Celexa

Browse PDR's full list of drug information

Celexa

Classes

Selective Serotonin Reuptake Inhibitor Antidepressants, SSRIs

Administration
Oral Administration

May be administered with or without food.

Oral Solid Formulations

Oral capsules
Patient should swallow capsules whole; do not cut, chew, or crush capsules.
 
Oral tablets (e.g., Celexa)
Some tablets may be scored to allow for dosage as prescribed.

Oral Liquid Formulations

Oral solution:
Administer with a calibrated oral measuring device to ensure accurate dosage.

Adverse Reactions
Severe

heart failure / Delayed / 0.1-1.0
myocardial infarction / Delayed / 0.1-1.0
bradycardia / Rapid / 0.1-1.0
stroke / Early / 0.1-1.0
seizures / Delayed / 0.3-0.3
cholecystitis / Delayed / 0-0.1
coagulopathy / Delayed / 0-0.1
atrial fibrillation / Early / 0-0.1
cardiac arrest / Early / 0-0.1
keratitis / Delayed / 0-0.1
bronchospasm / Rapid / 0-0.1
oliguria / Early / 0-0.1
suicidal ideation / Delayed / 1.0
pancreatitis / Delayed / Incidence not known
GI bleeding / Delayed / Incidence not known
hemolytic anemia / Delayed / Incidence not known
pulmonary embolism / Delayed / Incidence not known
thrombosis / Delayed / Incidence not known
SIADH / Delayed / Incidence not known
ventricular fibrillation / Early / Incidence not known
ventricular tachycardia / Early / Incidence not known
torsade de pointes / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) / Delayed / Incidence not known
erythema multiforme / Delayed / Incidence not known
toxic epidermal necrolysis / Delayed / Incidence not known
anaphylactic shock / Rapid / Incidence not known
angioedema / Rapid / Incidence not known
ocular hypertension / Delayed / Incidence not known
hepatic necrosis / Delayed / Incidence not known
renal failure (unspecified) / Delayed / Incidence not known
rhabdomyolysis / Delayed / Incidence not known
serotonin syndrome / Delayed / Incidence not known
bone fractures / Delayed / Incidence not known
neonatal abstinence syndrome / Early / Incidence not known
persistent pulmonary hypertension of the newborn / Delayed / Incidence not known

Moderate

ejaculation dysfunction / Delayed / 6.1-6.1
hemorrhoids / Delayed / 0.1-1.0
teeth grinding (bruxism) / Delayed / 0.1-1.0
gastritis / Delayed / 0.1-1.0
stomatitis / Delayed / 0.1-1.0
dysphagia / Delayed / 0.1-1.0
esophagitis / Delayed / 0.1-1.0
dyskinesia / Delayed / 0.1-1.0
neuropathic pain / Delayed / 0.1-1.0
hypertonia / Delayed / 0.1-1.0
ataxia / Delayed / 0.1-1.0
myoclonia / Delayed / 0.1-1.0
euphoria / Early / 0.1-1.0
hallucinations / Early / 0.1-1.0
psychosis / Early / 0.1-1.0
leukopenia / Delayed / 0.1-1.0
anemia / Delayed / 0.1-1.0
lymphadenopathy / Delayed / 0.1-1.0
angina / Early / 0.1-1.0
peripheral vasodilation / Rapid / 0.1-1.0
peripheral edema / Delayed / 0.1-1.0
hypertension / Early / 0.1-1.0
atopic dermatitis / Delayed / 0.1-1.0
psoriasis / Delayed / 0.1-1.0
dyspnea / Early / 0.1-1.0
conjunctivitis / Delayed / 0.1-1.0
elevated hepatic enzymes / Delayed / 0.1-1.0
vaginal bleeding / Delayed / 0.1-1.0
galactorrhea / Delayed / 0.1-1.0
urinary retention / Early / 0.1-1.0
dysuria / Early / 0.1-1.0
urinary incontinence / Early / 0.1-1.0
hyperglycemia / Delayed / 0.1-1.0
myasthenia / Delayed / 0.1-1.0
bone pain / Delayed / 0.1-1.0
QT prolongation / Rapid / 0-0.5
mania / Early / 0.2-0.2
cholelithiasis / Delayed / 0-0.1
colitis / Delayed / 0-0.1
glossitis / Early / 0-0.1
hyperesthesia / Delayed / 0-0.1
lymphocytosis / Delayed / 0-0.1
bleeding / Early / 0-0.1
lymphopenia / Delayed / 0-0.1
phlebitis / Rapid / 0-0.1
bundle-branch block / Early / 0-0.1
pneumonitis / Delayed / 0-0.1
photophobia / Early / 0-0.1
cataracts / Delayed / 0-0.1
jaundice / Delayed / 0-0.1
hyperbilirubinemia / Delayed / 0-0.1
hepatitis / Delayed / 0-0.1
hematuria / Delayed / 0-0.1
flank pain / Delayed / 0-0.1
nephrolithiasis / Delayed / 0-0.1
hypokalemia / Delayed / 0-0.1
hypoglycemia / Early / 0-0.1
dehydration / Delayed / 0-0.1
hypothyroidism / Delayed / 0-0.1
goiter / Delayed / 0-0.1
osteoporosis / Delayed / 0-0.1
migraine / Early / 1.0
confusion / Early / 1.0
depression / Delayed / 1.0
amnesia / Delayed / 1.0
hypotension / Rapid / 1.0
sinus tachycardia / Rapid / 1.0
orthostatic hypotension / Delayed / 1.0
blurred vision / Early / 1.0
akathisia / Delayed / Incidence not known
choreoathetosis / Delayed / Incidence not known
dystonic reaction / Delayed / Incidence not known
delirium / Early / Incidence not known
hematoma / Early / Incidence not known
platelet dysfunction / Delayed / Incidence not known
thrombocytopenia / Delayed / Incidence not known
hyponatremia / Delayed / Incidence not known
chest pain (unspecified) / Early / Incidence not known
priapism / Early / Incidence not known
hyperprolactinemia / Delayed / Incidence not known
osteopenia / Delayed / Incidence not known
withdrawal / Early / Incidence not known
growth inhibition / Delayed / Incidence not known

Mild

nausea / Early / 21.0-21.0
xerostomia / Early / 20.0-20.0
drowsiness / Early / 18.0-18.0
insomnia / Early / 15.0-15.0
hyperhidrosis / Delayed / 11.0-11.0
diarrhea / Early / 8.0-8.0
tremor / Early / 8.0-8.0
dyspepsia / Early / 5.0-5.0
fatigue / Early / 5.0-5.0
rhinitis / Early / 5.0-5.0
vomiting / Early / 4.0-4.0
anorexia / Delayed / 4.0-4.0
anxiety / Delayed / 4.0-4.0
libido decrease / Delayed / 1.3-3.8
abdominal pain / Early / 3.0-3.0
agitation / Early / 3.0-3.0
sinusitis / Delayed / 3.0-3.0
dysmenorrhea / Delayed / 3.0-3.0
fever / Early / 2.0-2.0
yawning / Early / 2.0-2.0
orgasm dysfunction / Delayed / 1.1-1.1
eructation / Early / 0.1-1.0
gingivitis / Delayed / 0.1-1.0
vertigo / Early / 0.1-1.0
hyperkinesis / Delayed / 0.1-1.0
hypoesthesia / Delayed / 0.1-1.0
libido increase / Delayed / 0.1-1.0
nightmares / Early / 0.1-1.0
paranoia / Early / 0.1-1.0
emotional lability / Early / 0.1-1.0
abnormal dreams / Early / 0.1-1.0
epistaxis / Delayed / 0.1-1.0
leukocytosis / Delayed / 0.1-1.0
purpura / Delayed / 0.1-1.0
syncope / Early / 0.1-1.0
urticaria / Rapid / 0.1-1.0
alopecia / Delayed / 0.1-1.0
skin discoloration / Delayed / 0.1-1.0
acne vulgaris / Delayed / 0.1-1.0
photosensitivity / Delayed / 0.1-1.0
xerosis / Delayed / 0.1-1.0
xerophthalmia / Early / 0.1-1.0
tinnitus / Delayed / 0.1-1.0
ocular pain / Early / 0.1-1.0
breast enlargement / Delayed / 0.1-1.0
mastalgia / Delayed / 0.1-1.0
increased urinary frequency / Early / 0.1-1.0
muscle cramps / Delayed / 0.1-1.0
gastroesophageal reflux / Delayed / 0-0.1
hiccups / Early / 0-0.1
lethargy / Early / 0-0.1
ptosis / Delayed / 0-0.1
pruritus ani / Early / 0-0.1
hypertrichosis / Delayed / 0-0.1
laryngitis / Delayed / 0-0.1
mydriasis / Early / 0-0.1
diplopia / Early / 0-0.1
lacrimation / Early / 0-0.1
gynecomastia / Delayed / 0-0.1
hypersalivation / Early / 1.0
weight loss / Delayed / 1.0
flatulence / Early / 1.0
weight gain / Delayed / 1.0
paresthesias / Delayed / 1.0
dizziness / Early / 2.0
flushing / Rapid / 1.0
pruritus / Rapid / 1.0
rash / Early / 1.0
cough / Delayed / 1.0
dysgeusia / Early / 1.0
amenorrhea / Delayed / 1.0
polyuria / Early / 1.0
ecchymosis / Delayed / Incidence not known
asthenia / Delayed / Incidence not known
anosmia / Delayed / Incidence not known

Boxed Warning
Children, growth inhibition, suicidal ideation

Citalopram is not indicated for any condition in pediatric patients less than 18 years of age. In a pooled analysis of placebo-controlled trials of antidepressants (n = 4,500 pediatrics and 77,000 adults), there was an increased risk for suicidal thoughts and behaviors in patients 24 years of age and younger receiving an antidepressant versus placebo, with considerable variation in the risk of suicidality among drugs. The difference in absolute risk of suicidal thoughts and behaviors across different indications was highest in those with major depression. No suicides occurred in any of the pediatric trials. Nevertheless, the need for an antidepressant in children, adolescents, or young adults for any use must be weighed against the risk of suicidality; it is unknown if this risk extends to long-term use. All patients should be monitored for symptom worsening or suicidality, especially at treatment initiation or after dose changes. Caregivers and/or patients should immediately notify the prescriber of changes in behavior or suicidal ideation. A change to the treatment regimen or discontinuation of citalopram may be necessary in patients with emerging suicidality or worsening depression. The potential for growth inhibition in pediatric patients should be monitored during SSRI therapy. Monitor height and weight periodically while the patient is receiving citalopram. Data are inadequate to determine whether the chronic use of SSRIs causes long-term growth inhibition; however, decreased weight gain has been observed in children and adolescents receiving SSRIs. The mechanism of growth inhibition in children may be due to the suppression of growth hormone secretion, which is known to occur in adults taking SSRIs.

Common Brand Names

Celexa

Dea Class

Rx

Description

Oral selective serotonin reuptake inhibitor (SSRI) antidepressant
Indicated in adults for the treatment of depression; no approved uses in pediatric patients
Known risk of QT prolongation; increased risk of suicidality during the initial stages of treatment in pediatric and young adult patients

Dosage And Indications
For the treatment of major depression. For the treatment of major depression in adults. Oral dosage Adults 18 to 60 years

20 mg PO once daily, initially. May increase the dose at intervals of at least 1 week if inadequate response and depending on tolerability. Max: 40 mg/day. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

Adults older than 60 years

20 mg PO once daily. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

For the treatment of major depression† in pediatric patients. Oral dosage Children and Adolescents 7 to 17 years

10 mg PO once daily, initially. Some experts recommend initial doses of 20 mg/day PO in those 12 years and older, and a few pediatric studies have used this higher starting dose in patients as young as 7 years. Guidelines recommend starting with a low dose and increasing the dose by 10 mg/day at 4-week intervals if inadequate response and depending on tolerability. Some studies have reported titration as often as every week. A dose of 20 mg/day PO is considered effective; reported mean dose range is 20 to 25 mg/day. Max: 40 mg/day. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. Patients with minimal or no response after 8 weeks of treatment will likely need alternative treatment. Continuation of medication for 6 to 12 months after symptom remission is recommended; those who require further maintenance therapy should be periodically reassessed to determine the need for ongoing treatment.

For the treatment of social phobia (social anxiety disorder)†. Oral dosage Children and Adolescents 8 to 17 years

10 mg PO once daily initially, followed by titration to response and tolerability. Data are extremely limited. In one small, open-label pilot study combining pharmacologic with psychotherapeutic interventions, 12 patients received an initial citalopram dose of 10 mg/day PO followed by upward titration to a maximum of 40 mg/day based upon response and tolerability. Nine children completed the study (12 weeks). Based on clinician global ratings of change, 41.7% of subjects were very much improved and 41.7% were much improved. No subjects worsened. At study end, the mean dosage was 35 mg/day. Patients should be periodically reassessed to determine the need for ongoing maintenance treatment. Max: 40 mg/day in the general population and 20 mg/day in poor metabolizers of CYP2C19 due to the potential for QT prolongation. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

For the treatment of obsessive-compulsive disorder (OCD)†. Oral dosage Adults 60 years and younger

Initially, 20 mg PO once daily; may increase to 40 mg PO once daily after 1 week. In an open pilot study, 40 to 60 mg PO once daily alleviated symptoms of OCD in 76% of patients. Max: 40 mg/day in the general population and 20 mg/day in poor metabolizers of CYP2C19 due to the potential for QT prolongation. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

Geriatric Adults older than 60 years

The recommended and maximum daily dose is 20 mg/day PO. Higher dosages are not recommended due to an association with QT prolongation. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

Children and Adolescents 6 to 17 years

10 mg PO once daily initially, followed by titration based on response and tolerability. Data are extremely limited. Results from small open-label studies suggest a possible role of citalopram in the treatment of childhood OCD. In one study, citalopram was initiated at 10 mg/day PO followed by titration based upon response and tolerability to a maximum dose of 20 mg/day PO in children (6 years of age and older) and 30 mg/day PO in adolescents. Ninety-three percent of participants were considered responders according to the primary efficacy measure (CY-BOCS). In a separate study, doses of 10 to 40 mg/day PO were effective in 75% of participating children and adolescents (9 years of age and older). Patients should be periodically reassessed to determine the need for ongoing maintenance treatment. Max: 40 mg/day in the general population and 20 mg/day in poor metabolizers of CYP2C19 due to the potential for QT prolongation. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

For the treatment of panic disorder† (with or without agoraphobia). Oral dosage Adults 60 years and younger

20 to 60 mg PO once daily has been used in published studies. Higher dosages (i.e., 40 to 60 mg per day) appear to be no more effective than lower dosages (i.e., 20 to 30 mg per day). Max: 40 mg/day in the general population and 20 mg/day in poor metabolizers of CYP2C19 due to the potential for QT prolongation. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

Geriatric Adults older than 60 years

The maximum recommended daily dose is 20 mg/day PO. Higher dosages are not recommended due to an association with QT prolongation. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

For the treatment of posttraumatic stress disorder (PTSD)†. Oral dosage Adults 60 years and younger

20 to 60 mg PO once daily has been used in clinical studies. Pilot studies indicate that citalopram may be effective for a wide variety of traumatic stressors, including combat. Max: 40 mg/day in the general population and 20 mg/day in poor metabolizers of CYP2C19 due to the potential for QT prolongation. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

Geriatric Adults older than 60 years

The maximum daily dose is 20 mg/day PO. Higher dosages are not recommended due to an association with QT prolongation. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

Adolescents

Data are limited. One open study has suggested that 20 mg/day PO is effective. Max: 40 mg/day in the general population and 20 mg/day in poor metabolizers of CYP2C19 due to the potential for QT prolongation. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

For the treatment of premenstrual dysphoric disorder (PMDD)†. Oral dosage Adult females

20 mg PO once daily (range: 10 to 30 mg PO once daily) as a target dose during the luteal phase is more effective than placebo in treating marked pre-menstrual irritability. Luteal phase dosing is as effective as continuous administration of similar doses; data are limited by the small study size. SSRIs as a class are considered effective in reducing the symptoms of PMDD, such as irritability, depressed mood, and carbohydrate cravings, whether taken in the luteal phase only or continuously. Adverse effects are relatively frequent and dose-related, the most common being nausea and asthenia. Citalopram is the less commonly studied SSRI for this condition. Max: 40 mg/day in the general population and 20 mg/day in poor metabolizers of CYP2C19 due to the potential for QT prolongation. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

For the treatment of hot flashes† in women experiencing symptoms of menopause†. Oral dosage Adult females 60 years and younger

Initially 10 mg PO once daily with titration to 20 to 30 mg PO once daily, if tolerated. In 29 patients ranging in age from 34 to 82 years who did not respond to venlafaxine for the treatment of hot flashes, 4 weeks of citalopram was associated with a reduction in hot flash score (assesses both frequency and intensity) to 47% of baseline (p < 0.001). The frequency of hot flashes was reduced by 45% (p < 0.001) compared to baseline. In another study, 9 months in duration, fluoxetine or citalopram was not associated with a reduction in hot flash frequency or severity; however, citalopram was associated with an improvement in insomnia. Further studies are needed to confirm these findings. Max: 40 mg/day in the general population and 20 mg/day in poor metabolizers of CYP2C19 due to the potential for QT prolongation. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

Geriatric Adult females older than 60 years

Initially 10 mg PO once daily with titration to 20 to 30 mg PO once daily, if tolerated, has been used. Dosages above 20 mg/day are not recommended in those over 60 years of age due to an association with QT prolongation. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. In 29 patients ranging in age from 34 to 82 years who did not respond to venlafaxine for the treatment of hot flashes, 4 weeks of citalopram was associated with a reduction in hot flash score (assesses both frequency and intensity) to 47% of baseline (p < 0.001). The frequency of hot flashes was reduced by 45% (p < 0.001) compared to baseline. In another study, 9 months in duration, fluoxetine or citalopram was not associated with a reduction in hot flash frequency or severity; however, citalopram was associated with an improvement in insomnia. Further studies are needed to confirm these findings.

