical dependence to tramadol. Increased tramadol exposure can result in increased or prolonged therapeutic effects and increased risk for serious adverse events including seizures and serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Trandolapril: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Trandolapril; Verapamil: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin-converting enzyme (ACE) inhibitor and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of ACE inhibitors may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of ACE inhibitors and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Trazodone: (Moderate) Platelet aggregation may be impaired by trazodone due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Patients should be instructed to monitor for signs and symptoms of bleeding while taking trazodone concurrently with medications that impair platelet function and to promptly report any bleeding events to the practitioner.
    Treprostinil: (Moderate) NSAIDs may decrease the effect of antihypertensive agents through various mechanisms, including renal and peripheral vasoactive pathways.
    Triamcinolone: (Moderate) Monitor for gastrointestinal toxicity during concurrent corticosteroid and nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of GI bleeding. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
    Triamterene: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs), including COX-2 inhibitors, may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If celecoxib and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs), including COX-2 inhibitors, may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If celecoxib and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Trimipramine: (Moderate) A dosage adjustment may be warranted for trimipramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of trimipramine. Celecoxib is a CYP2D6 inhibitor, and trimipramine is a CYP2D6 substrate.
    Urea: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Valacyclovir: (Moderate) Monitor patients for signs of worsening renal function during coadministration of valacyclovir and nonsteroidal antiinflammatory drugs. Coadministration may increase the risk for drug-induced nephrotoxicity.
    Valganciclovir: (Minor) Concurrent use of nephrotoxic agents, such as NSAIDs, with valganciclovir should be done cautiously to avoid additive nephrotoxicity.
    Valsartan: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor blood pressure and renal function periodically during concomitant angiotensin II blocker and nonsteroidal anti-inflammatory drug (NSAID) use. The antihypertensive effect of angiotensin II blockers may be diminished by NSAIDs. In persons who are elderly, volume-depleted, or with compromised renal function, coadministration of angiotensin II blockers and NSAIDs may result in deterioration of renal function, including possible acute renal failure; these effects are usually reversible.
    Vancomycin: (Minor) It is possible that additive nephrotoxicity may occur in patients who receive NSAIDs concurrently with other nephrotoxic agents, including vancomycin.
    Venlafaxine: (Moderate) Platelet aggregation may be impaired by venlafaxine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Monitor patients for signs and symptoms of bleeding when coadministering venlafaxine with NSAIDs.
    Verteporfin: (Moderate) Use caution if coadministration of verteporfin with nonsteroidal anti-inflammatory drugs is necessary due to the risk of decreased verteporfin efficacy. Oxaprozin may additionally worsen photosensitivity. Verteporfin is a light-activated drug. Once activated, local damage to neovascular endothelium results in a release of procoagulant and vasoactive factors resulting in platelet aggregation, fibrin clot formation, and vasoconstriction. Concomitant use of drugs that decrease platelet aggregation like nonsteroidal anti-inflammatory drugs could decrease the efficacy of verteporfin therapy.
    Vilazodone: (Moderate) Platelet aggregation may be impaired by vilazodone due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Patients should be instructed to monitor for signs and symptoms of bleeding while taking vilazodone concurrently with NSAIDs and to promptly report any bleeding events to the practitioner.
    Voclosporin: (Moderate) Concomitant use of voclosporin and nonsteroidal anti-inflammatory drugs (NSAIDs) may result in additive nephrotoxicity. Monitor for renal toxicity if concomitant use is required.
    Vorapaxar: (Moderate) Monitor for signs and symptoms of bleeding during concomitant platelet inhibitor and chronic nonsteroidal antiinflammatory drug (NSAID) use. Concomitant use increases the risk of bleeding.
    Voriconazole: (Major) Isoenzyme CYP2C9 is responsible for the metabolism of many nonsteroidal antiinflammatory drugs. Voriconazole is known to be an inhibitor of CYP2C9 and may lead to increased plasma levels of some NSAIDs, such as celecoxib. The clinican should consider introducing the NSAID at the lowest recommended dose in patients receiving voriconazole. Monitor for NSAID-related side effects, such as GI irritation, fluid retention or increased blood pressure, GI bleeding, or renal dysfunction and adjust the dose of the NSAID if needed.
    Vortioxetine: (Moderate) Platelet aggregation may be impaired by vortioxetine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Bleeding events related to drugs that inhibit serotonin reuptake have ranged from ecchymosis to life-threatening hemorrhages. Patients should be instructed to monitor for signs and symptoms of bleeding while taking vortioxetine concurrently with medications which impair platelet function and to promptly report any bleeding events to the practitioner.
    Warfarin: (Moderate) Monitor patients for signs or symptoms of bleeding during concurrent use of warfarin and nonsteroidal antiinflammatory drugs (NSAIDs).To minimize the potential for GI bleeding, use the lowest effective NSAID dose for the shortest possible duration. If signs or symptoms of bleeding occur, promptly evaluate and treat. Systemic hematological effects may also occur with the use of topical NSAIDs. NSAIDs inhibit platelet aggregation and may prolong bleeding time in some patients.
    Zafirlukast: (Minor) Celecoxib is a substrate of the cytochrome P450 2C9 isoenzyme. Coadministration of celecoxib with drugs that are known to inhibit CYP2C9 such as zafirlukast should be done with caution.
    Zoledronic Acid: (Moderate) Monitor renal function during concomitant zoledronic acid and nonsteroidal antiinflammatory drug use due to risk for additive nephrotoxicity.

