Fanapt

Browse PDR's full list of drug information

Fanapt

Classes

Serotonin-Dopamine Antagonist (SDA) Antipsychotics

Administration
Oral Administration

May be administered without regard to meals.

Adverse Reactions
Severe

bronchospasm / Rapid / 0.1-1.0
peptic ulcer / Delayed / 0-0.1
arrhythmia exacerbation / Early / 0-0.1
AV block / Early / 0-0.1
heart failure / Delayed / 0-0.1
torticollis / Delayed / 0-0.1
seizures / Delayed / 0.1-0.1
apnea / Delayed / 0-0.1
renal failure (unspecified) / Delayed / 0-0.1
tardive dyskinesia / Delayed / Incidence not known
neuroleptic malignant syndrome / Delayed / Incidence not known
diabetic ketoacidosis / Delayed / Incidence not known
stroke / Early / Incidence not known
agranulocytosis / Delayed / Incidence not known
angioedema / Rapid / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
SIADH / Delayed / Incidence not known
water intoxication / Delayed / Incidence not known

Moderate

hyperprolactinemia / Delayed / 26.0-26.0
sinus tachycardia / Rapid / 3.0-12.0
hypertriglyceridemia / Delayed / 0-10.1
hyperlipidemia / Delayed / 1.1-10.1
orthostatic hypotension / Delayed / 3.0-5.0
hypercholesterolemia / Delayed / 1.1-3.6
hypotension / Rapid / 0-3.0
blurred vision / Early / 1.0-3.0
akathisia / Delayed / 1.7-2.3
ejaculation dysfunction / Delayed / 2.0-2.0
dyskinesia / Delayed / 1.0-1.7
amnesia / Delayed / 0.1-1.0
nystagmus / Delayed / 0.1-1.0
hostility / Early / 0.1-1.0
impulse control symptoms / Delayed / 0.1-1.0
depression / Delayed / 0.1-1.0
delirium / Early / 0.1-1.0
confusion / Early / 0.1-1.0
mania / Early / 0.1-1.0
gastritis / Delayed / 0.1-1.0
oral ulceration / Delayed / 0.1-1.0
fecal incontinence / Early / 0.1-1.0
edema / Delayed / 0.1-1.0
dystonic reaction / Delayed / 0.8-1.0
dehydration / Delayed / 0.1-1.0
hypothyroidism / Delayed / 0.1-1.0
anemia / Delayed / 0.1-1.0
cataracts / Delayed / 0.1-1.0
blepharitis / Early / 0.1-1.0
ocular inflammation / Early / 0.1-1.0
hyperemia / Delayed / 0.1-1.0
cholelithiasis / Delayed / 0.1-1.0
dysuria / Early / 0.1-1.0
nephrolithiasis / Delayed / 0.1-1.0
fluid retention / Delayed / 0.1-1.0
hypokalemia / Delayed / 0.1-1.0
pseudoparkinsonism / Delayed / 0.2-0.3
galactorrhea / Delayed / 0-0.2
stomatitis / Delayed / 0-0.1
esophagitis / Delayed / 0-0.1
hyperthermia / Delayed / 0-0.1
prostatitis / Delayed / 0-0.1
dyspnea / Early / 0-0.1
leukopenia / Delayed / 0-0.1
urinary retention / Early / 0-0.1
palpitations / Early / 1.0
impotence (erectile dysfunction) / Delayed / 1.0
conjunctivitis / Delayed / 1.0
urinary incontinence / Early / 1.0
QT prolongation / Rapid / Incidence not known
hyperglycemia / Delayed / Incidence not known
diabetes mellitus / Delayed / Incidence not known
priapism / Early / Incidence not known
neutropenia / Delayed / Incidence not known
hyponatremia / Delayed / Incidence not known

Mild

dizziness / Early / 10.0-20.0
drowsiness / Early / 9.0-15.0
xerostomia / Early / 8.0-10.0
nausea / Early / 7.0-10.0
weight gain / Delayed / 1.0-9.0
nasal congestion / Early / 5.0-8.0
diarrhea / Early / 5.0-7.0
fatigue / Early / 4.0-6.0
tremor / Early / 2.5-3.1
lethargy / Early / 1.0-3.0
arthralgia / Delayed / 3.0-3.0
rash / Early / 2.0-3.0
restlessness / Early / 0.1-1.0
paresthesias / Delayed / 0.1-1.0
orgasm dysfunction / Delayed / 0.1-1.0
libido decrease / Delayed / 0.1-1.0
paranoia / Early / 0.1-1.0
emotional lability / Early / 0.1-1.0
tinnitus / Delayed / 0.1-1.0
vertigo / Early / 0.1-1.0
hypersalivation / Early / 0.1-1.0
appetite stimulation / Delayed / 0.1-1.0
amenorrhea / Delayed / 0.1-1.0
mastalgia / Delayed / 0.1-1.0
testicular pain / Early / 0.1-1.0
nasal dryness / Early / 0.1-1.0
epistaxis / Delayed / 0.1-1.0
rhinorrhea / Early / 0.1-1.0
blepharedema / Early / 0.1-1.0
xerophthalmia / Early / 0.1-1.0
increased urinary frequency / Early / 0.1-1.0
syncope / Early / 0.4-0.4
restless legs syndrome (RLS) / Delayed / 0-0.1
gynecomastia / Delayed / 0-0.1
menorrhagia / Delayed / 0-0.1
menstrual irregularity / Delayed / 0-0.1
myalgia / Early / 1.0
weight loss / Delayed / 1.0
hypothermia / Delayed / Incidence not known
infection / Delayed / Incidence not known
urticaria / Rapid / Incidence not known
pruritus / Rapid / Incidence not known
polydipsia / Early / Incidence not known