†Indicates off-label use

Dosing Considerations
Hepatic Impairment

Oral tablets or oral solution:
Citalopram 20 mg PO once daily is the recommended maximum dose in adults with hepatic impairment, due to the risk of QT prolongation. There are no guidelines available for pediatric patients. Child-Pugh classification is a poor predictor of the need for dosage adjustment based on data from clinical trials.
 
Oral capsules:
Citalopram capsules are not recommended in patients with mild, moderate, or severe hepatic impairment because dosage adjustments are not possible with the capsule strength available.

Renal Impairment

CrCl 20 mL/minute or more: No dosage adjustment is necessary.
CrCl less than 20 mL/minute: Use caution; specific guidelines for dosage adjustments are not available due to lack of data.
 
Intermittent hemodialysis
Citalopram is unlikely to be significantly removed by hemodialysis given its large volume of distribution. Use caution; specific guidelines for dosage adjustments are not available due to lack of data.

Drug Interactions

Abciximab: (Moderate) Platelet aggregation may be impaired by selective serotonin reuptake inhibitors (SSRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication in patients receiving abciximab. Monitor closely for signs and symptoms of bleeding.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Acetaminophen; Aspirin: (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like dihydrocodeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Codeine: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like codeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Doxylamine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Hydrocodone: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like hydrocodone with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Acetaminophen; Oxycodone: (Moderate) The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment. Discontinue the suspected drugs if serotonin syndrome is suspected and manage cliinically. There has been a case report of possible serotonin syndrome caused by the combination of oxycodone and selective serotonin reuptake inhbitors (SSRIs).
Acetazolamide: (Moderate) Caution is advisable during concurrent use of citalopram and acetazolamide as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with citalopram.
Adagrasib: (Major) Concomitant use of adagrasib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Alfentanil: (Moderate) If concomitant use of alfentanil and citalopram is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Alfuzosin: (Major) Due to a possible risk for QT prolongation and torsade de pointes (TdP), concurrent use of alfuzosin and citalopram should be avoided if possible. Based on electrophysiology studies performed by the manufacturer, alfuzosin has a slight effect to prolong the QT interval. The QT prolongation appeared less with alfuzosin 10 mg than with 40 mg. Citalopram causes dose-dependent QT interval prolongation. According to its manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Almotriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering almotriptan with citalopram. Serotonin syndrome has been reported during concurrent use of serotonin-receptor agonists and selective serotonin reuptake inhibitors (SSRIs). Some patients had used the combination previously without incident when serotonin syndrome occurred. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly after a dose increase of the SSRI or the addition of other serotonergic medications to an existing SSRI regimen. Discontinue citalopram and almotriptan and initiate symptomatic treatment if serotonin syndrome occurs.
Alteplase: (Moderate) Platelet aggregation may be impaired by selective serotonin reuptake inhibitors (SSRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication in patients receiving thrombolytic agents. Patients should be closely monitored for signs and symptoms of bleeding when a thrombolytic agent is administered with an SSRI.
Amiloride: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Amiodarone: (Major) Concomitant use of citalopram and amiodarone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. Due to the extremely long half-life of amiodarone, a drug interaction is possible for days to weeks after drug discontinuation.
Amisulpride: (Major) Avoid coadministration of amisulpride and citalopram due to the potential for additive QT prolongation. Monitor ECG for QT prolongation if coadministration is required. Amisulpride causes dose- and concentration- dependent QT prolongation. Citalopram causes dose-dependent QT interval prolongation.
Amitriptyline: (Major) The use of tricyclic antidepressants (TCAs) and citalopram together may increase the risk of QT prolongation and serotonin syndrome; consider a decreased dosage of the TCA or the avoidance of concomitant SSRI therapy. If concomitant use is necessary, consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, and monitor for serotonin syndrome. If serotonin syndrome is suspected, discontinue all serotonergic agents. Citalopram is a weak inhibitor of CYP2D6 that has been associated with a risk of QT prolongation and torsade de pointes (TdP). CYP2D6 is responsible for metabolism of many of the TCAs; elevated TCA concentrations may potentially occur. TCAs share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations).
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Amoxicillin; Clarithromycin; Omeprazole: (Major) Concomitant use of citalopram and clarithromycin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with omeprazole. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; omeprazole is a weak inhibitor of CYP2C19.
Amphetamines: (Moderate) Coadministration of selective serotonin reuptake inhibitors (SSRIs) like citalopram with amphetamines may increase the risk of serotonin syndrome. At high doses, amphetamines can increase serotonin release and act as serotonin agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose increases. If serotonin syndrome occurs, serotonergic drugs should be discontinued and appropriate medical treatment should be initiated.
Anagrelide: (Major) Torsades de pointes (TdP) and ventricular tachycardia have been reported during post-marketing use of anagrelide. A cardiovascular examination, including an ECG, should be obtained in all patients prior to initiating anagrelide therapy. Monitor patients during anagrelide therapy for cardiovascular effects and evaluate as necessary. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously and with close monitoring with anagrelide include citalopram. In addition, platelet aggregation may be impaired by selective serotonin reuptake inhibitors (SSRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving platelet inhibitors (e.g., cilostazol, clopidogrel, dipyridamole, ticlopidine, platelet glycoprotein IIb/IIIa inhibitors). Patients should be instructed to monitor for signs and symptoms of bleeding while taking an SSRI concurrently with an antiplatelet medication and to promptly report any bleeding events to the practitioner.
Antithrombin III: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and anticoagulants like antithrombin III. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Apixaban: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and anticoagulants like apixaban. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Apomorphine: (Major) Concomitant use of apomorphine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Aripiprazole: (Major) Avoid concomitant use of aripiprazole and citalopram, if possible, especially in patients with risk factors for torsade de pointes (TdP). If use is necessary, patients receiving both a CYP3A inhibitor plus citalopram may require an aripiprazole dosage adjustment; dosing recommendations vary based on aripiprazole dosage form and CYP3A inhibitor strength. See prescribing information for details. Additionally, monitor for aripiprazole-related adverse effects and consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring. Concomitant use may increase aripiprazole exposure and increase the risk for QT prolongation and TdP. Aripiprazole is a CYP2D6 and CYP3A substrate; citalopram is a weak CYP2D6 inhibitor. Both medications have been associated with QT prolongation.
Armodafinil: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with armodafinil, a CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Arsenic Trioxide: (Major) Avoid coadministration of citalopram and arsenic trioxide. Discontinue or select an alternative drug that does not prolong the QT interval prior to starting arsenic trioxide therapy. If concomitant drug use is unavoidable, frequently monitor electrocardiograms. Citalopram causes dose-dependent QT interval prolongation. Torsade de pointes (TdP), QT interval prolongation, and complete atrioventricular block have been reported with arsenic trioxide use.
Artemether; Lumefantrine: (Major) Artemether; lumefantrine is an inhibitor of and citalopram is metabolized by the CYP2D6 isoenzyme; therefore, coadministration may lead to increased citalopram concentrations. Furthermore, although there are no studies examining the effects of artemether; lumefantrine in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation. Concomitant use of artemether; lumefantrine with drugs that may prolong the QT interval, such as citalopram, should be avoided. According to the manufacturer of citalopram, ECG monitoring is recommended in patients receiving concurrent drugs that prolong the QT interval.
Asenapine: (Major) Concurrent use of asenapine and citalopram should be avoided if possible. Citalopram causes dose-dependent QT interval prolongation and asenapine is associated with a possible risk for QT prolongation and torsade de pointes (TdP). According to the manufacturer of citalopram, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. However, if concurrent therapy is considered essential, ECG monitoring is recommended. In addition, citalopram is a weak inhibitor of CYP2D6, and increased plasma concentrations of antipsychotics partially metabolized via CYP2D6, such as asenapine, may occur. Decreased metabolism of asenapine may lead to adverse reactions such as extrapyramidal symptoms; however, because asenapine is metabolized by multiple CYP pathways, a clinically significant interaction is less likely to occur.
Aspirin, ASA: (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Aspirin, ASA; Caffeine: (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Aspirin, ASA; Carisoprodol: (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like codeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Aspirin, ASA; Dipyridamole: (Moderate) Platelet aggregation may be impaired by SSRIs due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication in patients receiving platelet inhibitors. Monitor for signs and symptoms of bleeding. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Aspirin, ASA; Omeprazole: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with omeprazole. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; omeprazole is a weak inhibitor of CYP2C19. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Aspirin, ASA; Oxycodone: (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation. (Moderate) The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment. Discontinue the suspected drugs if serotonin syndrome is suspected and manage cliinically. There has been a case report of possible serotonin syndrome caused by the combination of oxycodone and selective serotonin reuptake inhbitors (SSRIs).
Atazanavir; Cobicistat: (Moderate) Close monitoring for antidepressant response and careful dose titrations of the antidepressant therapy is recommended during coadministration of selective serotonin reuptake inhibitors (SSRIs) and cobicistat. Concurrent use may result in elevated SSRI plasma concentrations. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. All SSRIs are substrates for the hepatic isoenzyme CYP2D6, while citalopram, escitalopram, and sertraline are also substrates for CYP3A4; cobicistat is an inhibitor of both CYP2D6 and CYP3A4.
Atenolol; Chlorthalidone: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Atomoxetine: (Major) Concomitant use of atomoxetine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Atropine; Difenoxin: (Moderate) Concurrent administration of diphenoxylate/difenoxin with citalopram can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration.
Azilsartan; Chlorthalidone: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Azithromycin: (Major) Concomitant use of azithromycin and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Bedaquiline: (Major) Concurrent use of citalopram and bedaquiline should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Bedaquiline has been reported to prolong the QT interval. Prior to initiating bedaquiline, obtain serum electrolyte concentrations and a baseline ECG. An ECG should also be performed at least 2, 12, and 24 weeks after starting bedaquiline therapy. Citalopram also causes dose-dependent QT interval prolongation.
Belladonna; Opium: (Moderate) Citalopram impairs metabolism via the CYP2D6 pathway at therapeutic doses. This can result in increased concentrations of drugs metabolized via the same pathway, including some opiate agonists.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Benzhydrocodone; Acetaminophen: (Moderate) Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of benzhydrocodone and citalopram because of the potential risk of serotonin syndrome. Discontinue benzhydrocodone if serotonin syndrome is suspected. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Contraindicated) According to the manufacturer of citalopram, treatment initiation with citalopram is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than citalopram (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving citalopram and requiring urgent treatment with IV methylene blue, citalopram should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Citalopram may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving SSRIs, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case describes a patient receiving citalopram who experienced agitation, restlessness, pupil dilation with sluggish response to light, myoclonic movements of the lower limbs, and brisk reflexes following an infusion of methylene blue, while another patient receiving paroxetine developed tachycardia, agitation, dystonia and abnormal eye movements. During a retrospective study of 193 surgical patients who had received a methylene blue injection, it was found that all 12 of the patients who experienced postoperative neurological sequelae had been taking a serotonin reuptake inhibitor preoperatively. One of the 12 patients experienced cardiopulmonary arrest and died. Of the remaining 181 patients who did not experience neurological sequelae, 8.8% were taking a serotonin reuptake inhibitor. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin.
Betrixaban: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and anticoagulants like betrixaban. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Major) Concomitant use of metronidazole and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Bismuth Subsalicylate: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Major) Concomitant use of metronidazole and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Brimonidine; Timolol: (Minor) Citalopram mildly inhibits the hepatic CYP2D6 isoenzyme at therapeutic doses. This can result in increased concentrations of drugs metabolized via the same pathway, including timolol.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Bumetanide: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Buprenorphine: (Major) Due to the potential for QT prolongation, avoid coadministration of citalopram and buprenorphine if possible. Citalopram causes dose-dependent QT interval prolongation and a risk for torsade de pointes (TdP); buprenorphine caused QT prolongation in some patients during clinical trials. If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, concurrent use of opioids with other drugs that modulate serotonergic function, such as SSRIs, has resulted in serotonin syndrome in some cases. Patients should be carefully observed, particularly during treatment initiation and during dose adjustments. Discontinue the serotonergic medications if serotonin syndrome is suspected.
Buprenorphine; Naloxone: (Major) Due to the potential for QT prolongation, avoid coadministration of citalopram and buprenorphine if possible. Citalopram causes dose-dependent QT interval prolongation and a risk for torsade de pointes (TdP); buprenorphine caused QT prolongation in some patients during clinical trials. If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, concurrent use of opioids with other drugs that modulate serotonergic function, such as SSRIs, has resulted in serotonin syndrome in some cases. Patients should be carefully observed, particularly during treatment initiation and during dose adjustments. Discontinue the serotonergic medications if serotonin syndrome is suspected.
Bupropion: (Moderate) Monitor for an increase in the frequency and severity of citalopram-related adverse effects, such as QT prolongation and serotonin syndrome, during concomitant use of bupropion. Concomitant use has been observed to increase the peak and overall exposure of citalopram by 30% and 40%, respectively.
Bupropion; Naltrexone: (Moderate) Monitor for an increase in the frequency and severity of citalopram-related adverse effects, such as QT prolongation and serotonin syndrome, during concomitant use of bupropion. Concomitant use has been observed to increase the peak and overall exposure of citalopram by 30% and 40%, respectively.
Buspirone: (Moderate) Coadministration of buspirone with citalopram may increase the risk of serotonin syndrome. Buspirone has some serotonergic properties. Inform patients of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose increases. If serotonin syndrome occurs, all serotonergic drugs should be discontinued and appropriate medical treatment should be initiated.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like codeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like codeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) The combined use of selective serotonin reuptake inhibitors and aspirin, ASA may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation.
Cabotegravir; Rilpivirine: (Major) Concomitant use of rilpivirine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Cangrelor: (Moderate) Platelet aggregation may be impaired by selective serotonin reuptake inhibitors (SSRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymosis, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving platelet inhibitors (e.g., cangrelor). Patients should be instructed to monitor for signs and symptoms of bleeding while taking an SSRI concurrently with an antiplatelet medication and to promptly report any bleeding events to the practitioner.
Capsaicin; Metaxalone: (Moderate) Concomitant use of selective serotonin reuptake inhibitors (SSRIs) and metaxalone may increase the risk for serotonin syndrome. Monitor patients for serotonin syndrome if concomitant use is necessary.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Carbamazepine: (Moderate) Monitor for decreased efficacy of citalopram if coadministration with carbamazepine is necessary. Citalopram is a CYP3A4 substrate and carbamazepine is a strong CYP3A4 inducer. In one study, coadministration with carbamazepine did not affect citalopram plasma concentrations, but increased clearance of citalopram with strong CYP3A4 inducers is possible.
Carvedilol: (Minor) Citalopram mildly inhibits the hepatic CYP2D6 isoenzyme at therapeutic doses. This can result in increased concentrations of drugs metabolized via the same pathway, including carvedilol.
Celecoxib; Tramadol: (Moderate) Monitor patients for the emergence of serotonin syndrome if concomitant use of tramadol and citalopram is warranted. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Cenobamate: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with cenobamate, a moderate CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg/day in patients receiving CYP2C19 inhibitors.
Ceritinib: (Major) Coadministration of citalopram with ceritinib is not recommended due to the risk of QT prolongation; citalopram exposure may also be increased. If concomitant use is unavoidable, monitor ECGs for QT prolongation and monitor electrolytes. An interruption of ceritinib therapy, dose reduction, or discontinuation of therapy may be necessary if QT prolongation occurs. Citalopram is a CYP3A4 substrate that causes dose-dependent QT prolongation. Ceritinib is a strong CYP3A4 inhibitor that is also associated with concentration-dependent QT prolongation.
Chloramphenicol: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with chloramphenicol, a CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Chlordiazepoxide; Amitriptyline: (Major) The use of tricyclic antidepressants (TCAs) and citalopram together may increase the risk of QT prolongation and serotonin syndrome; consider a decreased dosage of the TCA or the avoidance of concomitant SSRI therapy. If concomitant use is necessary, consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, and monitor for serotonin syndrome. If serotonin syndrome is suspected, discontinue all serotonergic agents. Citalopram is a weak inhibitor of CYP2D6 that has been associated with a risk of QT prolongation and torsade de pointes (TdP). CYP2D6 is responsible for metabolism of many of the TCAs; elevated TCA concentrations may potentially occur. TCAs share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations).
Chloroquine: (Major) Avoid coadministration of chloroquine with citalopram due to the increased risk of QT prolongation. If use together is necessary, obtain an ECG at baseline to assess initial QT interval and determine frequency of subsequent ECG monitoring, avoid any non-essential QT prolonging drugs, and correct electrolyte imbalances. Chloroquine is associated with an increased risk of QT prolongation and torsade de pointes (TdP); the risk of QT prolongation is increased with higher chloroquine doses. Citalopram causes dose-dependent QT interval prolongation.
Chlorothiazide: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Chlorpheniramine; Codeine: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like codeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Chlorpheniramine; Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like dihydrocodeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Chlorpheniramine; Hydrocodone: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like hydrocodone with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Chlorpromazine: (Major) Concurrent use of citalopram and chlorpromazine should be avoided. Citalopram causes dose-dependent QT interval prolongation and chlorpromazine is associated with an established risk of QT prolongation and torsade de pointes (TdP). According to the manufacturer of citalopram, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended. Because of the potential risk and severity of serotonin syndrome or neuroleptic malignant syndrome-like reactions, caution should be observed when administering selective serotonin reuptake inhibitors (SSRIs) with drugs that are dopamine antagonists such as phenothiazines. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Citalopram is a weak inhibitor of the CYP2D6 pathway and may result in increases in serum phenothiazine concentrations, leading to side effects. Patients receiving a phenothiazine and an SSRI should be monitored for the emergence of serotonin syndrome, neuroleptic malignant syndrome-like reactions, or other adverse effects.
Chlorthalidone: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Chlorthalidone; Clonidine: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Choline Salicylate; Magnesium Salicylate: (Moderate) Monitor for signs and symptoms of bleeding during concomitant magnesium salicylate and selective serotonin reuptake inhibitor (SSRI) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding. (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in > 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with aspirin the risk was increased by > 5-fold. The absolute risk of GI bleed from concomitant therapy with aspirin and a SSRI was low (20/2640 patients) in this cohort study and the clinician may determine that the combined use of these drugs is appropriate.
Cilostazol: (Moderate) Platelet aggregation may be impaired by selective serotonin reuptake inhibitors (SSRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication in patients receiving platelet inhibitors. Monitor for signs and symptoms of bleeding.
Cimetidine: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with cimetidine. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. In subjects who had received 21 days of citalopram 40 mg/day, combined administration of cimetidine 400 mg twice daily for 8 days resulted in an increase in citalopram AUC and Cmax of 43% and 39%, respectively. Citalopram is a sensitive CYP2C19 substrate; cimetidine is a moderate inhibitor of CYP2C19.
Ciprofloxacin: (Major) Concomitant use of citalopram and ciprofloxacin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Cisapride: (Contraindicated) Avoid concomitant use of cisapride and citalopram due to an increased risk for torsade de pointes (TdP) and QT/QTc prolongation.
Clarithromycin: (Major) Concomitant use of citalopram and clarithromycin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Clofazimine: (Major) Concomitant use of clofazimine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Clomipramine: (Major) Citalopram causes dose-dependent QT interval prolongation and tricyclic antidepressants are associated with a possible risk of QT prolongation and torsade de pointes (TdP). According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, because of the potential risk and severity of serotonin syndrome, caution should be observed when administering citalopram with other drugs that have serotonergic properties such as tricyclic antidepressants. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Clinicians should also be alert for pharmacokinetic interactions between tricyclic antidepressants (TCAs) and SSRIs. Citalopram is a weak inhibitor of CYP2D6, the isoenzyme responsible for metabolism of many of the tricyclic antidepressants. Coadministration of citalopram and imipramine did not significantly affect the plasma concentrations of either drug. However, the concentration of desipramine, the primary metabolite of imipramine, was increased by 50%. The clinical significance of the elevation in desipramine concentration is unknown. However, symptoms of toxicity, including seizures, have been reported when drugs from these 2 classes were used together. A decreased dosage of the TCA or the avoidance of concomitant SSRI therapy should be considered.
Clopidogrel: (Moderate) Carefully monitor patients for signs and symptoms of bleeding during coadministration of citalopram and clopidogrel. Selective serotonin reuptake inhibitors (SSRIs) affect platelet activation; therefore, concomitant use may increase the risk of bleeding.
Clozapine: (Major) Concurrent use of clozapine and citalopram should be avoided if possible. Citalopram causes dose-dependent QT interval prolongation and clozapine is associated with QT prolongation, torsade de pointes (TdP), cardiac arrest, and sudden death. According to the manufacturer of citalopram, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. However, if concurrent therapy is considered essential, ECG monitoring is recommended. In addition, citalopram is a weak inhibitor of CYP2D6, and increased plasma concentrations of antipsychotics partially metabolized via CYP2D6, such as clozapine, may occur. A reduced dosage of clozapine should be considered when clozapine is combined with CYP2D6 inhibitors, due to a decrease in clozapine metabolism and a potential for clozapine-related adverse effects, such as orthostatic hypotension, seizures, or adverse cardiac effects.
Cobicistat: (Moderate) Close monitoring for antidepressant response and careful dose titrations of the antidepressant therapy is recommended during coadministration of selective serotonin reuptake inhibitors (SSRIs) and cobicistat. Concurrent use may result in elevated SSRI plasma concentrations. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. All SSRIs are substrates for the hepatic isoenzyme CYP2D6, while citalopram, escitalopram, and sertraline are also substrates for CYP3A4; cobicistat is an inhibitor of both CYP2D6 and CYP3A4.
Cocaine: (Major) Concomitant use of cocaine with drugs that have CNS serotonergic properties, such as SSRIs, could potentiate serotonin neurotransmission, and result in the serotonin syndrome. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Patients receiving this combination should be monitored for the emergence of serotonin syndrome or neuroleptic malignant syndrome-like reactions. Additionally, citalopram causes dose-dependent QT interval prolongation. Local anesthetics (e.g., cocaine) are associated with a possible risk for QT prolongation and according to the manufacturer of citalopram, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended.
Codeine: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like codeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Codeine; Guaifenesin: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like codeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like codeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Codeine; Phenylephrine; Promethazine: (Major) Concomitant use of promethazine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking ste