    PREGNANCY AND LACTATION

    Pregnancy

    Avoid celecoxib use during the third trimester of pregnancy (starting at 30 weeks of gestation) due to the risk of premature closure of the fetal ductus arteriosus and persistent pulmonary hypertension in the neonate.[56268]  If NSAID treatment is deemed necessary between 20 to 30 weeks of pregnancy, limit use to the lowest effective dose and shortest duration possible. Consider ultrasound monitoring of amniotic fluid if NSAID treatment extends beyond 48 hours. Discontinue the NSAID if oligohydramnios occurs and follow up according to clinical practice. Use of NSAIDs around 20 weeks gestation or later in pregnancy may cause fetal renal dysfunction leading to oligohydramnios, and in some cases, neonatal renal impairment. These adverse outcomes are seen, on average, after days to weeks of treatment, although oligohydramnios has been infrequently reported as soon as 48 hours after NSAID initiation. Oligohydramnios is often, but not always, reversible with treatment discontinuation. Complications of prolonged oligohydramnios may include limb contractures and delayed lung maturation. In some postmarketing cases of impaired neonatal renal function, invasive procedures such as exchange transfusion or dialysis were required. Observational data regarding embryofetal risks of NSAID use during the first trimester is inconclusive. There are no adequate and well-controlled studies of celecoxib in pregnant women.[56268] 

    Limited data from 3 published reports that included a total of 12 breast-feeding women showed low concentrations of celecoxib in breast milk. The calculated average daily infant dose was 10 to 40 mcg/kg/day, less than 1% of the weight-based therapeutic dose for a 2-year-old child. A report of 2 breast-fed infants who were 17 and 22 months did not show any adverse events. There is no information available regarding the effects of celecoxib on milk production. Consider the developmental and health benefits of breast-feeding along with the mother's clinical need for celecoxib and any potential adverse effects on the breast-fed infant from celecoxib or the underlying maternal condition.[56268] [65375] Alternative analgesic and anti-inflammatory drugs considered to be usually compatible with breast-feeding by previous American Academy of Pediatrics (AAP) recommendations include acetaminophen, ibuprofen, indomethacin, naproxen, and piroxicam.[27500]