Boxed Warning
Dementia, geriatric, stroke

Antipsychotics are not approved for the treatment of dementia-related psychosis in geriatric patients and the use of iloperidone in this population should be avoided if possible due to an increase in morbidity and mortality in elderly patients with dementia receiving antipsychotics. Deaths have typically resulted from heart failure, sudden death, or infections (primarily pneumonia). An increased incidence of cerebrovascular adverse events (e.g., stroke, transient ischemic attack), including fatal events, has also been reported. Iloperidone clinical studies did not include enough geriatric patients to determine if they respond differently than younger adult patients. The Beers Criteria consider antipsychotics to be potentially inappropriate medications (PIMs) in elderly patients except for treating schizophrenia, bipolar disorder, and nausea/vomiting during chemotherapy. The Beers panel recommends avoiding antipsychotics in geriatric patients with delirium, dementia, or Parkinson's disease. Non-pharmacological strategies are first-line options for treating delirium- or dementia-related behavioral problems unless they have failed or are not possible and the patient is a substantial threat to self or others. If antipsychotic use is necessary in geriatrics with a history of falls or fractures, consider reducing the use of other CNS depressants and implement other fall risk strategies. Due to the potential for antipsychotic-induced hyponatremia and SIADH, sodium levels should be closely monitored when iloperidone is initiated and after dose changes. According to the federal Omnibus Budget Reconciliation Act (OBRA) regulations in residents of long-term care facilities, antipsychotic therapy should only be initiated in a patient with behavioral or psychological symptoms of dementia (BPSD) when the patient is a danger to self or others or has symptoms due to mania or psychosis. For acute conditions persisting beyond 7 days, appropriate non-pharmacologic interventions must be attempted, unless clinically contraindicated and documented. OBRA provides general dosing guidance for antipsychotic treatment of BPSD. Antipsychotics are subject to periodic review for effectiveness, medical necessity, gradual dose reduction (GDR), or rationale for continued use. Refer to the OBRA guidelines for complete information.

Common Brand Names

Fanapt

Dea Class

Rx

Description

Oral atypical antipsychotic; belongs to benzisoxazole/benzoisothiazol derivatives class
Used for the treatment of schizophrenia in adults
Associated with QT prolongation; as with all antipsychotics, boxed warning for increased mortality risk in elderly patients with dementia-related psychosis

Dosage And Indications
For the treatment of schizophrenia. Oral dosage Adults

1 mg PO twice daily initially. May increase to the target dose of 6 mg to 12 mg twice daily, in increments of not more than 2 mg twice daily (4 mg/day). Titrate slowly to minimize the risk of hypotension. Clinical studies in the treatment of schizophrenia did not include sufficient numbers of geriatric adults; therefore, caution is advisable in dosing and titration. Max: 24 mg/day PO, in 2 divided doses. Reduce the iloperidone dose by one-half in patients who are poor metabolizers of CYP2D6. Effective for acute and maintenance treatment. Periodically reassess to determine the need for maintenance treatment and appropriate dosage. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. If iloperidone has been discontinued for more than 3 days, use the initial dose titration to re-initiate therapy.

For the treatment of severe behavioral or psychological symptoms of dementia† (BPSD)†. Oral dosage Geriatric Adults

Dosage not established. According to the Agency for Healthcare Research and Quality (AHRQ) atypical antipsychotic review in 2011, iloperidone had not been studied as an off-label treatment for behavioral disturbances associated with dementia. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions. In addition, the iloperidone dose should be reduced by one-half in patients who are poor metabolizers of CYP2D6. Antipsychotics are not FDA-approved for this indication and the labeling of all antipsychotics contains a boxed warning noting an increased risk of death in geriatric patients being treated for behavioral problems associated with dementia. The Federal Omnibus Budget Reconciliation Act (OBRA) regulates the use of antipsychotics in residents of long-term care facilities. Specific criteria for treatment must be met, and adherence to daily dose thresholds for each antipsychotic is required, except when documentation is provided showing that higher doses are necessary to maintain or improve the resident's functional status. No OBRA Max iloperidone dosing guidance is available due to a lack of data to assess the safety or efficacy in older adults with dementia. For all antipsychotics, the facility must attempt a gradual dose reduction (GDR) in 2 separate quarters, at least 1 month apart, within the first year of admission to the facility or after the facility has initiated an antipsychotic, unless clinically contraindicated. After the first year, a GDR must be attempted annually unless clinically contraindicated. The GDR may be considered clinically contraindicated if the target symptoms returned or worsened after the most recent GDR attempt within the facility and the physician has documented justification for why attempting additional dose reductions at that time would likely impair the resident's function or increase distressed behavior.

†Indicates off-label use

Dosing Considerations
Hepatic Impairment

Mild hepatic impairment: No dosage adjustments are necessary.
Moderate hepatic impairment: Caution is recommended in those with moderate hepatic impairment due to increased exposure.
Severe hepatic impairment: Use should be avoided.

Renal Impairment

Because iloperidone is highly metabolized in the liver, renal impairment is unlikely to have a significant effect on the pharmacokinetics of the drug. It appears that no dosage adjustments are required.