ps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like codeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Codeine; Promethazine: (Major) Concomitant use of promethazine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like codeine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Crizotinib: (Major) Coadministration of crizotinib with citalopram is not recommended due to the risk of QT prolongation. If concomitant use is unavoidable, monitor ECGs for QT prolongation and monitor electrolytes. An interruption of therapy, dose reduction, or discontinuation of therapy may be necessary for crizotinib patients if QT prolongation occurs. Both drugs have been associated with concentration-dependent QT prolongation.
Cyproheptadine: (Moderate) Cyproheptadine is a serotonin antagonist in the CNS and can oppose the pharmacologic actions of selective serotonin reuptake inhibitors (SSRIs) such as citalopram. Cyproheptadine has been used for the management of orgasm dysfunction caused by the SSRIs and for the adjunctive treatment of SSRI overdose (i.e., serotonin syndrome) in emergency situations; however, a reversal of antidepressant effects may occur.
Dabigatran: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and anticoagulants like dabigatran. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Dalteparin: (Moderate) Monitor for signs and symptoms of bleeding during concomitant low molecular weight heparin and selective serotonin reuptake inhibitor (SSRI) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs are coadministered with another anticoagulant.
Darifenacin: (Moderate) Clinicians should monitor patients for increased anticholinergic effects when darifenacin, a CYP2D6 substrate, is coadministered with citalopram, a mild CYP2D6 inhibitor; the dosage of darifenacin may need to be adjusted.
Darunavir; Cobicistat: (Moderate) Close monitoring for antidepressant response and careful dose titrations of the antidepressant therapy is recommended during coadministration of selective serotonin reuptake inhibitors (SSRIs) and cobicistat. Concurrent use may result in elevated SSRI plasma concentrations. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. All SSRIs are substrates for the hepatic isoenzyme CYP2D6, while citalopram, escitalopram, and sertraline are also substrates for CYP3A4; cobicistat is an inhibitor of both CYP2D6 and CYP3A4.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Close monitoring for antidepressant response and careful dose titrations of the antidepressant therapy is recommended during coadministration of selective serotonin reuptake inhibitors (SSRIs) and cobicistat. Concurrent use may result in elevated SSRI plasma concentrations. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. All SSRIs are substrates for the hepatic isoenzyme CYP2D6, while citalopram, escitalopram, and sertraline are also substrates for CYP3A4; cobicistat is an inhibitor of both CYP2D6 and CYP3A4.
Dasatinib: (Major) Due to a possible risk for QT prolongation and torsade de pointes (TdP), concurrent use of dasatinib and citalopram should be avoided if possible. In vitro studies have shown that dasatinib has the potential to prolong cardiac ventricular repolarization (prolong QT interval). Citalopram causes dose-dependent QT interval prolongation. According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended.
Degarelix: (Major) Concomitant use of degarelix and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Delavirdine: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with delavirdine, a CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Desflurane: (Major) Concomitant use of halogenated anesthetics and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Desipramine: (Major) Citalopram causes dose-dependent QT interval prolongation and tricyclic antidepressants are associated with a possible risk of QT prolongation and torsade de pointes (TdP). According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, because of the potential risk and severity of serotonin syndrome, caution should be observed when administering citalopram with other drugs that have serotonergic properties such as tricyclic antidepressants. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Clinicians should also be alert for pharmacokinetic interactions between tricyclic antidepressants (TCAs) and SSRIs. Citalopram is a weak inhibitor of CYP2D6, the isoenzyme responsible for metabolism of many of the tricyclic antidepressants. Coadministration of citalopram and imipramine did not significantly affect the plasma concentrations of either drug. However, the concentration of desipramine, the primary metabolite of imipramine, was increased by 50%. The clinical significance of the elevation in desipramine concentration is unknown. However, symptoms of toxicity, including seizures, have been reported when drugs from these 2 classes were used together. A decreased dosage of the TCA or the avoidance of concomitant SSRI therapy should be considered.
Desmopressin: (Minor) Additive hyponatremic effects may be seen in patients treated with desmopressin and drugs associated with water intoxication, hyponatremia, or SIADH including SSRIs. Use combination with caution, and monitor patients for signs and symptoms of hyponatremia, which may include monitoring serum sodium or electrolytes periodically. Ensure the patient is compliant with fluid restrictions and intake.
Desvenlafaxine: (Major) Due to similarity of pharmacology and the potential for additive adverse effects, including serotonin syndrome, selective serotonin reuptake inhibitors (SSRIs) should generally not be administered with serotonin norepinephrine reuptake inhibitors like desvenlafaxine. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Discontinuation symptoms have been reported when switching from other antidepressants to desvenlafaxine. It may be advisable to taper the previous antidepressant to minimize discontinuation symptoms.
Deutetrabenazine: (Major) Avoid citalopram use in combination with deutetrabenazine due to the risk of QT prolongation. If concurrent therapy is considered essential, ECG monitoring is recommended. Citalopram causes dose-dependent QT interval prolongation. Deutetrabenazine may prolong the QT interval, but the degree of QT prolongation is not clinically significant when deutetrabenazine is administered within the recommended dosage range.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dexmedetomidine: (Major) Concomitant use of dexmedetomidine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Dextromethorphan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Bupropion: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. (Moderate) Monitor for an increase in the frequency and severity of citalopram-related adverse effects, such as QT prolongation and serotonin syndrome, during concomitant use of bupropion. Concomitant use has been observed to increase the peak and overall exposure of citalopram by 30% and 40%, respectively.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Guaifenesin: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Guaifenesin; Potassium Guaiacolsulfonate: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dextromethorphan; Quinidine: (Major) Concomitant use of quinidine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Dihydroergotamine: (Moderate) Use citalopram and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Diphenoxylate; Atropine: (Moderate) Concurrent administration of diphenoxylate/difenoxin with citalopram can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration.
Dipyridamole: (Moderate) Platelet aggregation may be impaired by SSRIs due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication in patients receiving platelet inhibitors. Monitor for signs and symptoms of bleeding.
Disopyramide: (Major) Concomitant use of disopyramide and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Diuretics: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Dofetilide: (Major) Concomitant use of dofetilide and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Dolasetron: (Major) Coadministration of citalopram and dolasetron is not recommended due to the potential risk of QT prolongation. If concurrent therapy is considered essential, ECG monitoring is recommended. Dolasetron has been associated with a dose-dependent prolongation in the QT, PR, and QRS intervals on an electrocardiogram. Citalopram causes dose-dependent QT interval prolongation. Concurrent use may increase the risk of QT prolongation.
Dolutegravir; Rilpivirine: (Major) Concomitant use of rilpivirine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Donepezil: (Major) Due to the risk of QT prolongation, citalopram should be avoided in combination with donepezil, if possible. Consider if an alternative to citalopram would be appropriate in dementia patients taking donepezil. If concurrent therapy is considered essential, ECG monitoring is recommended, and do not exceed recommended doses. Citalopram causes dose-dependent QT interval prolongation. Monitor ECG if concurrent use cannot be avoided, and monitor for changes in moods and behaviors. Case reports indicate that QT prolongation and TdP can occur during donepezil therapy. Citalopram has been studied in patients with Alzheimer's disease and clinically significant agitation; patients were receiving donepezil. While citalopram significantly reduced agitation and caregiver distress vs. placebo, the use of citalopram was associated with QTc prolongation and cognitive worsening.
Donepezil; Memantine: (Major) Due to the risk of QT prolongation, citalopram should be avoided in combination with donepezil, if possible. Consider if an alternative to citalopram would be appropriate in dementia patients taking donepezil. If concurrent therapy is considered essential, ECG monitoring is recommended, and do not exceed recommended doses. Citalopram causes dose-dependent QT interval prolongation. Monitor ECG if concurrent use cannot be avoided, and monitor for changes in moods and behaviors. Case reports indicate that QT prolongation and TdP can occur during donepezil therapy. Citalopram has been studied in patients with Alzheimer's disease and clinically significant agitation; patients were receiving donepezil. While citalopram significantly reduced agitation and caregiver distress vs. placebo, the use of citalopram was associated with QTc prolongation and cognitive worsening.
Dorzolamide; Timolol: (Minor) Citalopram mildly inhibits the hepatic CYP2D6 isoenzyme at therapeutic doses. This can result in increased concentrations of drugs metabolized via the same pathway, including timolol.
Doxepin: (Moderate) Coadministration of doxepin with citalopram may increase the risk of serotonin syndrome. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose increases. If serotonin syndrome occurs, serotonergic drugs should be discontinued and appropriate medical treatment should be initiated.
Doxercalciferol: (Moderate) Doxercalciferol is converted in the liver to 1,25-dihydroxyergocalciferol, the major active metabolite, and 1-alpha, 24-dihydroxyvitamin D2, a minor metabolite. Although not specifically studied, cytochrome P450 enzyme inhibitors, including selective serotonin reuptake inhibitors (SSRIs), may inhibit the 25-hydroxylation of doxercalciferol, thereby decreasing the formation of the active metabolite and thus, decreasing efficacy. Patients should be monitored for a decrease in efficacy if SSRIs are coadministered with doxercalciferol.
Dronedarone: (Contraindicated) Avoid concomitant use of dronedarone and citalopram due to an increased risk for torsade de pointes (TdP) and QT/QTc prolongation.
Droperidol: (Major) Droperidol should be administered with extreme caution to patients receiving other agents that may prolong the QT interval. Droperidol administration is associated with an established risk for QT prolongation and torsades de pointes (TdP). Any drug known to have potential to prolong the QT interval should not be coadministered with droperidol. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously with droperidol include citalopram. If concurrent therapy is considered essential, ECG monitoring is recommended.
Duloxetine: (Major) Due to similarity of pharmacology and the potential for additive adverse effects, including serotonin syndrome, selective serotonin reuptake inhibitors (SSRIs) such as citalopram should generally not be administered with serotonin norepinephrine reuptake inhibitors (SNRIs) such as duloxetine.
Edoxaban: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and anticoagulants like edoxaban. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Efavirenz: (Major) Citalopram causes dose-dependent QT interval prolongation. According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. QT prolongation has been observed with use of efavirenz. If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, because citalopram is a substrate for CYP2C19, the maximum daily dose of citalopram should not exceed 20 mg/day in patients receiving CYP2C19 inhibitors such as efavirenz. During concurrent use of citalopram and efavirenz, clinicians should monitor patients for a potential increase in side effects or toxicity.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Citalopram causes dose-dependent QT interval prolongation. According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. QT prolongation has been observed with use of efavirenz. If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, because citalopram is a substrate for CYP2C19, the maximum daily dose of citalopram should not exceed 20 mg/day in patients receiving CYP2C19 inhibitors such as efavirenz. During concurrent use of citalopram and efavirenz, clinicians should monitor patients for a potential increase in side effects or toxicity.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Citalopram causes dose-dependent QT interval prolongation. According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. QT prolongation has been observed with use of efavirenz. If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, because citalopram is a substrate for CYP2C19, the maximum daily dose of citalopram should not exceed 20 mg/day in patients receiving CYP2C19 inhibitors such as efavirenz. During concurrent use of citalopram and efavirenz, clinicians should monitor patients for a potential increase in side effects or toxicity.
Elagolix: (Moderate) CItalopram 20 mg/day is the maximum recommended dose for patients taking concomitant CYP2C19 inhibitors because of the risk of QT prolongation. Elagolix is a weak CYP2C19 inhibitor and a weak to moderate CYP3A4 inducer and citalopram is a CYP2C19 and CYP3A4 substrate. The net effect of elagolix on citalopram exposure is not clear.
Elagolix; Estradiol; Norethindrone acetate: (Moderate) CItalopram 20 mg/day is the maximum recommended dose for patients taking concomitant CYP2C19 inhibitors because of the risk of QT prolongation. Elagolix is a weak CYP2C19 inhibitor and a weak to moderate CYP3A4 inducer and citalopram is a CYP2C19 and CYP3A4 substrate. The net effect of elagolix on citalopram exposure is not clear.
Eletriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering eletriptan with citalopram. Serotonin syndrome has been reported during concurrent use of serotonin-receptor agonists and selective serotonin reuptake inhibitors (SSRIs). Some patients had used the combination previously without incident when serotonin syndrome occurred. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly after a dose increase of the SSRI or the addition of other serotonergic medications to an existing SSRI regimen. Discontinue citalopram and eletriptan and initiate symptomatic treatment if serotonin syndrome occurs.
Eliglustat: (Major) Eliglustat is predicted to cause PR, QRS, and/or QT prolongation at significantly elevated plasma concentrations. Drugs with a possible risk for QT prolongation and torsade de pointes (TdP) that should be used cautiously and with close monitoring with eliglustat include citalopram.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Close monitoring for antidepressant response and careful dose titrations of the antidepressant therapy is recommended during coadministration of selective serotonin reuptake inhibitors (SSRIs) and cobicistat. Concurrent use may result in elevated SSRI plasma concentrations. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. All SSRIs are substrates for the hepatic isoenzyme CYP2D6, while citalopram, escitalopram, and sertraline are also substrates for CYP3A4; cobicistat is an inhibitor of both CYP2D6 and CYP3A4.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Close monitoring for antidepressant response and careful dose titrations of the antidepressant therapy is recommended during coadministration of selective serotonin reuptake inhibitors (SSRIs) and cobicistat. Concurrent use may result in elevated SSRI plasma concentrations. Predictions regarding this interaction can be made based on the metabolic pathways of these drugs. All SSRIs are substrates for the hepatic isoenzyme CYP2D6, while citalopram, escitalopram, and sertraline are also substrates for CYP3A4; cobicistat is an inhibitor of both CYP2D6 and CYP3A4.
Emtricitabine; Rilpivirine; Tenofovir alafenamide: (Major) Concomitant use of rilpivirine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Emtricitabine; Rilpivirine; Tenofovir Disoproxil Fumarate: (Major) Concomitant use of rilpivirine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Encorafenib: (Major) Concomitant use of encorafenib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Enoxaparin: (Moderate) Monitor for signs and symptoms of bleeding during concomitant low molecular weight heparin and selective serotonin reuptake inhibitor (SSRI) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs are coadministered with another anticoagulant.
Entrectinib: (Major) Concomitant use of citalopram and entrectinib increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Eptifibatide: (Moderate) Platelet aggregation may be impaired by SSRIs due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication in patients receiving platelet inhibitors. Monitor for signs and symptoms of bleeding.
Ergoloid Mesylates: (Moderate) Use citalopram and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Ergot alkaloids: (Moderate) Use citalopram and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Ergotamine: (Moderate) Use citalopram and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Ergotamine; Caffeine: (Moderate) Use citalopram and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Eribulin: (Major) Concomitant use of citalopram and eribulin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Erythromycin: (Major) Concomitant use of citalopram and erythromycin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Escitalopram: (Contraindicated) Due to the similarity in pharmacology of citalopram and escitalopram and the potential for serious adverse reactions, including serotonin syndrome, these selective serotonin reuptake inhibitors (SSRIs) should not be administered together. Also, both citalopram and escitalopram have been associated with QT prolongation and torsade de pointes (TdP). It is advisable to monitor for signs and symptoms of serotonin syndrome during an overlapping transition from one SSRI to another SSRI.
Eslicarbazepine: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with eslicarbazepine, a CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Esomeprazole: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with esomeprazole. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; esomeprazole is a weak inhibitor of CYP2C19.
Ethacrynic Acid: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Ethanol: (Major) Advise patients to avoid alcohol consumption while taking citalopram. Alcohol intolerance has been reported in patients receiving citalopram.
Etravirine: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with etravirine. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; etravirine is a weak inhibitor of CYP2C19.
Fedratinib: (Major) Because citalopram causes dose-dependent QT prolongation, the maximum daily dose of citalopram should not exceed 20 mg per day in patients receiving fedratinib. The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with fedratinib, a moderate CYP2C19 inhibitor.
Felbamate: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with felbamate, a CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Fenfluramine: (Moderate) Use fenfluramine and citalopram with caution due to an increased risk of serotonin syndrome. Monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Fenofibric Acid: (Minor) At therapeutic concentrations, fenofibric acid is a weak inhibitor of CYP2C19. Concomitant use of fenofibric acid with CYP2C19 substrates, such as citalopram, has not been formally studied. Fenofibric acid may theoretically increase plasma concentrations of CYP2C19 substrates and could lead to toxicity for drugs that have a narrow therapeutic range. The manufacturer of citalopram recommends 20 mg/day as the maximum daily dose of citalopram in patients receiving CYP2C19 inhibitors, due to the potential risk for QT prolongation. Monitor the therapeutic effect of citalopram during coadministration with fenofibric acid.
Fentanyl: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like fentanyl with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Fingolimod: (Major) Citalopram causes dose-dependent QT interval prolongation. According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. Fingolimod initiation results in decreased heart rate and may prolong the QT interval. If coadministration is necessary, after the first fingolimod dose, overnight monitoring with continuous ECG in a medical facility is advised for patients taking QT prolonging drugs with a known risk of torsades de pointes (TdP). Fingolimod has not been studied in patients treated with drugs that prolong the QT interval, but drugs that prolong the QT interval have been associated with cases of TdP in patients with bradycardia. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously with fingolimod include citalopram.
Flecainide: (Major) Concomitant use of flecainide and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Concomitant use may also increase the exposure of flecainide, further increasing the risk of adverse effects. Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. Flecainide is a CYP2D6 substrate and citalopram is a weak CYP2D6 inhibitor.
Fluconazole: (Contraindicated) Due to the risk of life-threatening arrhythmias such as torsade de pointes (TdP), coadministration of fluconazole with drugs that both prolong the QT interval and are CYP3A4 substrates, such as citalopram, is contraindicated. Fluconazole has been associated with QT prolongation and rare cases of TdP. Additonally, fluconazole is an inhibitor of CYP3A4. Coadministration may result in elevated plasma concentrations of citalopram, causing an increased risk for adverse events such as QT prolongation.
Fluoxetine: (Contraindicated) Due to the similarity in pharmacology of fluoxetine and citalopram and the potential for serious adverse reactions, including serotonin syndrome, these selective serotonin reuptake inhibitors (SSRIs) should not be administered together. Also, both fluoxetine and citalopram have been associated with QT prolongation and torsade de pointes (TdP). It is advisable to monitor for signs and symptoms of serotonin syndrome during an overlapping transition from one SSRI to another SSRI.
Fluphenazine: (Minor) Citalopram causes dose-dependent QT interval prolongation. According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended. Fluphenazine is associated with a possible risk for QT prolongation.
Fluvoxamine: (Contraindicated) Due to the similarity in pharmacology of citalopram and fluvoxamine and the potential for serious adverse reactions, including serotonin syndrome, QT prolongation, and torsade de pointes (TdP), these selective serotonin reuptake inhibitors (SSRIs) should not be administered together. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Also, both citalopram and fluvoxamine have been associated with QT prolongation and torsade de pointes (TdP), which could theoretically result in additive effects on the QT interval. It is advisable to monitor for signs and symptoms of serotonin syndrome during an overlapping transition from one SSRI to another SSRI.
Fondaparinux: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and anticoagulants like fondaparinux. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Foscarnet: (Major) Concomitant use of citalopram and foscarnet increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Fostemsavir: (Major) Due to the risk of QT prolongation, citalopram should be avoided in combination with fostemsavir. If concurrent therapy is considered essential, ECG monitoring is recommended. Citalopram causes dose-dependent QT prolongation. Supratherapeutic doses of fostemsavir (2,400 mg twice daily, four times the recommended daily dose) have been shown to cause QT prolongation. Fostemsavir causes dose-dependent QT prolongation.
Frovatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering frovatriptan with selective serotonin reuptake inhibitors (SSRIs). Serotonin syndrome has been reported during concurrent use of serotonin-receptor agonists and SSRIs. Some patients had used the combination previously without incident when serotonin syndrome occurred. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly after a dose increase of the SSRI or the addition of other serotonergic medications to an existing SSRI regimen. Discontinue the SSRI and frovatriptan and initiate symptomatic treatment if serotonin syndrome occurs.
Furosemide: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Gemifloxacin: (Major) Concurrent use of citalopram and gemifloxacin should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). If concurrent therapy is considered essential, ECG monitoring is recommended. Citalopram causes dose-dependent QT interval prolongation. Gemifloxacin may also prolong the QT interval in some patients. The maximal change in the QTc interval occurs approximately 5 to 10 hours following oral administration of gemifloxacin. The likelihood of QTc prolongation may increase with increasing dose of the drug; therefore, the recommended dose should not be exceeded especially in patients with renal or hepatic impairment where the Cmax and AUC are slightly higher.
Gemtuzumab Ozogamicin: (Major) Avoid coadministration of gemtuzumab ozogamicin with citalopram due to the potential for additive QT interval prolongation and risk of torsade de pointes (TdP). If coadministration is unavoidable, obtain an ECG and serum electrolytes prior to the start of and as needed during treatment. Although QT interval prolongation has not been reported with gemtuzumab ozogamicin, it has been reported with other drugs that contain calicheamicin. Citalopram causes dose-dependent QT interval prolongation.
Gilteritinib: (Major) Avoid coadministration of citalopram with gilteritinib due to the potential for decreased response to citalopram and an additive risk of QT prolongation. If concurrent therapy is considered essential, ECG monitoring is recommended. Gilteritinib inhibits human 5HT2B receptor or sigma nonspecific receptors, which may reduce the effects of drugs like citalopram that target these receptors. In addition, both drugs have been associated with QT prolongation.
Glasdegib: (Major) Avoid coadministration of glasdegib with citalopram due to the potential for additive QT prolongation. If coadministration cannot be avoided, monitor patients for increased risk of QT prolongation with increased frequency of ECG monitoring. Glasdegib therapy may result in QT prolongation and ventricular arrhythmias including ventricular fibrillation and ventricular tachycardia. Citalopram causes dose-dependent QT interval prolongation.
Goserelin: (Major) Concomitant use of citalopram and goserelin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Granisetron: (Major) Because of the potential risk and severity of serotonin syndrome or QT prolongation, use caution and monitor closely when administering granisetron with other drugs that have serotonergic properties or may prolong the QT interval, such as citalopram. If serotonin syndrome is suspected, discontinue granisetron and concurrent serotonergic agents and initiate appropriate medical treatment. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. In addition, granisetron has been associated with QT prolongation. According to the product labeling, use of granisetron in patients concurrently treated with drugs known to prolong the QT interval and/or are arrhythmogenic, may result in clinical consequences.