    MECHANISM OF ACTION

    Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the enzyme cyclooxygenase (COX). There are 2 isoenzymes of COX, COX-1 and COX-2. With its polar sulfonamide side chain, celecoxib binds tightly to a distinct hydrophilic side pocket region of COX-2, which is close in proximity to the active binding site. The COX-2 specificity is due to this ability of celecoxib to occupy space within the active binding site that is not present on the COX-1 isoform. The isoenzymes COX-1 and COX-2 catalyze the conversion of arachidonic acid to prostaglandin G2 (PGG2), the first step in the synthesis prostaglandins and thromboxanes that are involved in rapid physiological responses. COX isoenzymes are also responsible for a peroxidase reaction, which is not affected by NSAIDs. In addition, NSAIDs do not suppress leukotriene synthesis by lipoxygenase pathways. The isoenzyme COX-1 produces thromboxane A2 whereas the isoenzyme COX-2 produces prostaglandin I2 (PGI2). Selective inhibition of the COX-2 enzyme results in analgesic, antipyretic, and anti-inflammatory pharmacologic effects. Due to its selective COX-2 inhibitory activity, celecoxib does not inhibit platelet aggregation as seen with aspirin or other non-selective NSAIDs (see Cardiovascular Effects). COX-1 is constitutively expressed in almost all tissues, while COX-2 appears to only be constitutively expressed in the brain, kidney, bones, reproductive organs, and some neoplasms (e.g., colon and prostate cancers). COX-1 is responsible for prostaglandin synthesis in response to stimulation by circulating hormones, as well as maintenance of normal renal function, gastric mucosal integrity, and hemostasis. However, COX-2 is inducible in many cells in response to certain mediators of inflammation (e.g., interleukin-1, tumor necrosis factor, lipopolysaccharide, mitogens, and reactive oxygen intermediates).
    •Anti-inflammatory Activity: The anti-inflammatory mechanism of celecoxib is due to decreased prostaglandin synthesis via inhibition of COX-2. Although anti-inflammatory effects may be primarily due to inhibition of the COX-2 isoenzyme, COX-1 is expressed at some sites of inflammation. COX-1 is expressed in the joints of rheumatoid arthritis or osteoarthritis patients, especially the synovial lining, and it is the primary enzyme of prostaglandin synthesis in human bursitis. Celecoxib is considered to be a selective COX-2 inhibitor. The in vitro selectivity of COX-2 inhibition (COX-1:COX-2 IC50) as determined by whole blood assay for celecoxib is 6.5—7.5 as compared to diclofenac 3.0, etodolac 2.4, and meloxicam 2.0 (NOTE: A higher number indicates greater COX-2 selectivity).
    •Analgesic Activity: Celecoxib is effective in cases where inflammation has caused sensitivity of pain receptors (hyperalgesia). It appears prostaglandins, specifically prostaglandins E and F, are responsible for sensitizing the pain receptors; therefore, celecoxib has an indirect analgesic effect by inhibiting the production of further prostaglandins and does not directly affect hyperalgesia or the pain threshold.
    •Chemoprevention Activity: Many neoplasms overexpress COX-2 messenger RNA and COX-2 protein suggesting a contributory role for COX-2 in carcinogenesis. Mechanisms of COX-2 in tumorigenesis include conversion of procarcinogens to active carcinogens, stimulation of cancer cell proliferation, inhibition of apoptosis, increased invasiveness, and enhancement of angiogenesis. Expression of COX-2 by colorectal cancers has been associated with a poor prognosis, decreased survival, and advanced Dukes tumor stage. Celecoxib has been shown to reduce the number of adenomatous colorectal polyps in patients with familial adenomatous polyposis (FAP). Celecoxib is also being studied in combination with chemotherapy in the treatment of colorectal cancer. Preliminary results suggest that celecoxib may increase the response rate seen with standard chemotherapy.
    •Gastrointestinal Effects: Although COX-2 selective inhibitors were developed in hopes of avoiding the GI toxicity associated with non-selective NSAIDs, GI adverse reactions do occur with these agents, albeit at lower rate. The role of COX-2 in tissue repair processes, in H. pylori infections and other ulcers where its expression is increased, in tolerance of dietary antigens, and in colitis has yet to be determined.
    •Renal Effects: In the kidney, prostaglandins produced by both COX-1 and COX-2, are important regulators of sodium and water reabsorption through PGE2 and of renal function and hemodynamics via PGI2 in response to vasoconstrictive factors (e.g., endothelin-1, a factor that increases peripheral vascular resistance) and through effects on the renin-angiotensin system. Activity of COX-2 in the renal cortex appears to be inhibited by angiotensin II and stimulated by intravascular volume depletion and low sodium intake. The COX-2 isoenzyme is constitutively expressed in the kidney. In response to decreased intravascular volume, COX-2 activation leads to prostaglandin production. Maintenance of an adequate intravascular volume is achieved by prostaglandin synthesis and subsequent renin release through angiotensin II and aldosterone generation. If prostaglandin production is inhibited by a NSAID regardless of COX 2 selectivity, renal blood flow is reduced. Consequently, antidiuretic hormone (ADH) production and sodium reabsorption are increased, which leads to a reduction in glomerular filtration rate, reduced urinary sodium excretion, and the potential for increased blood pressure. Glomerular filtration rate reduction of elderly or salt-depleted patients after administration of a COX 2 inhibitor has been demonstrated in several trials. In conditions where renal blood flow is dependent upon prostaglandin synthesis, administration of NSAIDs can result in significant decreases in renal blood flow leading to acute renal failure.
    •Cardiovascular Effects: Selective inhibition of COX-2 will inhibit the production of PGI2 but not of thromboxane A2, which is produced by COX-1. Thromboxane A2 causes platelet aggregation, vasoconstriction, and vascular proliferation whereas PGI2 inhibits platelet aggregation, vascular smooth muscle contraction and proliferation, leukocyte endothelial cell interactions, and cholesteryl ester hydrolysis. As PGI2 inhibits platelet aggregation, prevention of its production in the presence of an inducer of platelet aggregation (thromboxane A2) may create an imbalance favoring a pro-thrombotic state (see Adverse Effects). Also, inhibition of PGI2 could lead to sodium and water retention, which may increase blood pressure, or worsen heart failure or other cardiovascular morbidity (see Renal Effects). The presence of the thromboxane metabolite, 2,3-dinor thromboxane B2, in urine reflects platelet activation, and platelet activation facilitates atherogenesis. The amount of thromboxane metabolite excretion was higher in male as compared with female mice deficient in LDL receptors. Interestingly, excretion of the thromboxane metabolite by female mice deficient in both LDL and PGI2 receptors exceeded the amount excreted by male mice deficient in both receptors. Thus, in female mice, PGI2 decreases platelet activation. Furthermore, PGI2 appears to reduce oxidative stress only in female mice by serving as an antioxidant. In female mice deficient in both LDL and PGI2 receptors, lipid peroxidation was increased as compared with female mice deficient only in LDL receptors. Male mice deficient in both receptors did not have further lipid peroxidation as compared with male mice deficient only in LDL receptors. In vitro, estrogen has been shown to increase the expression of COX-2 in vascular tissues and to augment PGI2 production. Despite the differences between men and women in regard to age-dependent increases in cardiovascular disease, the mechanisms of atheroprotection in women before the menopause are largely unknown. In mice, estrogen, by acting on estrogen receptor subtype alpha, upregulates prostacyclin (PGI2) production by COX-2 activation.