Drug Interactions

Acarbose: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Acebutolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Acetaminophen; Chlorpheniramine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Acetaminophen; Codeine: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Acetaminophen; Dextromethorphan; Doxylamine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Drugs that can cause CNS depression, including dichloralphenazone, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness if used concomitantly with atypical antipsychotics.
Acetaminophen; Diphenhydramine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Acetaminophen; Hydrocodone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Acetaminophen; Oxycodone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Acetaminophen; Pamabrom; Pyrilamine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Acrivastine; Pseudoephedrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Adagrasib: (Major) Avoid coadministration of iloperidone and adagrasib due to the potential for increased iloperidone exposure and additive risk for QT/QTc prolongation and torsade de pointes (TdP). If concomitant use is necessary, reduce the iloperidone dose by one-half and consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring. If adagrasib is discontinued, increase the iloperidone dose to the previous level. Iloperidone is a CYP3A substrate, adagrasib is a strong CYP3A inhibitor, and both medications have been associated with QT interval prolongation. Coadministration of another strong CYP3A inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Alfentanil: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Alfuzosin: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided with other agents also known to have this effect, such as alfuzosin. Based on electrophysiology studies performed by the manufacturer, alfuzosin has a slight effect to prolong the QT interval. The QT prolongation appeared less with alfuzosin 10 mg than with 40 mg. The manufacturer warns that the QT effect of alfuzosin should be considered prior to administering the drug to patients taking other medications known to prolong the QT interval.
Aliskiren: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Alogliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Alogliptin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Alogliptin; Pioglitazone: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Alpha-blockers: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Alpha-glucosidase Inhibitors: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Alprazolam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Ambrisentan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amifampridine: (Major) Carefully consider the need for concomitant treatment with atypical antipsychotics and amifampridine, as coadministration may increase the risk of seizures. If coadministration occurs, closely monitor patients for seizure activity. Seizures have been observed in patients without a history of seizures taking amifampridine at recommended doses. Atypical antipsychotics may increase the risk of seizures.
Amiloride: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amiodarone: (Major) The concomitant use of amiodarone and other drugs known to prolong the QT interval, such as iloperidone, should only be done after careful assessment of risks versus benefits. If possible, avoid coadministration of amiodarone and drugs known to prolong the QT interval. Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. Amiodarone, a Class III antiarrhythmic agent, is associated with a well-established risk of QT prolongation and TdP. Although the frequency of TdP is less with amiodarone than with other Class III agents, amiodarone is still associated with a risk of TdP. Due to the extremely long half-life of amiodarone, a drug interaction is possible for days to weeks after discontinuation of amiodarone.
Amisulpride: (Major) Avoid coadministration of amisulpride and iloperidone due to the potential for additive QT prolongation. Amisulpride causes dose- and concentration- dependent QT prolongation. Iloperidone has been associated with QT prolongation.
Amlodipine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amlodipine; Atorvastatin: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amlodipine; Benazepril: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amlodipine; Celecoxib: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amlodipine; Olmesartan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amlodipine; Valsartan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Amobarbital: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates.
Amoxapine: (Moderate) Use caution during co-administration of amoxapine and iloperidone. Amoxapine exhibits some antipsychotic activity and may increase the risk of tardive dyskinesia or neuroleptic malignant syndrome (NMS) when antipsychotics are given concurrently. CNS effects, orthostatic hypotension, anticholinergic effects, and lowering of seizure threshold are potential problems with the combined use of amoxapine and antipsychotics.
Amoxicillin; Clarithromycin; Omeprazole: (Major) Avoid coadministration of iloperidone and clarithromycin due to the potential for QT prolongation; iloperidone exposure may also increase. If coadministration cannot be avoided, decrease the iloperidone dose by one-half. Resume the prior iloperidone dose if clarithromycin is discontinued. Clarithromycin is a strong CYP3A4 inhibitor that is associated with an established risk for QT prolongation and torsade de pointes (TdP). Iloperidone is a CYP3A4 substrate that has been associated with QT prolongation. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Anagrelide: (Major) Torsades de pointes (TdP) and ventricular tachycardia have been reported during post-marketing use of anagrelide. A cardiovascular examination, including an ECG, should be obtained in all patients prior to initiating anagrelide therapy. Monitor patients during anagrelide therapy for cardiovascular effects and evaluate as necessary. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously and with close monitoring with anagrelide include iloperidone.
Angiotensin II receptor antagonists: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Angiotensin-converting enzyme inhibitors: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Apomorphine: (Major) Avoid use of apomorphine and iloperidone together if possible due to an additive risk for QT prolongation and sedation. Apomorphine and iloperidone may decrease the effectiveness of each other due to opposing effects on dopamine. Additive CNS effects are also possible. Dose-related QTc prolongation is associated with therapeutic apomorphine exposure. Iloperidone has also been associated with QT prolongation. In general, atypical antipsychotics are less likely to interfere with Parkinson's disease treatments than traditional antipsychotics. Monitor for movement disorders, unusual changes in moods or behavior, sedation, fast, irregular heartbeat, and diminished effectiveness of either agent if coadministration cannot be avoided.