Guaifenesin; Hydrocodone: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like hydrocodone with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Halogenated Anesthetics: (Major) Concomitant use of halogenated anesthetics and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Haloperidol: (Major) Coadministration of citalopram and haloperidol should be avoided. Citalopram causes dose-dependent QT interval prolongation, and haloperidol is associated with a possible risk for QT prolongation and torsade de pointes (TdP). If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, because of the potential risk and severity of serotonin syndrome or neuroleptic malignant syndrome-like reactions, caution should be observed when administering citalopram with drugs that are dopamine antagonists such as haloperidol. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. In addition, citalopram mildly inhibits the CYP2D6. This can result in increased concentrations of some drugs metabolized via the same pathway, including haloperidol. Patients receiving these combinations should be monitored for the emergence of serotonin syndrome, neuroleptic malignant syndrome-like reactions, or other adverse effects.
Heparin: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and anticoagulants like heparin. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Histrelin: (Major) Concomitant use of citalopram and histrelin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Homatropine; Hydrocodone: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like hydrocodone with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Hydrocodone: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like hydrocodone with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Hydrocodone; Ibuprofen: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like hydrocodone with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Hydrocodone; Pseudoephedrine: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like hydrocodone with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Hydroxychloroquine: (Major) Concomitant use of hydroxychloroquine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Hydroxyzine: (Major) Concomitant use of citalopram and hydroxyzine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Contraindicated) According to the manufacturer of citalopram, treatment initiation with citalopram is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than citalopram (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving citalopram and requiring urgent treatment with IV methylene blue, citalopram should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Citalopram may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving SSRIs, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case describes a patient receiving citalopram who experienced agitation, restlessness, pupil dilation with sluggish response to light, myoclonic movements of the lower limbs, and brisk reflexes following an infusion of methylene blue, while another patient receiving paroxetine developed tachycardia, agitation, dystonia and abnormal eye movements. During a retrospective study of 193 surgical patients who had received a methylene blue injection, it was found that all 12 of the patients who experienced postoperative neurological sequelae had been taking a serotonin reuptake inhibitor preoperatively. One of the 12 patients experienced cardiopulmonary arrest and died. Of the remaining 181 patients who did not experience neurological sequelae, 8.8% were taking a serotonin reuptake inhibitor. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma. (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin.
Ibuprofen; Oxycodone: (Moderate) The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment. Discontinue the suspected drugs if serotonin syndrome is suspected and manage cliinically. There has been a case report of possible serotonin syndrome caused by the combination of oxycodone and selective serotonin reuptake inhbitors (SSRIs).
Ibutilide: (Major) Ibutilide administration can cause QT prolongation and torsades de pointes (TdP); proarrhythmic events should be anticipated. The potential for proarrhythmic events with ibutilide increases with the coadministration of other drugs that prolong the QT interval. Citalopram causes dose-dependent QT interval prolongation. According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended.
Iloperidone: (Major) Concurrent use of iloperidone and citalopram should be avoided if possible. Citalopram causes dose-dependent QT interval prolongation and iloperidone is associated with a risk for QT prolongation and torsade de pointes (TdP). According to the manufacturer of citalopram, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. However, if concurrent therapy is considered essential, ECG monitoring is recommended. In addition, citalopram is a weak inhibitor of CYP2D6, and increased plasma concentrations of antipsychotics partially metabolized via CYP2D6, such as iloperidone, may occur. Decreased metabolism of iloperidone may lead to clinically important adverse reactions of antipsychotics such as extrapyramidal symptoms.
Imipramine: (Major) Citalopram causes dose-dependent QT interval prolongation and tricyclic antidepressants are associated with a possible risk of QT prolongation and torsade de pointes (TdP). According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, because of the potential risk and severity of serotonin syndrome, caution should be observed when administering citalopram with other drugs that have serotonergic properties such as tricyclic antidepressants. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Clinicians should also be alert for pharmacokinetic interactions between tricyclic antidepressants (TCAs) and SSRIs. Citalopram is a weak inhibitor of CYP2D6, the isoenzyme responsible for metabolism of many of the tricyclic antidepressants. Coadministration of citalopram and imipramine did not significantly affect the plasma concentrations of either drug. However, the concentration of desipramine, the primary metabolite of imipramine, was increased by 50%. The clinical significance of the elevation in desipramine concentration is unknown. However, symptoms of toxicity, including seizures, have been reported when drugs from these 2 classes were used together. A decreased dosage of the TCA or the avoidance of concomitant SSRI therapy should be considered.
Indapamide: (Moderate) Monitor for signs and symptoms o f hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Inotuzumab Ozogamicin: (Major) Avoid coadministration of inotuzumab ozogamicin with citalopram due to the potential for additive QT interval prolongation and risk of torsade de pointes (TdP). If coadministration is unavoidable, obtain an ECG and serum electrolytes at baseline, after treatment initiation, and periodically during therapy. Inotuzumab has been associated with QT interval prolongation. Citalopram causes dose-dependent QT interval prolongation.
Iobenguane I 123: (Major) Discontinue medications that decrease norepinephrine uptake, such as selective serotonin reuptake inhibitors (SSRIs), for at least 5 biological half-lives prior to iobenguane I 123 administration. Consider medication tapering or additional supportive therapy as appropriate to minimize the risk for precipitating SSRI withdrawal symptoms. Medications that decrease the uptake of norepinephrine can cause false negative imaging results. Increasing the dose of iobenguane I 123 will not overcome any potential uptake limiting effect of this medication.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Isocarboxazid: (Contraindicated) Due to the risk of serotonin syndrome, monoamine oxidase inhibitors (MAOIs) intended to treat psychiatric disorders are contraindicated for use with selective serotonin reuptake inhibitors (SSRIs). MAOIs should not be used within 5 weeks of discontinuing treatment with fluoxetine or within 14 days of discontinuing treatment with other SSRIs. Conversely, SSRIs should not be initiated within 14 days of stopping an MAOI. Monitor the patient for serotonin-related effects during therapy transitions.
Isoflurane: (Major) Concomitant use of halogenated anesthetics and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Isoniazid, INH: (Major) The maximum adult dose of citalopram should not exceed 20 mg/day with isoniazid, INH, which inhibits CYP2C19. Concurrent use of isoniazid and citalopram, an SSRI, should be approached with caution. Coadministration of isoniazid, INH and citalopram may result in increased risk of QT prolongation from increased citalopram exposure. Isoniazid is also chemically related to iproniazid, a drug that was known to possess monoamine oxidase (MAO) inhibiting activity, and INH may produce clinical symptoms consistent with serotonergic excess when combined with citalopram, including serotonin syndrome. If serotonin syndrome occurs, all serotonergic drugs should be discontinued and appropriate medical treatment should be implemented.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) The maximum adult dose of citalopram should not exceed 20 mg/day with isoniazid, INH, which inhibits CYP2C19. Concurrent use of isoniazid and citalopram, an SSRI, should be approached with caution. Coadministration of isoniazid, INH and citalopram may result in increased risk of QT prolongation from increased citalopram exposure. Isoniazid is also chemically related to iproniazid, a drug that was known to possess monoamine oxidase (MAO) inhibiting activity, and INH may produce clinical symptoms consistent with serotonergic excess when combined with citalopram, including serotonin syndrome. If serotonin syndrome occurs, all serotonergic drugs should be discontinued and appropriate medical treatment should be implemented.
Isoniazid, INH; Rifampin: (Major) The maximum adult dose of citalopram should not exceed 20 mg/day with isoniazid, INH, which inhibits CYP2C19. Concurrent use of isoniazid and citalopram, an SSRI, should be approached with caution. Coadministration of isoniazid, INH and citalopram may result in increased risk of QT prolongation from increased citalopram exposure. Isoniazid is also chemically related to iproniazid, a drug that was known to possess monoamine oxidase (MAO) inhibiting activity, and INH may produce clinical symptoms consistent with serotonergic excess when combined with citalopram, including serotonin syndrome. If serotonin syndrome occurs, all serotonergic drugs should be discontinued and appropriate medical treatment should be implemented.
Itraconazole: (Major) Avoid coadministration of citalopram and itraconazole due to the potential for additive effects on the QT interval; increased exposure to citalopram is also possible. Both citalopram and itraconazole are associated with QT prolongation; coadministration may increase this risk. If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, because CYP3A4 is one of the primary enzymes involved in the metabolism of citalopram, coadministration of a strong CYP3A4 inhibitor like itraconazole might be expected to decrease the metabolism of citalopram. However, coadministration of another strong CYP3A4 inhibitor did not significantly affect the pharmacokinetics of citalopram.
Ivosidenib: (Major) Avoid coadministration of ivosidenib with citalopram due to an increased risk of QT prolongation. If concomitant use is unavoidable, monitor ECGs for QTc prolongation and monitor electrolytes; correct any electrolyte abnormalities as clinically appropriate. An interruption of therapy and dose reduction of ivosidenib may be necessary if QT prolongation occurs. Prolongation of the QTc interval and ventricular arrhythmias have been reported in patients treated with ivosidenib. Citalopram causes dose-dependent QT interval prolongation.
Ketoconazole: (Contraindicated) Avoid concomitant use of ketoconazole and citalopram due to an increased risk for torsade de pointes (TdP) and QT/QTc prolongation. Concomitant use of citalopram with drugs that cause QT prolongation, such as ketoconazole, can cause additional QT prolongation vs. either drug alone. Pharmacokinetic changes have been studied. Combined administration of racemic citalopram (40 mg) and ketoconazole (200 mg) decreased the Cmax and AUC of ketoconazole by 21% and 10%, respectively, and did not significantly affect the pharmacokinetics of citalopram.
Lansoprazole; Amoxicillin; Clarithromycin: (Major) Concomitant use of citalopram and clarithromycin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Lapatinib: (Major) Concurrent use of citalopram with lapatinib is not recommended due to the risk of QT prolongation. If concurrent therapy is considered essential, monitor ECGs for QT prolongation and monitor electrolytes; correct electrolyte abnormalities prior to treatment. Lapatinib has been associated with concentration-dependent QT prolongation; ventricular arrhythmias and torsade de pointes (TdP) have been reported in postmarketing experience with lapatinib. Citalopram also causes dose-dependent QT interval prolongation.
Lasmiditan: (Moderate) Serotonin syndrome may occur during coadministration of lasmiditan and selective serotonin reuptake inhibitors. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly after a dose increase or the addition of other serotonergic medications to an existing regimen. Discontinue all serotonergic agents if serotonin syndrome occurs and implement appropriate medical management.
Lefamulin: (Major) Avoid coadministration of lefamulin with citalopram as concurrent use may increase the risk of QT prolongation. If coadministration cannot be avoided, ECG monitoring is recommended during treatment. Lefamulin has a concentration dependent QTc prolongation effect. The pharmacodynamic interaction potential to prolong the QT interval of the electrocardiogram between lefamulin and other drugs that effect cardiac conduction is unknown. Citalopram causes dose-dependent QT interval prolongation.
Lenvatinib: (Major) Concomitant use of lenvatinib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Leuprolide: (Major) Concomitant use of leuprolide and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Leuprolide; Norethindrone: (Major) Concomitant use of leuprolide and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Levofloxacin: (Major) Concomitant use of levofloxacin and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Levoketoconazole: (Contraindicated) Avoid concomitant use of ketoconazole and citalopram due to an increased risk for torsade de pointes (TdP) and QT/QTc prolongation. Concomitant use of citalopram with drugs that cause QT prolongation, such as ketoconazole, can cause additional QT prolongation vs. either drug alone. Pharmacokinetic changes have been studied. Combined administration of racemic citalopram (40 mg) and ketoconazole (200 mg) decreased the Cmax and AUC of ketoconazole by 21% and 10%, respectively, and did not significantly affect the pharmacokinetics of citalopram.
Levomilnacipran: (Major) Because of the potential risk and severity of serotonin syndrome, concurrent use of levomilnacipran with other drugs that have serotonergic properties, such as selective serotonin reuptake inhibitors (SSRIs), should generally be avoided. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. If serotonin syndrome is suspected, levomilnacipran and concurrent serotonergic agents should be discontinued.
Levorphanol: (Moderate) Citalopram impairs metabolism via the CYP2D6 pathway at therapeutic doses. This can result in increased concentrations of drugs metabolized via the same pathway, including some opiate agonists.
Linezolid: (Contraindicated) According to the manufacturer of citalopram, treatment initiation with citalopram is contraindicated in patients currently receiving linezolid due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than citalopram (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving citalopram and requiring urgent treatment with linezolid, citalopram should be discontinued immediately and linezolid therapy initiated only if acceptable alternatives are not available and the potential benefits of linezolid outweigh the risks. The patient should be monitored for serotonin syndrome for two weeks or until 24 hours after the last dose of linezolid, whichever comes first. Citalopram may be re-initiated 24 hours after the last dose of linezolid. Linezolid is an antibiotic that is also a non-selective monoamine oxidase (MAO) inhibitor. Since monoamine oxidase type A deaminates serotonin, administration of a non-selective MAO inhibitor concurrently with citalopram can lead to serious reactions including serotonin syndrome or neuroleptic malignant syndrome-like reactions. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Serotonin syndrome has been reported in patients receiving either citalopram, escitalopram, fluoxetine, or paroxetine in combination with linezolid.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Lithium: (Major) Concomitant use of citalopram and lithium increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. Monitor patients for signs and symptoms of serotonin syndrome during concomitant use, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome.
Lofexidine: (Major) Concomitant use of lofexidine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Lonafarnib: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with lonafarnib. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; lonafarnib is a moderate inhibitor of CYP2C19.
Loperamide: (Major) Concomitant use of citalopram and loperamide increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Loperamide; Simethicone: (Major) Concomitant use of citalopram and loperamide increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Lopinavir; Ritonavir: (Major) Concomitant use of lopinavir and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Lorcaserin: (Major) Based on the mechanism of action of lorcaserin and the theoretical potential for serotonin syndrome, use with extreme caution in combination with other drugs that may affect the serotonergic neurotransmitter systems, including, selective serotonin reuptake inhibitors (SSRIs). Patients receiving this combination should be monitored for the emergence of serotonin syndrome or Neuroleptic Malignant Syndrome (NMS) like signs and symptoms.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Low Molecular Weight Heparins: (Moderate) Monitor for signs and symptoms of bleeding during concomitant low molecular weight heparin and selective serotonin reuptake inhibitor (SSRI) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs are coadministered with another anticoagulant.
Luliconazole: (Moderate) Theoretically, luliconazole may increase the side effects of citalopram, which is a CYP2C19 and CYP3A4 substrate. Monitor patients for adverse effects of citalopram, such as QT prolongation, serotonin syndrome, and neuroleptic malignant syndrome. In vitro, therapeutic doses of luliconazole inhibit the activity of CYP2C19 and CYP3A4 and small systemic concentrations may be noted with topical application, particularly when applied to patients with moderate to severe tinea cruris. No in vivo drug interaction trials were conducted prior to the approval of luliconazole.
Lumacaftor; Ivacaftor: (Moderate) Lumacaftor; ivacaftor may reduce the efficacy of citalopram by decreasing its systemic exposure. If used together, a higher dose of citalopram may be required to obtain the desired therapeutic effect. Do not exceed the recommended maximum dose. Citalopram is a CYP3A and CYP2C19 substrate. Lumacaftor; ivacaftor is a strong inducer of CYP3A and has the potential to induce CYP2C19.
Macimorelin: (Major) Avoid concurrent administration of macimorelin with drugs that prolong the QT interval, such as citalopram. Use of these drugs together may increase the risk of developing torsade de pointes-type ventricular tachycardia. Sufficient washout time of drugs that are known to prolong the QT interval prior to administration of macimorelin is recommended. Treatment with macimorelin has been associated with an increase in the corrected QT (QTc) interval. Citalopram causes dose-dependent QT interval prolongation.
Magnesium Salicylate: (Moderate) Monitor for signs and symptoms of bleeding during concomitant magnesium salicylate and selective serotonin reuptake inhibitor (SSRI) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding.
Maprotiline: (Major) Because citalopram and maprotiline are associated with a possible risk for QT prolongation and torsade de pointes (TdP), these combinations should be used cautiously and with close monitoring. Monitoring of the ECG is recommended in patients receiving citalopram with other drugs that may prolong the QT interval such as maprotiline. CYP2D6, the primary isoenzyme responsible for the metabolism of maprotiline, is inhibited to some extent by citalopram. Patients receiving maprotiline should be monitored closely for toxicity if an SSRI is added.
Mefloquine: (Major) Concurrent use of citalopram and mefloquine should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). If concurrent therapy is considered essential, ECG monitoring is recommended. Citalopram causes dose-dependent QT interval prolongation. There is evidence that the use of halofantrine after mefloquine also causes significant lengthening of the QTc interval. However, use of mefloquine alone has not been reported to cause QT prolongation.
Meperidine: (Moderate) If concomitant use of meperidine and citalopram is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Metaxalone: (Moderate) Concomitant use of selective serotonin reuptake inhibitors (SSRIs) and metaxalone may increase the risk for serotonin syndrome. Monitor patients for serotonin syndrome if concomitant use is necessary.
Methadone: (Major) Coadministration may increase the risk of serotonin syndrome, QT prolongation, or torsade de pointes (TdP). Citalopram causes dose-dependent QT interval prolongation. According to the manufacturer of citalopram, ECG monitoring is recommended in patients receiving concurrent drugs that prolong the QT interval. The need to coadminister methadone with drugs known to prolong the QT interval should be done with extreme caution and a careful assessment of treatment risks versus benefits. Methadone is associated with an increased risk for QT prolongation and TdP, especially at higher doses (greater than 200 mg/day but averaging approximately 400 mg/day in adult patients). Most cases involve patients being treated for pain with large, multiple daily doses of methadone, although cases have been reported in patients receiving doses commonly used for maintenance treatment of opioid addiction. In addition, both citalopram and methadone have central serotonergic properties and serotonin syndrome is possible. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. If serotonin syndrome occurs, all serotonergic agents should be discontinued and appropriate medical treatment should be implemented.
Methazolamide: (Moderate) Caution is advisable during concurrent use of citalopram and methazolamide as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with citalopram.
Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Contraindicated) According to the manufacturer of citalopram, treatment initiation with citalopram is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than citalopram (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving citalopram and requiring urgent treatment with IV methylene blue, citalopram should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Citalopram may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving SSRIs, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case describes a patient receiving citalopram who experienced agitation, restlessness, pupil dilation with sluggish response to light, myoclonic movements of the lower limbs, and brisk reflexes following an infusion of methylene blue, while another patient receiving paroxetine developed tachycardia, agitation, dystonia and abnormal eye movements. During a retrospective study of 193 surgical patients who had received a methylene blue injection, it was found that all 12 of the patients who experienced postoperative neurological sequelae had been taking a serotonin reuptake inhibitor preoperatively. One of the 12 patients experienced cardiopulmonary arrest and died. Of the remaining 181 patients who did not experience neurological sequelae, 8.8% were taking a serotonin reuptake inhibitor. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma.
Methyclothiazide: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Methylene Blue: (Contraindicated) According to the manufacturer of citalopram, treatment initiation with citalopram is contraindicated in patients currently receiving intravenous (IV) methylene blue due to an increased risk of serotonin syndrome. If urgent psychiatric treatment is required, interventions other than citalopram (e.g., alternative medication, hospitalization) should be considered. Conversely, in patients receiving citalopram and requiring urgent treatment with IV methylene blue, citalopram should be discontinued immediately and methylene blue therapy initiated only if acceptable alternatives are not available and the potential benefits outweigh the risks. The patient should be monitored for serotonin syndrome for 2 weeks or until 24 hours after the last dose of methylene blue, whichever comes first. Citalopram may be re-initiated 24 hours after the last dose of methylene blue. Results from an in vitro study indicate that methylene blue is a potent, reversible inhibitor of the monoamine oxidase type A enzyme (MAO-A). MAO-A is responsible for the metabolism of serotonin; therefore, concurrent use of an MAO-A inhibitor with a serotonergic agent may result in a clinically significant interaction. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent, in patients receiving SSRIs, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with IV methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. One case describes a patient receiving citalopram who experienced agitation, restlessness, pupil dilation with sluggish response to light, myoclonic movements of the lower limbs, and brisk reflexes following an infusion of methylene blue, while another patient receiving paroxetine developed tachycardia, agitation, dystonia and abnormal eye movements. During a retrospective study of 193 surgical patients who had received a methylene blue injection, it was found that all 12 of the patients who experienced postoperative neurological sequelae had been taking a serotonin reuptake inhibitor preoperatively. One of the 12 patients experienced cardiopulmonary arrest and died. Of the remaining 181 patients who did not experience neurological sequelae, 8.8% were taking a serotonin reuptake inhibitor. Published interaction reports between IV methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and coma. Signs and symptoms of serotonin syndrome include fever, diaphoresis, shivering, myoclonus, tremor, tachycardia, diarrhea, nausea, headache, incoordination, mental status changes (e.g., agitation, confusion), hyperreflexia, seizures, and coma.
Methylergonovine: (Moderate) Use citalopram and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Methylphenidate Derivatives: (Moderate) Caution should be observed when coadministering methylphenidate derivatives and the selective serotonin reuptake inhibitors (SSRIs). There are postmarketing reports of serotonin syndrome during concurrent use of methylphenidate derivatives with other serotonergic medications. Human pharmacologic studies have shown that methylphenidate may inhibit the metabolism of some SSRIs and downward dose adjustment of the SSRI may be required in some patients. Inform patients of the possible increased risk and monitor for the emergence of serotonin syndrome. If serotonin syndrome occurs, serotonergic agents should be discontinued and appropriate medical management should be implemented.
Metoclopramide: (Moderate) Concomitant use of metoclopramide and selective serotonin reuptake inhibitors (SSRIs) such as citalopram may increase the risk for serotonin syndrome. Monitor patients for serotonin syndrome if concomitant use is necessary. In rare cases postmarketing, NMS-like symptoms, which may overlap with serotonin syndrome symptoms, have been reported with metoclopramide when used with serotonergic agents.