    PHARMACOKINETICS

    Celecoxib is administered orally. Celecoxib is widely distributed and highly bound to plasma proteins (approximately 97%), primarily to albumin, and to a lesser extent, alpha-1-acid glycoprotein. Celecoxib is not preferentially bound to red blood cells. The celecoxib apparent volume of distribution at steady-state is approximately 400 L and 288 L for the capsules and oral solution, respectively. Celecoxib metabolism is primarily mediated via CYP2C9. Three inactive metabolites, a primary alcohol, the corresponding carboxylic acid, and its glucuronide conjugate, have been identified in human plasma. Celecoxib is eliminated predominantly by hepatic metabolism with less than 3% of unchanged drug recovered in the urine and feces. About 57% of the total dose was excreted in the feces and 27% recovered in the urine; the carboxylic acid metabolite is the primary metabolite in both urine and feces. The apparent plasma clearance is about 500 mL/minute. The mean effective half-life is 11.2 hours under fasted conditions. The low solubility of the drug prolongs the absorption process, making terminal half-life determinations variable.
     
    Affected cytochrome P450 isoenzymes and drug transporters: CYP2C9
    Celecoxib is a CYP2C9 substrate and inhibitor (in vivo). Patients who are known or suspected to be poor CYP2C9 metabolizers based on a previous history or experience with other CYP2C9 substrates may have reduced metabolic clearance of celecoxib. The CYP2C9 is polymorphic; CYP2C9(1) is the wild-type, and CYP2C9(2) and CYP2C9(3) are the most common variants. In adult patients who are known or suspected to be poor CYP2C9 metabolizers, a lower initial celecoxib dose is recommended. Consider using alternative therapies to celecoxib in juvenile rheumatoid arthritis patients who are known or suspected to be poor CYP2C9 metabolizers.

    Oral Route

    Capsules
    Peak plasma concentrations of celecoxib occur approximately 3 hours after an oral capsule dose. Both celecoxib peak plasma concentrations (Cmax) and area under the curve (AUC) are roughly dose-proportional up to 200 mg twice daily. At higher doses and under fasting conditions, there are less proportional increases in celecoxib Cmax and AUC, which is thought to be due to the low aqueous solubility of the drug. Absolute bioavailability studies have not been conducted. When celecoxib capsules are taken with a high-fat meal, peak plasma concentrations are delayed for about 1 to 2 hours with an increase in total absorption (AUC) of 10% to 20%.[56268]
     
    Solution
    After administration of 120 to 240 mg once daily of oral solution, celecoxib exhibits a dose-proportional increase in exposure. Tmax was 1 hour (range 0.67 to 3 hours) after administration of 120 mg of oral solution under fasting condition in 24 healthy subjects. Tmax was delayed by 2 hours with an approximately 50% decrease in Cmax and no change in AUC when celecoxib oral solution was taken with a high-fat meal compared to fasting conditions.[65375]