Aprepitant, Fosaprepitant: (Moderate) Increased iloperidone exposure may occur with multi-day regimens of oral aprepitant, resulting in increased iloperidone-related adverse reactions, including QT prolongation. Iloperidone is a CYP3A4 substrate and aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor. When administered as a single oral or single intravenous dose, the inhibitory effect of aprepitant on CYP3A4 is weak and did not result in a clinically significant increase in the AUC of a sensitive substrate.
Aripiprazole: (Major) QT prolongation has occurred during therapeutic use of aripiprazole and following overdose. Iloperidone is an atypical antipsychotics with a possible risk for QT prolongation and TdP that should be used cautiously and with close monitoring with aripiprazole. In addition, caution is advisable when aripiprazole is given in combination with other CNS depressants such as other atypical antipsychotics. The risk of drowsiness, dizziness, hypotension, extrapyramidal symptoms, anticholinergic effects, neuroleptic malignant syndrome, tardive dyskinesia, or seizures may be increased during combined use; therefore, it may be advisable to initiate treatment with lower dosages if combination therapy is deemed necessary. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent.
Arsenic Trioxide: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided with other agents also known to have this effect, such as arsenic trioxide.
Artemether; Lumefantrine: (Major) Avoid coadministration of iloperidone and artemether; lumefantrine due to the potential for QT prolongation. If coadministration cannot be avoided, reduce the iloperidone dose by one-half and consider ECG monitoring. If artemether; lumefantrine is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP2D6 substrate that has been associated with QT prolongation. Artemether; lumefantrine is a strong CYP2D6 inhibitor that has also been associated with QT prolongation. Coadministration of other strong CYP2D6 inhibitors increased mean steady-state peak concentrations of iloperidone and its metabolite P88, by up to 3-fold, and decreased mean steady-state peak concentrations of its metabolite P95 by one-half.
Asenapine: (Major) Asenapine and Iloperidone have been associated with QT prolongation. According to the manufacturers, the drugs should not be used with other agents also known to have this effect. In addition, Co-administration of asenapine with iloperidone may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Aspirin, ASA; Oxycodone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Atazanavir: (Major) The plasma concentrations of iloperidone may be elevated when administered concurrently with atazanavir. Clinical monitoring for adverse effects, such as cardiovascular or CNS effects, is recommended during coadministration. A dose reduction of iloperidone may be necessary. Atazanavir is a CYP3A4 inhibitors; iloperidone is a CYP3A4 substrate.
Atazanavir; Cobicistat: (Major) Reduce the iloperidone dose by one-half if coadministered with cobicistat If chloramphenicol is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Chloramphenicol is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively. (Major) The plasma concentrations of iloperidone may be elevated when administered concurrently with atazanavir. Clinical monitoring for adverse effects, such as cardiovascular or CNS effects, is recommended during coadministration. A dose reduction of iloperidone may be necessary. Atazanavir is a CYP3A4 inhibitors; iloperidone is a CYP3A4 substrate.
Atenolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Atenolol; Chlorthalidone: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Atomoxetine: (Major) Concomitant use of iloperidone and atomoxetine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Azilsartan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Azilsartan; Chlorthalidone: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Azithromycin: (Major) Concomitant use of iloperidone and azithromycin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Barbiturates: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates.
Bedaquiline: (Major) Concurrent use of iloperidone and bedaquiline should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Both drugs have been associated with QT prolongation; however, TdP has not been reported. Prior to initiating bedaquiline, obtain serum electrolyte concentrations and a baseline ECG. An ECG should also be performed at least 2, 12, and 24 weeks after starting bedaquiline therapy.
Benazepril: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Benzhydrocodone; Acetaminophen: (Major) Concomitant use of opioid agonists with iloperidone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with iloperidone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If benzhydrocodone is initiated in a patient taking iloperidone, reduce initial dosage and titrate to clinical response. If iloperidone is initiated a patient taking an opioid agonist, use a lower initial dose of iloperidone and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
Benzodiazepines: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Beta-adrenergic blockers: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Betaxolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Major) Concomitant use of metronidazole and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Major) Concomitant use of metronidazole and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Bisoprolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Brexpiprazole: (Major) Caution is advisable during concurrent use of brexpiprazole with other antipsychotics such as iloperidone. The risk of drowsiness, dizziness, hypotension, extrapyramidal symptoms, anticholinergic effects, neuroleptic malignant syndrome, or seizures may be increased during combined use; therefore, it may be advisable to initiate treatment with lower dosages if combination therapy is deemed necessary.
Brimonidine; Timolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Bromocriptine: (Moderate) The effectiveness of bromocriptine may be reduced by most of the atypical antipsychotics, via their action as dopamine antagonists. Monitor the patient for reduced response to bromocriptine. The atypical antipsychotics elevate prolactin to various degrees. Atypical antipsychotics may also aggravate diabetes mellitus and cause metabolic changes including hyperglycemia; use caution if bromocriptine is taken for diabetes. If bromocriptine is taken for diabetes, monitor for worsening glycemic control.