Metolazone: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Metoprolol: (Minor) Citalopram mildly inhibits the hepatic CYP2D6 isoenzyme at therapeutic doses. This can result in increased concentrations of drugs metabolized via the same pathway, including metoprolol.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia. (Minor) Citalopram mildly inhibits the hepatic CYP2D6 isoenzyme at therapeutic doses. This can result in increased concentrations of drugs metabolized via the same pathway, including metoprolol.
Metronidazole: (Major) Concomitant use of metronidazole and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Mexiletine: (Moderate) Citalopram mildly inhibits the hepatic CYP2D6 isoenzyme at therapeutic doses. This can result in increased concentrations of drugs metabolized via the same pathway, including mexiletine.
Midostaurin: (Major) Concomitant use of citalopram and midostaurin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Mifepristone: (Major) Concomitant use of mifepristone and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Milnacipran: (Major) Because of the potential risk and severity of serotonin syndrome, concurrent use of milnacipran with other drugs that have serotonergic properties, such as the selective serotonin reuptake inhibitors (SSRIs), should generally be avoided. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. If serotonin syndrome is suspected, milnacipran and concurrent serotonergic agents should be discontinued.
Mirtazapine: (Major) Concomitant use of mirtazapine and citalopram may increase the risk of serotonin syndrome, QT prolongation, and torsade de pointes. Citalopram causes dose-dependent QT interval prolongation. The manufacturer of citalopram recommends avoidance of other drugs that prolong the QT interval. If concurrent therapy is required, ECG monitoring is recommended. Cases of QT prolongation, TdP, ventricular tachycardia, and sudden death have been reported during use of mirtazapine, primarily after overdose or in patients with risk factors for QT prolongation (e.g., concurrent use of other medications associated with QT prolongation). Both mirtazapine and SSRIs such as citalopram have central serotonin-enhancing effects, and case reports suggest that serotonin syndrome is possible. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. If serotonin syndrome occurs, all serotonergic agents should be discontinued and appropriate medical treatment should be implemented.
Mobocertinib: (Major) Concomitant use of mobocertinib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Modafinil: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with modafinil, a CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Monoamine oxidase inhibitors: (Contraindicated) Due to the risk of serotonin syndrome, monoamine oxidase inhibitors (MAOIs) intended to treat psychiatric disorders are contraindicated for use with selective serotonin reuptake inhibitors (SSRIs). MAOIs should not be used within 5 weeks of discontinuing treatment with fluoxetine or within 14 days of discontinuing treatment with other SSRIs. Conversely, SSRIs should not be initiated within 14 days of stopping an MAOI. Monitor the patient for serotonin-related effects during therapy transitions.
Morphine: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like morphine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Morphine; Naltrexone: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like morphine with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Moxifloxacin: (Major) Concomitant use of citalopram and moxifloxacin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Naproxen; Esomeprazole: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with esomeprazole. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; esomeprazole is a weak inhibitor of CYP2C19.
Naratriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering naratriptan with selective serotonin reuptake inhibitors (SSRIs). Serotonin syndrome has been reported during concurrent use of serotonin-receptor agonists ("triptans") and SSRIs. Inform patients of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly after initiation of SSRI treatment or any dose increases. Discontinue serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Nefazodone: (Major) Because of the potential risk and severity of serotonin syndrome, caution should be observed when coadministering drugs that have serotonergic properties such as nefazodone and citalopram. In addition, nefazodone is a strong inhibitor of CYP3A4 and citalopram is a partial CYP3A4 substrate. Concurrent use may increase the risk of citalopram-related adverse effects such as QT prolongation and torsade de pointes (TdP). Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. At least one case report of serotonin syndrome from the concurrent use of nefazodone and a selective serotonin reuptake inhibitor (i.e., paroxetine) has been published. Additionally, when a 200 mg dose of nefazodone was administered to subjects who had been receiving fluoxetine for 1 week, there was an increased incidence of transient serotonin-related adverse events. If serotonin syndrome occurs, all serotonergic agents should be discontinued and appropriate medical treatment should be implemented.
Netupitant, Fosnetupitant; Palonosetron: (Major) Because of the potential risk and severity of serotonin syndrome, use caution and monitor closely when administering palonosetron with other drugs that have serotonergic properties, such as citalopram. If serotonin syndrome is suspected, discontinue palonosetron and concurrent serotonergic agents and initiate appropriate medical treatment. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death.
Nicardipine: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with nicardipine, a CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Nilotinib: (Major) Concomitant use of citalopram and nilotinib increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Nitroglycerin: (Minor) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as antidepressants. Patients should be monitored more closely for hypotension if nitroglycerin is used concurrently with antidepressants.
Nonsteroidal antiinflammatory drugs: (Moderate) Monitor for signs and symptoms of bleeding during concomitant selective serotonin reuptake inhibitor (SSRI) and nonsteroidal antiinflammatory drug (NSAID) use due to increased risk for bleeding. Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding.
Nortriptyline: (Major) Citalopram causes dose-dependent QT interval prolongation and tricyclic antidepressants are associated with a possible risk of QT prolongation and torsade de pointes (TdP). According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, because of the potential risk and severity of serotonin syndrome, caution should be observed when administering citalopram with other drugs that have serotonergic properties such as tricyclic antidepressants. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Clinicians should also be alert for pharmacokinetic interactions between tricyclic antidepressants (TCAs) and SSRIs. Citalopram is a weak inhibitor of CYP2D6, the isoenzyme responsible for metabolism of many of the tricyclic antidepressants. Coadministration of citalopram and imipramine did not significantly affect the plasma concentrations of either drug. However, the concentration of desipramine, the primary metabolite of imipramine, was increased by 50%. The clinical significance of the elevation in desipramine concentration is unknown. However, symptoms of toxicity, including seizures, have been reported when drugs from these 2 classes were used together. A decreased dosage of the TCA or the avoidance of concomitant SSRI therapy should be considered.
Ofloxacin: (Major) Concomitant use of citalopram and ofloxacin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Olanzapine: (Major) Concomitant use of olanzapine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Olanzapine; Fluoxetine: (Contraindicated) Due to the similarity in pharmacology of fluoxetine and citalopram and the potential for serious adverse reactions, including serotonin syndrome, these selective serotonin reuptake inhibitors (SSRIs) should not be administered together. Also, both fluoxetine and citalopram have been associated with QT prolongation and torsade de pointes (TdP). It is advisable to monitor for signs and symptoms of serotonin syndrome during an overlapping transition from one SSRI to another SSRI. (Major) Concomitant use of olanzapine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Olanzapine; Samidorphan: (Major) Concomitant use of olanzapine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Oliceridine: (Moderate) If concomitant use of oliceridine and citalopram is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Omeprazole: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with omeprazole. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; omeprazole is a weak inhibitor of CYP2C19.
Omeprazole; Amoxicillin; Rifabutin: (Moderate) Citalopram is metabolized by CYP2C19 and CYP3A4. Rifabutin can induce the metabolism of various CYP 450 isoenzymes, including those involved in citalopram metabolism. The possibility of an increase in the clearance of citalopram should be considered if coadministered with rifabutin. (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with omeprazole. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; omeprazole is a weak inhibitor of CYP2C19.
Omeprazole; Sodium Bicarbonate: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with omeprazole. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; omeprazole is a weak inhibitor of CYP2C19.
Ondansetron: (Major) Concomitant use of ondansetron and citalopram increases the risk of QT/QTc prolongation, torsade de pointes (TdP), and serotonin syndrome. Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. If concomitant use is necessary, consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, and monitor for serotonin syndrome.
Oritavancin: (Moderate) Coadministration of oritavancin and citalopram may result in increases or decreases in citalopram exposure and may increase side effects or decrease efficacy of citalopram. Citalopram is metabolized by CYP3A4 and CYP2C19. Oritavancin weakly induces CYP3A4, while weakly inhibiting CYP2C19. If these drugs are administered concurrently, monitor the patient for signs of toxicity or lack of efficacy.
Osilodrostat: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with osilodrostat. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; osilodrostat is a weak inhibitor of CYP2C19.
Osimertinib: (Major) Concomitant use of osimertinib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Oxaliplatin: (Major) Concomitant use of oxaliplatin and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Oxcarbazepine: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with oxcarbazepine, a CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Oxycodone: (Moderate) The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. If concomitant use is warranted, carefully observe the patient, particularly during treatment initiation and dose adjustment. Discontinue the suspected drugs if serotonin syndrome is suspected and manage cliinically. There has been a case report of possible serotonin syndrome caused by the combination of oxycodone and selective serotonin reuptake inhbitors (SSRIs).
Ozanimod: (Major) In general, do not initiate ozanimod in patients taking citalopram due to the risk of additive bradycardia, QT prolongation, and torsade de pointes (TdP). Additionally, there is a potential for hypertensive crisis and serotonin syndrome. If treatment initiation is considered, seek advice from a cardiologist and monitor for hypertension and serotonergic effects. Ozanimod is a monoamine oxidase inhibitor that may result in a transient decrease in heart rate and atrioventricular conduction delays. Ozanimod has not been studied in patients taking concurrent QT prolonging drugs; however, QT prolonging drugs have been associated with TdP in patients with bradycardia. Citalopram is a serotonergic drug that is associated with QT prolongation.
Pacritinib: (Major) Concomitant use of pacritinib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Paliperidone: (Major) Concomitant use of paliperidone and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Palonosetron: (Major) Because of the potential risk and severity of serotonin syndrome, use caution and monitor closely when administering palonosetron with other drugs that have serotonergic properties, such as citalopram. If serotonin syndrome is suspected, discontinue palonosetron and concurrent serotonergic agents and initiate appropriate medical treatment. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death.
Panobinostat: (Major) Concomitant use of panobinostat and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Paroxetine: (Moderate) Monitor patients for an increase in paroxetine-related adverse reactions and signs and symptoms of serotonin syndrome during concomitant use of paroxetine and citalopram, particularly during treatment initiation and dosage increases. If serotonin syndrome occurs, consider discontinuation of therapy. The concomitant use of serotonergic drugs increases the risk of serotonin syndrome. Concomitant use may increase paroxetine exposure. Paroxetine is a CYP2D6 substrate and citalopram is a weak CYP2D6 inhibitor.
Pasireotide: (Major) Concomitant use of pasireotide and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Pazopanib: (Major) Coadministration of pazopanib and other drugs that prolongs the QT interval, such as citalopram, is not advised; pazopanib has been reported to prolongs the QT interval. If pazopanib and the other drug must be continued, ECG monitoring is recommended; closely monitor the patient for QT interval prolongation. Pazopanib is a weak inhibitor of CYP3A4. Coadministration of pazopanib and citalopram, a CYP3A4 substrate, may cause an increase in systemic concentrations of citalopram. Use caution if coadministration is necessary.
Pentamidine: (Major) Citalopram causes dose-dependent QT interval prolongation. According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended. Drugs with a possible risk for QT prolongation and torsade de pointes (TdP) that should be used cautiously with citalopram include intravenous pentamidine, which has been associated with QT prolongation.
Pentazocine: (Major) Because of the potential risk and severity of serotonin syndrome reactions, caution should be observed when administering selective serotonin reuptake inhibitors (SSRIs) with other drugs that have serotonergic properties such as pentazocine. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. If serotonin syndrome occurs, discontinue the offending agent(s) and institute appropriate therapy.
Pentazocine; Naloxone: (Major) Because of the potential risk and severity of serotonin syndrome reactions, caution should be observed when administering selective serotonin reuptake inhibitors (SSRIs) with other drugs that have serotonergic properties such as pentazocine. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. If serotonin syndrome occurs, discontinue the offending agent(s) and institute appropriate therapy.
Pentosan: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and pentosan, which has weak anticoagulant properties. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Perphenazine: (Minor) Citalopram causes dose-dependent QT interval prolongation and perphenazine is associated with a possible risk for QT prolongation and torsade de pointes (TdP). Per the manufacturer of citalopram, ECG monitoring is recommended in patients receiving concurrent drugs that prolong the QT interval.
Perphenazine; Amitriptyline: (Major) The use of tricyclic antidepressants (TCAs) and citalopram together may increase the risk of QT prolongation and serotonin syndrome; consider a decreased dosage of the TCA or the avoidance of concomitant SSRI therapy. If concomitant use is necessary, consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, and monitor for serotonin syndrome. If serotonin syndrome is suspected, discontinue all serotonergic agents. Citalopram is a weak inhibitor of CYP2D6 that has been associated with a risk of QT prolongation and torsade de pointes (TdP). CYP2D6 is responsible for metabolism of many of the TCAs; elevated TCA concentrations may potentially occur. TCAs share pharmacologic properties similar to the Class IA antiarrhythmic agents and may prolong the QT interval, particularly in overdose or with higher-dose prescription therapy (elevated serum concentrations). (Minor) Citalopram causes dose-dependent QT interval prolongation and perphenazine is associated with a possible risk for QT prolongation and torsade de pointes (TdP). Per the manufacturer of citalopram, ECG monitoring is recommended in patients receiving concurrent drugs that prolong the QT interval.
Phenelzine: (Contraindicated) Due to the risk of serotonin syndrome, monoamine oxidase inhibitors (MAOIs) intended to treat psychiatric disorders are contraindicated for use with selective serotonin reuptake inhibitors (SSRIs). MAOIs should not be used within 5 weeks of discontinuing treatment with fluoxetine or within 14 days of discontinuing treatment with other SSRIs. Conversely, SSRIs should not be initiated within 14 days of stopping an MAOI. Monitor the patient for serotonin-related effects during therapy transitions.
Phentermine: (Moderate) Use phentermine and selective serotonin reuptake inhibitors (SSRIs) together with caution due to a potential for serotonin syndrome. Monitor weight, cardiovascular status, and for potential serotonergic adverse effects. Phentermine is related to the amphetamines, and there has been historical concern that phentermine might exhibit potential to cause serotonin syndrome when combined with serotonergic agents. However, recent data suggest that phentermine's effect on MAO inhibition and serotonin augmentation is minimal at therapeutic doses and some large controlled clinical studies have allowed patients to start phentermine-based therapy for obesity along with their SSRI as long as the antidepressant dose had been stable for at least 3 months prior. Such therapy was generally well-tolerated, especially at lower phentermine doses. Because depression and obesity often coexist, the study data may be important to providing optimal co-therapies.
Phentermine; Topiramate: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with topiramate. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; topiramate is a weak inhibitor of CYP2C19. (Moderate) Use phentermine and selective serotonin reuptake inhibitors (SSRIs) together with caution due to a potential for serotonin syndrome. Monitor weight, cardiovascular status, and for potential serotonergic adverse effects. Phentermine is related to the amphetamines, and there has been historical concern that phentermine might exhibit potential to cause serotonin syndrome when combined with serotonergic agents. However, recent data suggest that phentermine's effect on MAO inhibition and serotonin augmentation is minimal at therapeutic doses and some large controlled clinical studies have allowed patients to start phentermine-based therapy for obesity along with their SSRI as long as the antidepressant dose had been stable for at least 3 months prior. Such therapy was generally well-tolerated, especially at lower phentermine doses. Because depression and obesity often coexist, the study data may be important to providing optimal co-therapies.
Pimavanserin: (Major) Concomitant use of pimavanserin and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Pimozide: (Contraindicated) Pimozide is contraindicated for use with selective serotonin reuptake inhibitors (SSRIs) due to an increased risk of QT prolongation and torsade de pointes (TdP). Pimozide is thought to be primarily metabolized through CYP3A4, and to a lesser extent, CYP1A2 and CYP2D6. Elevated plasma concentrations of pimozide occurring through inhibition of one or more of these isoenzymes by SSRIs can lead to QT prolongation, ventricular arrhythmias, and sudden death. Additionally, most SSRIs are also associated with QT prolongation, further increasing the risk of additive QT prolongation.
Pirfenidone: (Minor) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with pirfenidone, a weak in vitro CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Pirtobrutinib: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with pirtobrutinib. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; pirtobrutinib is a weak inhibitor of CYP2C19.
Pitolisant: (Major) Concomitant use of pitolisant and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Ponesimod: (Major) In general, do not initiate ponesimod in patients taking citalopram due to the risk of additive bradycardia, QT prolongation, and torsade de pointes (TdP). If treatment initiation is considered, seek advice from a cardiologist. Ponesimod initiation may result in a transient decrease in heart rate and atrioventricular conduction delays. Ponesimod has not been studied in patients taking concurrent QT prolonging drugs; however, QT prolonging drugs have been associated with TdP in patients with bradycardia.
Posaconazole: (Contraindicated) The concurrent use of posaconazole and citalopram is contraindicated due to the risk of life threatening arrhythmias such as torsade de pointes (TdP). Posaconazole is a potent inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of citalopram. Using these drugs in combination may result in elevated citalopram plasma concentrations, causing an increased risk for adverse events, such as QT prolongation. Additionally, posaconazole has been associated with prolongation of the QT interval as well as rare cases of TdP; avoid use with other drugs that may prolong the QT interval and are metabolized through CYP3A4, such as citalopram.
Prasugrel: (Moderate) Platelet aggregation may be impaired by selective serotonin reuptake inhibitors (SSRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication in patients receiving prasugrel. Patients should be instructed to monitor for signs and symptoms of bleeding while taking an SSRI concurrently with an antiplatelet medication and to promptly report any bleeding events to the practitioner.
Primaquine: (Major) Concomitant use of primaquine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Procainamide: (Major) Concomitant use of procainamide and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Procarbazine: (Major) Procarbazine is a weak monoamine oxidase inhibitor (MAOI). Although procarbazine appears to be less likely than other MAOIs to produce serious drug interactions, clinicians should avoid the use of selective serotonin reuptake inhibitors (SSRIs) in patients receiving MAOIs. Fatalities have been reported when fluoxetine was administered to patients receiving MAOIs. Confusion, seizures, severe hypertension, and other, less severe symptoms have also been reported with this drug combination. Non-selective MAOIs inhibit both MAO types A and B. Since serotonin is metabolized by MAO type A, it is thought that this drug interaction may lead to serotonin syndrome or neuroleptic malignant syndrome-like reactions. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. At least 2 weeks should elapse between the discontinuation of MAOI therapy and the start of therapy with an SSRI except fluoxetine. At least 5 weeks should elapse between the discontinuation of fluoxetine therapy and commencement of MAOI therapy. This 5-week period is needed because of the long half-lives of fluoxetine and its principle metabolite norfluoxetine.
Prochlorperazine: (Minor) Concurrent use of citalopram and prochlorperazine should be avoided. Citalopram causes dose-dependent QT interval prolongation and phenothiazines, such as prochlorperazine, have been associated with a possible risk for QT prolongation and/or torsade de pointes (TdP). According to the manufacturer of citalopram, ECG monitoring is recommended in patients receiving concurrent drugs that prolong the QT interval. In addition, because of the potential risk and severity of serotonin syndrome or neuroleptic malignant syndrome-like reactions, caution should be observed when administering citalopram with drugs that are dopamine antagonists such as phenothiazines. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. In addition, citalopram mildly inhibits the hepatic CYP2D6 isoenzyme at therapeutic doses. This can result in increased concentrations of some drugs metabolized via the same pathway, including phenothiazines. Patients receiving these combinations should be monitored for the emergence of serotonin syndrome, neuroleptic malignant syndrome-like reactions, or other adverse effects.
Promethazine: (Major) Concomitant use of promethazine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Promethazine; Dextromethorphan: (Major) Concomitant use of promethazine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering dextromethorphan with citalopram. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Promethazine; Phenylephrine: (Major) Concomitant use of promethazine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Propafenone: (Major) Concomitant use of propafenone and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). In addition, concurrent use may increase propafenone exposure and therefore increase the risk of proarrhythmias. Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. Avoid simultaneous use of propafenone and citalopram with a CYP3A4 inhibitor. Propafenone is a CYP3A4 and a CYP2D6 substrate and citalopram is a weak CYP2D6 inhibitor.
Propranolol: (Minor) Citalopram mildly inhibits the hepatic CYP2D6 isoenzyme at therapeutic doses. This can result in increased concentrations of drugs metabolized via the same pathway, including propranolol. Increased serum levels of the beta-blockers could result in alterations in cardioselectivity or other clinical effects.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia. (Minor) Citalopram mildly inhibits the hepatic CYP2D6 isoenzyme at therapeutic doses. This can result in increased concentrations of drugs metabolized via the same pathway, including propranolol. Increased serum levels of the beta-blockers could result in alterations in cardioselectivity or other clinical effects.
Protriptyline: (Major) Citalopram causes dose-dependent QT interval prolongation and tricyclic antidepressants are associated with a possible risk of QT prolongation and torsade de pointes (TdP). According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, because of the potential risk and severity of serotonin syndrome, caution should be observed when administering citalopram with other drugs that have serotonergic properties such as tricyclic antidepressants. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Clinicians should also be alert for pharmacokinetic interactions between tricyclic antidepressants (TCAs) and SSRIs. Citalopram is a weak inhibitor of CYP2D6, the isoenzyme responsible for metabolism of many of the tricyclic antidepressants. Coadministration of citalopram and imipramine did not significantly affect the plasma concentrations of either drug. However, the concentration of desipramine, the primary metabolite of imipramine, was increased by 50%. The clinical significance of the elevation in desipramine concentration is unknown. However, symptoms of toxicity, including seizures, have been reported when drugs from these 2 classes were used together. A decreased dosage of the TCA or the avoidance of concomitant SSRI therapy should be considered.
Quetiapine: (Major) Concurrent use of quetiapine and citalopram should be avoided if possible. Citalopram causes dose-dependent QT interval prolongation and quetiapine is associated with a risk for QT prolongation and torsade de pointes (TdP). According to the manufacturer of citalopram, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. However, if concurrent therapy is considered essential, ECG monitoring is recommended.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Quinidine: (Major) Concomitant use of quinidine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Quinine: (Major) Concurrent use of quinine and citalopram should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). If concurrent therapy is considered essential, ECG monitoring is recommended. Quinine has been associated with prolongation of the QT interval and rare cases of TdP. Citalopram also causes dose-dependent QT interval prolongation. In addition, concentrations of citalopram may be increased with concomitant use of quinine. Citalopram is a CYP3A4 and CYP2D6 substrate and quinine is an inhibitor of both enzymes.
Quizartinib: (Major) Concomitant use of quizartinib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Rabeprazole: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with rabeprazole, a CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Ranolazine: (Major) Citalopram causes dose-dependent QT interval prolongation. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously with citalopram include ranolazine. Ranolazine is associated with dose- and plasma concentration-related increases in the QTc interval. The mean increase in QTc is about 6 milliseconds, measured at the tmax of the maximum dosage (1000 mg PO twice daily). However, in 5% of the population studied, increases in the QTc of at least 15 milliseconds have been reported. Although there are no studies examining the effects of ranolazine in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation. Ranolazine is metabolized mainly by CYP3A and to a lesser extent by CYP2D6. Citalopram is a known CYP2D6 inhibitor; coadministration may result in increased plasma concentrations of ranolazine. The manufacturer specifies that no dosage adjustment of ranolazine is necessary when coadministering CYP2D6 inhibitors. According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended.
Rasagiline: (Major) It is recommended to avoid concurrent use of rasagiline and selective serotonin reuptake inhibitors (SSRIs). Severe CNS toxicity with hyperpyrexia has been reported during concurrent use of antidepressants and selective or non-selective MAOIs. During postmarketing use of rasagiline, non-fatal cases of serotonin syndrome have been reported during concomitant antidepressant administration. At least 2 weeks should elapse between stopping rasagiline treatment and beginning therapy with any SSRI. Conversely, when discontinuing an SSRI, it is advisable to wait the length of 4 to 5 half-lives of the individual agent being discontinued prior to initiation with rasagiline. At least 5 weeks should elapse between the discontinuation of fluoxetine therapy and initiation of rasagiline. If coadministration of rasagiline and fluvoxamine is required, do not exceed a rasagiline dose of 0.5 mg once daily. Rasagiline is primarily metabolized by CYP1A2; fluvoxamine is a strong CYP1A2 inhibitor. When rasagiline was administered with another strong CYP1A2 inhibitor, the AUC of rasagiline increased by 83%.
Relugolix: (Major) Concomitant use of relugolix and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Relugolix; Estradiol; Norethindrone acetate: (Major) Concomitant use of relugolix and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Remifentanil: (Moderate) If concomitant use of remifentanil and selective serotonin reuptake inhibitors (SSRIs) is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Reteplase, r-PA: (Moderate) Platelet aggregation may be impaired by selective serotonin reuptake inhibitors (SSRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication in patients receiving thrombolytic agents. Patients should be closely monitored for signs and symptoms of bleeding when a thrombolytic agent is administered with an SSRI.
Ribociclib: (Major) Concomitant use of ribociclib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Ribociclib; Letrozole: (Major) Concomitant use of ribociclib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Rifabutin: (Moderate) Citalopram is metabolized by CYP2C19 and CYP3A4. Rifabutin can induce the metabolism of various CYP 450 isoenzymes, including those involved in citalopram metabolism. The possibility of an increase in the clearance of citalopram should be considered if coadministered with rifabutin.
Rilpivirine: (Major) Concomitant use of rilpivirine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with rilpivirine is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Risperidone: (Major) Concomitant use of risperidone and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Rivaroxaban: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and anticoagulants like rivaroxaban. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Rizatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering rizatriptan with selective serotonin reuptake inhibitors (SSRIs). Serotonin syndrome has been reported during concurrent use of serotonin-receptor agonists ("triptans") and SSRIs. Some patients had used the combination previously without incident when serotonin syndrome occurred. Inform patients of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly after the initiation of the SSRI or dose increases. Discontinue serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Romidepsin: (Major) Concomitant use of romidepsin and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Rucaparib: (Moderate) The maximum daily dose of citalopram in patients receiving concomitant treatment with rucaparib is 20 mg. Monitor for an increase in citalopram-related adverse reactions, including QT prolongation. Citalopram is a CYP2C19 substrate and rucaparib is a weak CYP2C19 inhibitor.
Safinamide: (Major) The concurrent use of selective serotonin reuptake inhibitors (SSRIs) and monoamine oxidase inhibitors (MAOIs) is generally avoided; however, the manufacturer of safinamide recommends monitoring for serotonin syndrome and using the lowest effective dose of the SSRI during concurrent use. During clinical trial evaluation of safinamide, 1 case of serotonin syndrome occurred during co-administration with an SSRI. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death.
Salsalate: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and aspirin, ASA or other salicylates which affect hemostasis may elevate the risk for an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of aspirin. Additionally, aspirin impairs the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in > 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with aspirin the risk was increased by > 5-fold. The absolute risk of GI bleed from concomitant therapy with aspirin and a SSRI was low (20/2640 patients) in this cohort study and the clinician may determine that the combined use of these drugs is appropriate.
Saquinavir: (Major) Concurrent use of citalopram and saquinavir boosted with ritonavir should be avoided if possible due to an increased risk for QT prolongation and torsade de pointes (TdP). If no acceptable alternative therapy is available, specific ECG monitoring is recommended. Citalopram causes dose-dependent QT interval prolongation. Saquinavir boosted with ritonavir also increases the QT interval in a dose-dependent fashion, which may increase the risk for serious arrhythmias such as TdP. In addition, the concurrent use of saquinavir boosted with ritonavir and citalopram or escitalopram should be avoided if possible due to the potential for elevated plasma concentrations of citalopram or escitalopram. Saquinavir boosted with ritonavir is a potent inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of citalopram and escitalopram. In addition, citalopram and escitalopram are also metabolized by CYP2D6, an isoenzyme that may be inhibited by ritonavir. Because both citalopram and escitalopram are metabolized by multiple enzyme systems, inhibition of one pathway may not appreciably decrease the clearance of these SSRIs. No clinical studies have been performed; however, caution is advised if citalopram or escitalopram are coadministered with saquinavir/ritonavir.
Selegiline: (Contraindicated) Selective serotonin reuptake inhibitors (SSRIs) are contraindicated for use with selegiline, a selective monoamine oxidase type B inhibitor (MAO-B inhibitor). At least 14 days should elapse between discontinuation of selegiline and initiation of treatment with an SSRI. With the exception of fluoxetine, a time period equal to 4 to 5 half-lives of the SSRI or any active metabolite should elapse after discontinuing treatment with the SSRI and before starting therapy with selegiline. Because of the long half-life of fluoxetine and its active metabolite, at least 5 weeks should elapse between discontinuation of fluoxetine and initiation of treatment with selegiline. Serotonin syndrome has occurred in patients receiving selective MAO-B inhibitors and serotonin-augmenting antidepressants simultaneously. Monitor for serotonergic side effects during therapy transitions.
Selpercatinib: (Major) Concomitant use of selpercatinib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Sertraline: (Major) Due to the similarity in pharmacology of sertraline and citalopram and the potential for serious adverse reactions, including serotonin syndrome, these selective serotonin reuptake inhibitors (SSRIs) should not be administered together. Also, both sertraline and citalopram have been associated with QT prolongation and torsade de pointes (TdP), which could theoretically result in additive effects on the QT interval. It is advisable to monitor for signs and symptoms of serotonin syndrome during an overlapping transition from one SSRI to another SSRI.
Sevoflurane: (Major) Concomitant use of halogenated anesthetics and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Siponimod: (Major) Concomitant use of siponimod and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Sodium Stibogluconate: (Major) Concomitant use of sodium stibogluconate and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Solifenacin: (Major) Concomitant use of solifenacin and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Sorafenib: (Major) Concomitant use of sorafenib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Sotalol: (Major) Concomitant use of citalopram and sotalol increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Spironolactone: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
St. John's Wort, Hypericum perforatum: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when coadministering citalopram and St. John's wort. Inform patients of the possible increased risk and monitor for the emergence of serotonin syndrome. If serotonin syndrome occurs, serotonergic drugs should be discontinued and appropriate medical treatment should be initiated.
Stiripentol: (Moderate) Consider a dose reduction of citalopram when coadministered with stiripentol. Coadministration may increase plasma concentrations of citalopram resulting in an increased risk of adverse reactions. Citalopram is a substrate of CYP2C19; stiripentol may inhibit CYP2C19 at clinically relevant concentrations.
Sufentanil: (Moderate) Citalopram impairs metabolism via the CYP2D6 pathway at therapeutic doses. This can result in increased concentrations of drugs metabolized via the same pathway, including some opiate agonists.
Sumatriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering sumatriptan with selective serotonin reuptake inhibitors (SSRIs). Serotonin syndrome has been reported during concurrent use of serotonin-receptor agonists ("triptans") and SSRIs. Inform patients of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly after initiation of SSRI treatment or any dose increases. Discontinue serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Sumatriptan; Naproxen: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering sumatriptan with selective serotonin reuptake inhibitors (SSRIs). Serotonin syndrome has been reported during concurrent use of serotonin-receptor agonists ("triptans") and SSRIs. Inform patients of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly after initiation of SSRI treatment or any dose increases. Discontinue serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
Sunitinib: (Major) Concomitant use of sunitinib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Tacrolimus: (Major) Concomitant use of tacrolimus and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Tamoxifen: (Major) Concomitant use of tamoxifen and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Tapentadol: (Moderate) If concomitant use of tapentadol and selective serotonin reuptake inhibitors (SSRIs) is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Tedizolid: (Minor) Caution is warranted with the concurrent use of tedizolid and selective serotonin reuptake inhibitors (SSRIs) due to the theoretical risk of serotonin syndrome. Animal studies did not predict serotonergic effects; however, patients on concurrent SSRIs were excluded from clinical trials. Addtionally, tedizolid is an antibiotic that is also a weak reversible, non-selective MAO inhibitor and monoamine oxidase type A deaminates serotonin; therefore, coadministration theoretically could lead to serious reactions including serotonin syndrome. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome has been reported in patients receiving either citalopram, escitalopram, fluoxetine, or paroxetine in combination with linezolid, which is structurally similar to tedizolid.
Telavancin: (Major) Concomitant use of telavancin and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Telmisartan: (Minor) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with telmisartan, a weak CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Telmisartan; Amlodipine: (Minor) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with telmisartan, a weak CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia. (Minor) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with telmisartan, a weak CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Tenecteplase: (Moderate) Platelet aggregation may be impaired by selective serotonin reuptake inhibitors (SSRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication in patients receiving thrombolytic agents. Patients should be closely monitored for signs and symptoms of bleeding when a thrombolytic agent is administered with an SSRI.
Terbinafine: (Moderate) Systemic terbinafine inhibits hepatic isoenzyme CYP2D6, and thus may inhibit the clearance of drugs metabolized by this isoenzyme, such as selective serotonin reuptake inhibitors (SSRIs). The clinical relevance of the interaction is not known. Topical forms of terbinafine do not interact.
Tetrabenazine: (Major) Concomitant use of tetrabenazine and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Thioridazine: (Contraindicated) Concurrent use of citalopram and thioridazine is contraindicated. Citalopram causes dose-dependent QT interval prolongation and thioridazine is associated with an established risk of QT prolongation and torsade de pointes (TdP). Thioridazine is primarily metabolized through CYP2D6; elevated plasma concentrations of thioridazine are probable when inhibitors of this isoenzyme, such as citalopram, are coadministered. Substantial increases in serum thioridazine concentrations may lead to prolongation of the QTc interval, which is associated with serious ventricular arrhythmias, such as TdP arrhythmias and sudden death. In addition, use of selective serotonin reuptake inhibitors (SSRIs) with drugs that are dopamine antagonists such as thioridazine, may result in serotonin syndrome or neuroleptic malignant syndrome-like reactions. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Thrombin Inhibitors: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of selective serotonin reuptake inhibitors (SSRIs) and other drugs that affect coagulation like thrombin inhibitors. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Thrombolytic Agents: (Moderate) Platelet aggregation may be impaired by selective serotonin reuptake inhibitors (SSRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication in patients receiving thrombolytic agents. Patients should be closely monitored for signs and symptoms of bleeding when a thrombolytic agent is administered with an SSRI.
Ticagrelor: (Moderate) Platelet aggregation may be impaired by selective serotonin reuptake inhibitors (SSRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication in patients receiving ticagrelor. Patients should be instructed to monitor for signs and symptoms of bleeding while taking an SSRI concurrently with an antiplatelet medication and to promptly report any bleeding events to the practitioner.
Ticlopidine: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with ticlopidine, a CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors. In addition, platelet aggregation may be impaired by selective serotonin reuptake inhibitors (SSRIs) due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving platelet inhibitors (e.g., ticlopidine). Patients should be instructed to monitor for signs and symptoms of citalopram-related adverse events and bleeding while taking an SSRI concurrently with ticlopidine and to promptly report any bleeding events to the practitioner.
Timolol: (Minor) Citalopram mildly inhibits the hepatic CYP2D6 isoenzyme at therapeutic doses. This can result in increased concentrations of drugs metabolized via the same pathway, including timolol.
Tirofiban: (Moderate) Platelet aggregation may be impaired by SSRIs due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication in patients receiving platelet inhibitors. Monitor for signs and symptoms of bleeding.
Tolterodine: (Major) Concurrent use of citalopram and tolterodine should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). If concurrent therapy is considered essential, ECG monitoring is recommended. Citalopram causes dose-dependent QT interval prolongation. Tolterodine has also been associated with dose-dependent prolongation of the QT interval, especially in poor CYP2D6 metabolizers. In addition, citalopram may inhibit the CYP2D6 metabolism of tolterodine in extensive metabolizers.
Topiramate: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with topiramate. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation. Citalopram is a sensitive CYP2C19 substrate; topiramate is a weak inhibitor of CYP2C19.
Toremifene: (Major) Concomitant use of toremifene and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Torsemide: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Tramadol: (Moderate) Monitor patients for the emergence of serotonin syndrome if concomitant use of tramadol and citalopram is warranted. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Tramadol; Acetaminophen: (Moderate) Monitor patients for the emergence of serotonin syndrome if concomitant use of tramadol and citalopram is warranted. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
Tranylcypromine: (Contraindicated) Due to the risk of serotonin syndrome, monoamine oxidase inhibitors (MAOIs) intended to treat psychiatric disorders are contraindicated for use with selective serotonin reuptake inhibitors (SSRIs). MAOIs should not be used within 5 weeks of discontinuing treatment with fluoxetine or within 14 days of discontinuing treatment with other SSRIs. Conversely, SSRIs should not be initiated within 14 days of stopping an MAOI. Monitor the patient for serotonin-related effects during therapy transitions.
Trazodone: (Major) Avoid coadministration of trazodone and citalopram due to the potential for QT prolongation. If concurrent therapy is considered essential, ECG monitoring is recommended. Concurrent use also increases the risk of serotonin syndrome. Serotonin syndrome has been reported with both drugs when taken alone, but especially when coadministered with other serotonergic agents. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue citalopram and trazodone and initiate symptomatic treatment if serotonin syndrome occurs.
Triamterene: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Triclabendazole: (Major) Concomitant use of triclabendazole and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Trifluoperazine: (Minor) Citalopram causes dose-dependent QT interval prolongation. According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended. Trifluoperazine is associated with a possible risk for QT prolongation.
Trimipramine: (Major) Citalopram causes dose-dependent QT interval prolongation and tricyclic antidepressants are associated with a possible risk of QT prolongation and torsade de pointes (TdP). According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended. In addition, because of the potential risk and severity of serotonin syndrome, caution should be observed when administering citalopram with other drugs that have serotonergic properties such as tricyclic antidepressants. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. Clinicians should also be alert for pharmacokinetic interactions between tricyclic antidepressants (TCAs) and SSRIs. Citalopram is a weak inhibitor of CYP2D6, the isoenzyme responsible for metabolism of many of the tricyclic antidepressants. Coadministration of citalopram and imipramine did not significantly affect the plasma concentrations of either drug. However, the concentration of desipramine, the primary metabolite of imipramine, was increased by 50%. The clinical significance of the elevation in desipramine concentration is unknown. However, symptoms of toxicity, including seizures, have been reported when drugs from these 2 classes were used together. A decreased dosage of the TCA or the avoidance of concomitant SSRI therapy should be considered.
Triptorelin: (Major) Concomitant use of triptorelin and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Tryptophan, 5-Hydroxytryptophan: (Major) Concurrent use of tryptophan and a selective serotonin reuptake inhibitor (SSRI) is not recommended. Since tryptophan is converted to serotonin, the use of tryptophan in patients receiving SSRIs could lead to serotonin excess and, potentially, serotonin syndrome. Discontinuation of tryptophan usually resolves symptoms.
Valerian, Valeriana officinalis: (Moderate) Substances that act on the CNS, including psychoactive drugs, may theoretically interact with valerian, Valeriana officinalis. These interactions are probably pharmacodynamic in nature, or result from additive mechanisms of action. Persons taking medications such as SSRIs should discuss the use of herbal supplements with their health care professional prior to consuming these herbs. Patients should not abruptly stop taking their prescribed psychoactive medication.
Valproic Acid, Divalproex Sodium: (Minor) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with valproic acid, a weak CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for signs and symptoms of hyponatremia during concomitant diuretic and citalopram use; consider discontinuing citalopram if symptomatic hyponatremia occurs and institute appropriate medical intervention. Concomitant use increases the risk for developing hyponatremia.
Vandetanib: (Major) Concomitant use of vandetanib and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Vardenafil: (Major) Concomitant use of citalopram and vardenafil increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Vasopressin, ADH: (Moderate) Monitor hemodynamics and adjust the dose of vasopressin as needed when used concomitantly with drugs suspected of causing syndrome of inappropriate antidiuretic hormone (SIADH), such as selective serotonin reuptake inhibitors. Use together may increase the pressor and antidiuretic effects of vasopressin.
Vemurafenib: (Major) Citalopram causes dose-dependent QT interval prolongation. According to the manufacturer, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. If concurrent therapy is considered essential, ECG monitoring is recommended; closely monitor the patient for QT interval prolongation. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously and with close monitoring with citalopram include vemurafenib. In addition, vemurafenib is an inducer of CYP3A4 and decreased plasma concentrations of drugs metabolized by this enzyme, such as citalopram, could be expected with concurrent use. Use caution, and monitor therapeutic effects of citalopram when coadministered with vemurafenib.
Venlafaxine: (Major) Due to similarity of pharmacology and the potential for additive adverse effects, including serotonin syndrome, selective serotonin reuptake inhibitors (SSRIs) should generally not be administered with serotonin norepinephrine reuptake inhibitors like venlafaxine. If serotonin syndrome is suspected, venlafaxine and concurrent serotonergic agents should be discontinued. In addition, venlafaxine and citalopram are associated with a possible risk of QT prolongation and torsade de pointes (TdP) and combination therapy should be avoided if possible.
Vilazodone: (Major) Due to the potential for serotonin syndrome, caution is advisable when combining selective serotonin reuptake inhibitors (SSRIs) such as citalopram with vilazodone. Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Patients receiving vilazodone and citalopram should be monitored for the emergence of serotonin syndrome, particularly during treatment initiation and during dosage increases. If serotonin syndrome occurs, all serotonergic agents should be discontinued and supportive symptomatic treatment should be initiated.
Voclosporin: (Major) Concomitant use of voclosporin and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with voclosporin is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 3 times the maximum recommended dose.
Vonoprazan; Amoxicillin: (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with vonoprazan. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation or serotonin-related side effects. Citalopram is a sensitive CYP2C19 substrate and vonoprazan is a CYP2C19 inhibitor.
Vonoprazan; Amoxicillin; Clarithromycin: (Major) Concomitant use of citalopram and clarithromycin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. (Moderate) Limit the dose of citalopram to 20 mg/day if coadministered with vonoprazan. Concurrent use may increase citalopram exposure increasing the risk of QT prolongation or serotonin-related side effects. Citalopram is a sensitive CYP2C19 substrate and vonoprazan is a CYP2C19 inhibitor.
Vorapaxar: (Moderate) Because vorapaxar inhibits platelet aggregation, a potential additive risk for bleeding exists if vorapaxar is given in combination with other agents that affect hemostasis such as selective serotonin reuptake inhibitors (SSRIs). Platelet aggregation may be impaired by SSRIs due to platelet serotonin depletion. In addition, fluoxetine and fluvoxamine are CYP3A4 inhibitors and coadministration with vorapaxar, a CYP3A4 substrate, may result in increased serum concentrations of vorapaxar. Increased exposure to vorapaxar may increase the risk of bleeding complications. Patients should be instructed to monitor for signs and symptoms of bleeding while taking a SSRI with vorapaxar and to promptly report any bleeding events.
Voriconazole: (Major) Avoid coadministration of citalopram and voriconazole due to the potential for additive effects on the QT interval; increased exposure to citalopram is also possible. Both drugs have been associated with QT prolongation; voriconazole has also been associated with rare cases of torsades de pointes, cardiac arrest, and sudden death. If concurrent therapy is considered essential, ECG monitoring is recommended; do not exceed 20 mg per day of citalopram. Voriconazole theoretically might impair the metabolism of citalopram through inhibition of CYP2C19 and CYP3A4. Closely monitor for prolongation of the QT interval and other adverse effects such as drowsiness, fatigue, dry mouth, nausea, or insomnia. Rigorous attempts to correct any electrolyte abnormalities (i.e., potassium, magnesium, calcium) should be made before initiating concurrent therapy.
Vorinostat: (Major) Concomitant use of vorinostat and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Vortioxetine: (Major) Due to similarity of pharmacology and the potential for additive adverse effects, including serotonin syndrome, vortioxetine should generally not be co-administered with selective serotonin reuptake inhibitors (SSRIs). Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Warfarin: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of citalopram and warfarin. Carefully monitor patients receiving warfarin therapy if citalopram is initiated or discontinued. Although the pharmacokinetics of warfarin were unaffected by citalopram, prothrombin time was increased by 5%; the clinical significance is unknown. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Ziprasidone: (Major) Concomitant use of ziprasidone and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Zolmitriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering zolmitriptan with selective serotonin reuptake inhibitors (SSRIs). Serotonin syndrome has been reported during concurrent use of serotonin-receptor agonists ("triptans") and SSRIs. Inform patients of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly after initiation of SSRI treatment or any dose increases. Discontinue serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.