Brompheniramine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Brompheniramine; Phenylephrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Brompheniramine; Pseudoephedrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Bumetanide: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Buprenorphine: (Major) Buprenorphine should be avoided in combination with iloperidone. Buprenorphine has been associated with QT prolongation and has a possible risk of torsade de pointes (TdP). Iloperidone also has a possible risk for QT prolongation and TdP. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect. FDA-approved labeling for some buprenorphine products recommend avoiding use with Class 1A and Class III antiarrhythmic medications while other labels recommend avoiding use with any drug that has the potential to prolong the QT interval. If concurrent use of iloperidone and buprenorphine is necessary, consider a dose reduction of one or both drugs. Hypotension, profound sedation, coma, respiratory depression, or death may occur during co-administration of buprenorphine and other CNS depressants. Prior to concurrent use of buprenorphine in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Evaluate the patient's use of alcohol or illicit drugs. It is recommended that the injectable buprenorphine dose be halved for patients who receive other drugs with CNS depressant effects; for the buprenorphine transdermal patch, start with the 5 mcg/hour patch. Monitor patients for sedation or respiratory depression.
Buprenorphine; Naloxone: (Major) Buprenorphine should be avoided in combination with iloperidone. Buprenorphine has been associated with QT prolongation and has a possible risk of torsade de pointes (TdP). Iloperidone also has a possible risk for QT prolongation and TdP. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect. FDA-approved labeling for some buprenorphine products recommend avoiding use with Class 1A and Class III antiarrhythmic medications while other labels recommend avoiding use with any drug that has the potential to prolong the QT interval. If concurrent use of iloperidone and buprenorphine is necessary, consider a dose reduction of one or both drugs. Hypotension, profound sedation, coma, respiratory depression, or death may occur during co-administration of buprenorphine and other CNS depressants. Prior to concurrent use of buprenorphine in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Evaluate the patient's use of alcohol or illicit drugs. It is recommended that the injectable buprenorphine dose be halved for patients who receive other drugs with CNS depressant effects; for the buprenorphine transdermal patch, start with the 5 mcg/hour patch. Monitor patients for sedation or respiratory depression.
Bupropion: (Major) Reduce the iloperidone dose by one-half if coadministered with bupropion. If bupropion is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Additionally, bupropion is associated with a dose-related risk of seizures. Extreme caution is recommended during concurrent use of other drugs that may lower the seizure threshold such as antipsychotics. Iloperidone is a CYP2D6 substrate. Bupropion is a strong inhibitor of CYP2D6. Coadministration of other strong CYP2D6 inhibitors increased mean steady-state peak concentrations of iloperidone and its metabolite P88, by up to 3-fold, and decreased mean steady-state peak concentrations of its metabolite P95 by one-half.
Bupropion; Naltrexone: (Major) Reduce the iloperidone dose by one-half if coadministered with bupropion. If bupropion is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Additionally, bupropion is associated with a dose-related risk of seizures. Extreme caution is recommended during concurrent use of other drugs that may lower the seizure threshold such as antipsychotics. Iloperidone is a CYP2D6 substrate. Bupropion is a strong inhibitor of CYP2D6. Coadministration of other strong CYP2D6 inhibitors increased mean steady-state peak concentrations of iloperidone and its metabolite P88, by up to 3-fold, and decreased mean steady-state peak concentrations of its metabolite P95 by one-half.
Buspirone: (Moderate) Monitor for signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, during concomitant atypical antipsychotic and buspirone use. If serotonin syndrome occurs, discontinue therapy. Concomitant use increases the risk for serotonin syndrome.
Butabarbital: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates.
Butalbital; Acetaminophen: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates.
Butalbital; Acetaminophen; Caffeine: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates. (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates. (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Butorphanol: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including butorphanol.
Cabergoline: (Moderate) Cabergoline should not be coadministered with iloperidone due to mutually antagonistic effects on dopaminergic function. The dopamine antagonist action of iloperidone may diminish the prolactin-lowering ability of cabergoline while the dopamine agonist effects of cabergoline may exacerbate a psychotic disorder, reducing the effectiveness of antipsychotics such as iloperidone.
Cabotegravir; Rilpivirine: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Calcium-channel blockers: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Canagliflozin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Canagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Candesartan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Cannabidiol: (Moderate) Monitor for excessive sedation and somnolence during coadministration of cannabidiol and iloperidone. Concurrent use may result in additive CNS depression.
Captopril: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Carbamazepine: (Moderate) In vitro studies indicate that CYP3A4 is involved in the metabolism of iloperidone. In theory, potent inducers of CYP3A4 such as carbamazepine may increase the elimination of iloperidone.
Carbidopa; Levodopa: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or levodopa during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and levodopa may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with levodopa and other antiparkinson's treatments than traditional antipsychotics.
Carbidopa; Levodopa; Entacapone: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or COMT inhibitor during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and COMT inhibitors may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with COMT inhibitors and other Parkinson's treatments than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease. (Moderate) Moni

tor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or levodopa during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and levodopa may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with levodopa and other antiparkinson's treatments than traditional antipsychotics.
Carbinoxamine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Cariprazine: (Moderate) The risk of adverse effects may be increased during concurrent use of cariprazine with other antipsychotics, such as iloperidone. Similar to other antipsychotics, cariprazine administration has been associated with drowsiness, dizziness, orthostatic hypotension, extrapyramidal symptoms, neuroleptic malignant syndrome, and seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. The incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, but the risk appears to be increased.
Carteolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Carvedilol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Celecoxib; Tramadol: (Moderate) Coadministration should be avoided if possible. Antipsychotics may enhance the seizure risk of tramadol. Additive CNS depression may also be seen with the concomitant use of tramadol and iloperidone.
Cenobamate: (Moderate) Monitor for excessive sedation and somnolence during coadministration of cenobamate and iloperidone. Concurrent use may result in additive CNS depression.
Central-acting adrenergic agents: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Ceritinib: (Major) Avoid coadministration of iloperidone with ceritinib due to the risk of QT prolongation; plasma concentrations of iloperidone may also increase. Iloperidone is a CYP3A4 substrate that has been associated with QT prolongation. Concentration-dependent QT prolongation has also been reported with ceritinib, a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased exposure to iloperidone and its metabolites P88 and P95 by 57%, 55%, and 35%, respectively.
Cetirizine: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of atypical antipsychotics and cetirizine due to the risk for additive CNS depression.
Cetirizine; Pseudoephedrine: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of atypical antipsychotics and cetirizine due to the risk for additive CNS depression.
Cetrorelix: (Moderate) Antipsychotic-induced hyperprolactinemia results in down-regulation of the number of pituitary GnRH receptors and may interfere with the response to any of the gonadotropin-releasing hormone (GnRH) analogs including cetrorelix.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Chloramphenicol: (Major) Reduce the iloperidone dose by one-half if coadministered with chloramphenicol. If chloramphenicol is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Chloramphenicol is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Chlordiazepoxide: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Chlordiazepoxide; Amitriptyline: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Chlordiazepoxide; Clidinium: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Chloroquine: (Major) Avoid coadministration of chloroquine with iloperidone due to the increased risk of QT prolongation. If use together is necessary, obtain an ECG at baseline to assess initial QT interval and determine frequency of subsequent ECG monitoring, avoid any non-essential QT prolonging drugs, and correct electrolyte imbalances. Chloroquine is associated with an increased risk of QT prolongation and torsade de pointes (TdP); the risk of QT prolongation is increased with higher chloroquine doses. Iloperidone has also been associated with QT prolongation.
Chlorothiazide: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Chlorpheniramine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Chlorpheniramine; Codeine: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness. (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Chlorpheniramine; Dextromethorphan: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Chlorpheniramine; Hydrocodone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness. (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Chlorpheniramine; Phenylephrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Chlorpheniramine; Pseudoephedrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Chlorpromazine: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as chlorpromazine. In addition, coadministration may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Chlorthalidone: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Chlorthalidone; Clonidine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Ciprofloxacin: (Major) Concomitant use of iloperidone and ciprofloxacin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Cisapride: (Contraindicated) Iloperidone has been associated with QT prolongation; however, cases of torsade de pointes (TdP) have not been reported. Because of the potential for TdP, use of cisapride with iloperidone is contraindicated.
Citalopram: (Major) Concurrent use of iloperidone and citalopram should be avoided if possible. Citalopram causes dose-dependent QT interval prolongation and iloperidone is associated with a risk for QT prolongation and torsade de pointes (TdP). According to the manufacturer of citalopram, concurrent use of citalopram with other drugs that prolong the QT interval is not recommended. However, if concurrent therapy is considered essential, ECG monitoring is recommended. In addition, citalopram is a weak inhibitor of CYP2D6, and increased plasma concentrations of antipsychotics partially metabolized via CYP2D6, such as iloperidone, may occur. Decreased metabolism of iloperidone may lead to clinically important adverse reactions of antipsychotics such as extrapyramidal symptoms.
Clarithromycin: (Major) Avoid coadministration of iloperidone and clarithromycin due to the potential for QT prolongation; iloperidone exposure may also increase. If coadministration cannot be avoided, decrease the iloperidone dose by one-half. Resume the prior iloperidone dose if clarithromycin is discontinued. Clarithromycin is a strong CYP3A4 inhibitor that is associated with an established risk for QT prolongation and torsade de pointes (TdP). Iloperidone is a CYP3A4 substrate that has been associated with QT prolongation. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Clemastine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Clevidipine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Clobazam: (Moderate) Clobazam, a benzodiazepine, should be combined cautiously with atypical antipsychotics because of the potential for additive CNS depressant effects. Antipsychotics may also lower the seizure threshold, which might effect the efficacy of clobazam to treat seizures. Clobazam is a weak inducer of CYP3A4 and may reduce the efficacy of atypical antipsychotics that are significantly metabolized by CYP3A4; consult the atypical antipsychotic product labeling for clinical relevance.
Clofazimine: (Major) Concomitant use of clofazimine and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Clonazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Clonidine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Clorazepate: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Clozapine: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as clozapine. In addition, coadministration may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Cobicistat: (Major) Reduce the iloperidone dose by one-half if coadministered with cobicistat If chloramphenicol is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Chloramphenicol is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Cobimetinib: (Minor) If concurrent use of cobimetinib and iloperidone is necessary, use caution and monitor for a possible increase in cobimetinib-related adverse effects. Cobimetinib is a P-glycoprotein (P-gp) substrate, and iloperidone is a weak P-gp inhibitor; coadministration may result in increased cobimetinib exposure. However, coadministration of cobimetinib with another P-gp inhibitor, vemurafenib (960 mg twice daily), did not result in clinically relevant pharmacokinetic drug interactions.
Codeine: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Codeine; Guaifenesin: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Codeine; Phenylephrine; Promethazine: (Major) Iloperidone has been associated with QT prolongation. Promethazine, a phenothiazine, is associated with a possible risk for QT prolongation. Due to the risk of additive QT prolongation and potential for serious arrhythmias, other drugs having an association with QT prolongation are best avoided with iloperidone. Co-administration of promethazine and antipsychotics may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from these combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone. (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Codeine; Promethazine: (Major) Iloperidone has been associated with QT prolongation. Promethazine, a phenothiazine, is associated with a possible risk for QT prolongation. Due to the risk of additive QT prolongation and potential for serious arrhythmias, other drugs having an association with QT prolongation are best avoided with iloperidone. Co-administration of promethazine and antipsychotics may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from these combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone. (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