latelet aggregation may be impaired by SSRIs due to platelet serotonin depletion. In addition, fluoxetine and fluvoxamine are CYP3A4 inhibitors and coadministration with vorapaxar, a CYP3A4 substrate, may result in increased serum concentrations of vorapaxar. Increased exposure to vorapaxar may increase the risk of bleeding complications. Patients should be instructed to monitor for signs and symptoms of bleeding while taking a SSRI with vorapaxar and to promptly report any bleeding events.
Voriconazole: (Major) Avoid coadministration of citalopram and voriconazole due to the potential for additive effects on the QT interval; increased exposure to citalopram is also possible. Both drugs have been associated with QT prolongation; voriconazole has also been associated with rare cases of torsades de pointes, cardiac arrest, and sudden death. If concurrent therapy is considered essential, ECG monitoring is recommended; do not exceed 20 mg per day of citalopram. Voriconazole theoretically might impair the metabolism of citalopram through inhibition of CYP2C19 and CYP3A4. Closely monitor for prolongation of the QT interval and other adverse effects such as drowsiness, fatigue, dry mouth, nausea, or insomnia. Rigorous attempts to correct any electrolyte abnormalities (i.e., potassium, magnesium, calcium) should be made before initiating concurrent therapy.
Vorinostat: (Major) Concomitant use of vorinostat and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Vortioxetine: (Major) Due to similarity of pharmacology and the potential for additive adverse effects, including serotonin syndrome, vortioxetine should generally not be co-administered with selective serotonin reuptake inhibitors (SSRIs). Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Warfarin: (Moderate) Advise patients of the increased bleeding risk associated with the concomitant use of citalopram and warfarin. Carefully monitor patients receiving warfarin therapy if citalopram is initiated or discontinued. Although the pharmacokinetics of warfarin were unaffected by citalopram, prothrombin time was increased by 5%; the clinical significance is unknown. Case reports and epidemiological studies have demonstrated an association between use of drugs that interfere with serotonin reuptake and gastrointestinal bleeding.
Ziprasidone: (Major) Concomitant use of ziprasidone and citalopram increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Zolmitriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering zolmitriptan with selective serotonin reuptake inhibitors (SSRIs). Serotonin syndrome has been reported during concurrent use of serotonin-receptor agonists ("triptans") and SSRIs. Inform patients of the possible increased risk and monitor for the emergence of serotonin syndrome, particularly after initiation of SSRI treatment or any dose increases. Discontinue serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.