COMT inhibitors: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or COMT inhibitor during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and COMT inhibitors may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with COMT inhibitors and other Parkinson's treatments than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Crizotinib: (Major) Avoid coadministration of crizotinib with iloperidone due to the risk of QT prolongation. Crizotinib has been associated with concentration-dependent QT prolongation. Iloperidone has also been associated with QT prolongation.
Cyclizine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Cyproheptadine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Dacomitinib: (Major) Reduce the iloperidone dose by one-half if coadministered with dacomitinib. If dacomitinib is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP2D6 substrate. Dacomitinib is a strong inhibitor of CYP2D6. Coadministration of other strong CYP2D6 inhibitors increased mean steady-state peak concentrations of iloperidone and its metabolite P88, by up to 3-fold, and decreased mean steady-state peak concentrations of its metabolite P95 by one-half.
Dapagliflozin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Dapagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Dapagliflozin; Saxagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Darunavir: (Major) Reduce the iloperidone dose by one-half if coadministered with darunavir. If darunavir is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Darunavir is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Darunavir; Cobicistat: (Major) Reduce the iloperidone dose by one-half if coadministered with cobicistat If chloramphenicol is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Chloramphenicol is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively. (Major) Reduce the iloperidone dose by one-half if coadministered with darunavir. If darunavir is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Darunavir is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Major) Reduce the iloperidone dose by one-half if coadministered with cobicistat If chloramphenicol is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Chloramphenicol is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively. (Major) Reduce the iloperidone dose by one-half if coadministered with darunavir. If darunavir is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Darunavir is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Dasatinib: (Major) Avoid coadministration of dasatinib and iloperidone due to the potential for QT prolongation. In vitro studies have shown that dasatinib has the potential to prolong the QT interval. Iloperidone has also been associated with QT prolongation.
Degarelix: (Major) Avoid coadministration if iloperidone with degarelix due to the risk of QT prolongation; the efficacy of degarelix may also be reduced. Iloperidone has been associated with QT prolongation. Androgen deprivation therapy (i.e., degarelix) may also prolong the QT/QTc interval. Additionally, iloperidone can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; degarelix is a GnRH analog.
Delavirdine: (Major) Reduce the iloperidone dose by one-half if coadministered with delavirdine. If delavirdine is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Delavirdine is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Deutetrabenazine: (Major) Avoid iloperidone in combination with other drugs known to prolong the QT interval. Iloperidone has been associated with QT prolongation. Deutetrabenazine may prolong the QT interval, but the degree of QT prolongation is not clinically significant when deutetrabenazine is administered within the recommended dosage range. Monitor for signs and symptoms of neuroleptic malignant syndrome (NMS), restlessness, and agitation. If NMS is diagnosed, immediately discontinue deutetrabenazine, and provide intensive symptomatic treatment and medical monitoring. Recurrence of NMS has been reported with resumption of drug therapy. If akathisia or parkinsonism develops during treatment, the deutetrabenazine dose should be reduced; discontinuation may be required. Deutetrabenazine is a reversible, dopamine depleting drug and iloperidone is a dopamine antagonist. The risk for parkinsonism, NMS, or akathisia may be increased with concomitant administration. Monitor for excessive sedation and somnolence during coadministration of iloperidone and deutetrabenazine. Concurrent use may result in additive CNS depression.
Dexchlorpheniramine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Dexmedetomidine: (Major) Concomitant use of dexmedetomidine and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Dextromethorphan; Bupropion: (Major) Reduce the iloperidone dose by one-half if coadministered with bupropion. If bupropion is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Additionally, bupropion is associated with a dose-related risk of seizures. Extreme caution is recommended during concurrent use of other drugs that may lower the seizure threshold such as antipsychotics. Iloperidone is a CYP2D6 substrate. Bupropion is a strong inhibitor of CYP2D6. Coadministration of other strong CYP2D6 inhibitors increased mean steady-state peak concentrations of iloperidone and its metabolite P88, by up to 3-fold, and decreased mean steady-state peak concentrations of its metabolite P95 by one-half.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Dextromethorphan; Quinidine: (Contraindicated) Quinidine administration is associated with QT prolongation and torsades de pointes (TdP). Quinidine inhibits CYP2D6 and has QT-prolonging actions; quinidine is contraindicated with other drugs that prolong the QT interval and are metabolized by CYP2D6 as the effects on the QT interval may be increased during concurrent use of these agents. Drugs that prolong the QT and are substrates for CYP2D6 that are contraindicated with quinidine include iloperidone.
Diazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Diazoxide: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Difelikefalin: (Moderate) Monitor for dizziness, somnolence, mental status changes, and gait disturbances if concomitant use of difelikefalin with CNS depressants is necessary. Concomitant use may increase the risk for these adverse reactions.
Diltiazem: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Dimenhydrinate: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Dipeptidyl Peptidase-4 Inhibitors: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Diphenhydramine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Diphenhydramine; Ibuprofen: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Diphenhydramine; Naproxen: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Diphenhydramine; Phenylephrine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Disopyramide: (Major) Iloperidone should be avoided in combination with disopyramide. Disopyramide administration is associated with QT prolongation and torsades de pointes (TdP). Iloperidone has been associated with QT prolongation; however, TdP has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect.
Dofetilide: (Major) Coadministration of dofetilide and iloperidone is not recommended as concurrent use may increase the risk of QT prolongation. Dofetilide, a Class III antiarrhythmic agent, is associated with a well-established risk of QT prolongation and torsade de pointes (TdP). Iloperidone has been associated with QT prolongation.
Dolasetron: (Major) Due to a possible risk for QT prolongation and torsade de pointes (TdP), dolasetron and iloperidone should be used together cautiously. Dolasetron has been associated with a dose-dependent prolongation in the QT, PR, and QRS intervals on an electrocardiogram. Iloperidone has been associated with QT prolongation. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect.
Dolutegravir; Rilpivirine: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Donepezil: (Major) Case reports indicate that QT prolongation and torsade de pointes (TdP) can occur during donepezil therapy. Donepezil is considered a drug with a known risk of TdP. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously and with close monitoring with donepezil include iloperidone.
Donepezil; Memantine: (Major) Case reports indicate that QT prolongation and torsade de pointes (TdP) can occur during donepezil therapy. Donepezil is considered a drug with a known risk of TdP. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously and with close monitoring with donepezil include iloperidone.