How Supplied

Celexa/Citalopram/Citalopram Hydrobromide Oral Sol: 5mL, 10mg
Celexa/Citalopram/Citalopram Hydrobromide Oral Tab: 10mg, 20mg, 40mg
Citalopram/Citalopram Hydrobromide Oral Cap: 30mg

Maximum Dosage
Adults

60 years and younger: 40 mg/day PO in the general population and 20 mg/day PO in poor metabolizers of CYP2C19.
Older than 60 years: 20 mg/day PO.

Geriatric

20 mg/day PO.

Adolescents

Safety and efficacy have not been established; however, doses up to 40 mg/day PO have been used off-label for depression and anxiety disorders. Do not exceed 20 mg/day PO in poor metabolizers of CYP2C19.

Children

6 to 12 years: Safety and efficacy have not been established; however, doses up to 40 mg/day PO have been used off-label for depression and anxiety disorders. Do not exceed 20 mg/day PO in poor metabolizers of CYP2C19.
1 to 5 years: Safety and efficacy have not been established.

Infants

Safety and efficacy have not been established.

Neonates

Safety and efficacy have not been established.

Mechanism Of Action

The precise effect of SSRIs for the treatment of depression or anxiety is not fully understood, but involves selective serotonin reuptake blockade at the neuronal membrane, which enhances the actions of serotonin (5-HT). Initially, SSRIs increase availability of serotonin in the somatodendritic area through serotonin reuptake blockade at the serotonin transport pump. During long-term administration of SSRIs, serotonin autoreceptors are down-regulated and desensitized, allowing the neuron to increase serotonin release in the axon terminal synapses and increase its neuronal impulses. Because of the delay in therapeutic response to SSRIs, it is theorized that the change in the balance of serotonin receptors over time is an important mechanism of effect. SSRIs have less sedative, anticholinergic, and cardiovascular effects than do tricyclic antidepressants due to dramatically decreased binding to histaminergic, muscarinic, and alpha-adrenergic receptors.
 
Citalopram is associated with a known risk of QT prolongation, and this risk is dose-dependent. Individually corrected QTc (QTcNi) interval was evaluated in a randomized, placebo and active (moxifloxacin 400 mg) controlled cross-over, escalating multiple-dose study in 119 healthy subjects. The maximum mean (upper bound of the 95% one-sided confidence interval) difference from placebo were 8.5 (10.8) and 18.5 (21) msec for 20 mg and 60 mg (1.5 times the maximum recommended dosage) citalopram, respectively. Based on the established exposure-response relationship, the predicted QTcNi change from placebo (upper bound of the 95% CI) under the Cmax for the dose of 40 mg is 12.6 (14.3) msec.

Pharmacokinetics

Citalopram is administered orally. It exhibits linear and dose-proportional pharmacokinetics over the therapeutic dosage range. Protein binding of citalopram and its metabolites are about 80%. In humans, unchanged citalopram is the predominant compound in plasma. The parent drug is metabolized via N-demethylation primarily by the CYP3A4 and CYP2C19 isoenzymes. In vitro studies show that citalopram is at least 8 times more potent than its metabolites in the inhibition of serotonin reuptake, suggesting that the metabolites evaluated do not likely contribute significantly to the antidepressant actions of citalopram. Only 20% of the systemic clearance is due to renal clearance; renal elimination is a minor route of elimination. The citalopram half-life in a healthy adult individual is 35 hours.
 
Affected Cytochrome P450 (CYP450) enzymes and drug transporters: CYP1A2 and CYP2D6
The primary isoenzymes involved in the metabolism of citalopram are CYP3A4 and CYP2C19. Because citalopram is metabolized by multiple enzyme systems, inhibition of one pathway may not appreciably decrease citalopram clearance. Citalopram exposure is significantly increased in patients receiving CYP2C19 inhibitors or who are poor metabolizers of CYP2C19, and, due to dose-dependent QT prolongation, a lower maximum citalopram daily dosage is recommended in these patients. In vitro, citalopram is a mild inhibitor of CYP1A2 and CYP2D6. Based on in vitro studies, citalopram does not appear to inhibit other isoenzymes (e.g., 3A4, 2C9, or 2E1) to any clinically significant degree.

Oral Route

The absolute bioavailability of citalopram following a single oral dose is about 80% and is not affected by the presence of food. The tablet and oral solution formulations are bioequivalent. Peak plasma concentrations are attained about 4 hours after dosing. Steady state plasma concentrations are achieved within approximately one week and are expected to be 2.5 times the plasma concentrations observed after a single dose.

Pregnancy And Lactation
Pregnancy

Available data from published epidemiologic studies and postmarketing reports have not established an increased risk of major birth defects or miscarriage from the use of citalopram during pregnancy. There are risks to the mother associated with untreated depression (e.g., relapse). There are also risks associated with use of SSRIs in pregnancy. SSRI exposure has also been associated with a potential risk of persistent pulmonary hypertension of the newborn (PPHN). Some neonates exposed to SSRIs late in the third trimester have experienced poor neonatal adaptation resulting in complications requiring prolonged hospitalization, respiratory support, and tube feeding upon delivery. Symptoms have included respiratory distress, cyanosis, apnea, seizures, temperature instability, feeding difficulty, vomiting, hypoglycemia, hypotonia, hypertonia, hyperreflexia, tremor, jitteriness, irritability, and constant crying. These features are consistent with direct SSRI toxicity, serotonin syndrome, or a drug discontinuation syndrome. Data from published observational studies have reported that exposure to SSRIs (including citalopram), particularly in the month before obstetric delivery, has been associated with a less than 2-fold increase in the risk of postpartum hemorrhage. There is a pregnancy exposure registry that monitors outcomes in pregnant patients exposed to citalopram; information about the registry can be obtained at https://womensmentalhealth.org/research/pregnancyregistry/antidepressants/ or by calling 1-866-961-2388.