Dorzolamide; Timolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Doxazosin: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Doxylamine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Doxylamine; Pyridoxine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Dronabinol: (Moderate) Drugs that can cause CNS depression such as dronabinol, if used concomitantly with atypical antipsychotics, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Dronedarone: (Contraindicated) The concomitant use of dronedarone and iloperidone is contraindicated. Dronedarone is an inhibitor of CYP2D6 and CYP3A. Iloperidone is a substrate for CYP2D6 and CYP3A4. Coadministration of dronedarone and iloperidone may result in increased plasma concentrations of iloperidone. In addition, iloperidone has been established to have a possible association with QT prolongation and Torsade de Pointes (TdP). Dronedarone is associated with dose-related increases in the QTc interval. The increase in QTc is approximately 10 milliseconds at doses of 400 mg twice daily (the FDA-approved dose) and up to 25 milliseconds at doses of 1600 mg twice daily. Although there are no studies examining the effects of dronedarone in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation.
Droperidol: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as droperidol.
Dulaglutide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Duloxetine: (Moderate) Duloxetine is a moderate inhibitor of CYP2D6 and may decrease the clearance of atypical antipsychotics that are CYP2D6 substrates including iloperidone. Decreased metabolism of iloperidone may lead to clinically important adverse reactions that are associated with antipsychotic use, such as extrapyramidal symptoms. In addition, iloperidone is associated with a risk for QT prolongation and torsade de pointes (TdP) and should be used cautiously with CYP2D6 inhibitors such as duloxetine.
Efavirenz: (Major) Iloperidone has been associated with QT prolongation. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as efavirenz. In addition, efavirenz may induce the CYP3A4 metabolism of iloperidone, potentially reducing the efficacy of iloperidone by decreasing its systemic exposure.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Iloperidone has been associated with QT prolongation. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as efavirenz. In addition, efavirenz may induce the CYP3A4 metabolism of iloperidone, potentially reducing the efficacy of iloperidone by decreasing its systemic exposure.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Iloperidone has been associated with QT prolongation. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as efavirenz. In addition, efavirenz may induce the CYP3A4 metabolism of iloperidone, potentially reducing the efficacy of iloperidone by decreasing its systemic exposure.
Eliglustat: (Major) Coadminister iloperidone and eliglustat cautiously and with close monitoring; there may be an increased risk of QT prolongation and/or iloperidone-associated adverse effects. If coadministration is necessary, consider reducing the iloperidone dosage and titrating to clinical effect; although there are no specific dosage adjustment guidelines for coadministration with eliglustat, the iloperidone product label recommends decreasing the antipsychotic dose by one-half when used with a strong CYP2D6 inhibitor (e.g., fluoxetine). Eliglustat is CYP2D6 inhibitor that is predicted to cause PR, QRS, and/or QT prolongation at significantly elevated plasma concentrations. Iloperidone is a CYP2D6 substrate independently associated with a risk of QT prolongation. Coadministration of iloperidone and eliglustat may result in additive effects on the QT interval and, potentially, increased plasma concentrations of iloperidone, further increasing the risk of serious adverse events (e.g., QT prolongation and cardiac arrhythmias).
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Major) Reduce the iloperidone dose by one-half if coadministered with cobicistat If chloramphenicol is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Chloramphenicol is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Reduce the iloperidone dose by one-half if coadministered with cobicistat If chloramphenicol is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Chloramphenicol is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Empagliflozin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Empagliflozin; Linagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Empagliflozin; Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Empagliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Emtricitabine; Rilpivirine; Tenofovir alafenamide: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Emtricitabine; Rilpivirine; Tenofovir Disoproxil Fumarate: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Enalapril, Enalaprilat: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Encorafenib: (Major) Avoid coadministration of encorafenib and iloperidone due to QT prolongation. Encorafenib is associated with dose-dependent prolongation of the QT interval. Iloperidone has also been associated with QT prolongation.
Entacapone: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or COMT inhibitor during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and COMT inhibitors may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with COMT inhibitors and other Parkinson's treatments than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Entrectinib: (Major) Avoid coadministration of entrectinib with iloperidone due to the risk of QT prolongation. Both entrectinib and iloperidone have been associated with QT prolongation.
Eplerenone: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Epoprostenol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Eprosartan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Eribulin: (Major) Iloperidone has been associated with QT prolongation; ho wever, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect. Drugs with a possible risk for QT prolongation and TdP that should be avoided with iloperidone include eribulin. If coadministration is necessary, ECG monitoring is recommended; closely monitor the patient for QT interval prolongation.
Ertugliflozin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Ertugliflozin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Ertugliflozin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Erythromycin: (Major) Concomitant use of iloperidone and erythromycin increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Escitalopram: (Major) Escitalopram has been associated with QT prolongation. Coadministration with other drugs that have a possible risk for QT prolongation and torsade de pointes (TdP), such as iloperidone, should be done with caution and close monitoring. In addition, escitalopram is a modest inhibitor of CYP2D6 and may decrease the clearance of atypical antipsychotics that are CYP2D6 substrates including iloperidone. Decreased metabolism of these CYP2D6 substrates may lead to clinically important adverse reactions that are associated with antipsychotic use, such as extrapyramidal symptoms.
Esketamine: (Moderate) Closely monitor patients receiving esketamine and iloperidone for sedation and other CNS depressant effects. Instruct patients who receive a dose of esketamine not to drive or engage in other activities requiring alertness until the next day after a restful sleep.
Esmolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Estazolam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Eszopiclone: (Moderate) A reduction in the dose of eszopiclone should be considered during co-administration of other CNS depressants, such as antipsychotics, to minimize additive sedative effects. In addition, the risk of next-day psychomotor impairment is increased during co-administration of eszopiclone and other CNS depressants, which may decrease the ability to perform tasks requiring full mental alertness such as driving. Antipsychotics with a higher incidence of sedation, such as olanzapine, clozapine, quetiapine, lurasidone, chlorpromazine, and thioridazine, are more likely to interact with eszopiclone. In one evaluation, concurrent use of eszopiclone and olanzapine reduced psychomotor function as measured by the Digit Symbol Substitution Test (DSST).
Ethacrynic Acid: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Ethanol: (Major) Advise patients to avoid alcohol consumption while taking CNS depressants. Alcohol consumption may result in additive CNS depression.
Ethiodized Oil: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering intrathecal radiopaque contrast agents. Antipsychotics should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours post-procedure. Iloperidone has not been associated with seizure activity more frequently than placebo in clinical trials; however, lowering of the seizure threshold is generally a class effect among antipsychotics and caution is advised.
Exenatide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Felodipine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Fenfluramine: (Moderate) Monitor for excessive sedation and somnolence during coadministration of fenfluramine and iloperidone. Concurrent use may result in additive CNS depression.
Fenoldopam: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Fentanyl: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Fingolimod: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect. Fingolimod initiation results in decreased heart rate and may prolong the QT interval. If coadministration is necessary, after the first fingolimod dose, overnight monitoring with continuous ECG in a medical facility is advised for patients taking QT prolonging drugs with a known risk of torsades de pointes (TdP). Fingolimod has not been studied in patients treated with drugs that prolong the QT interval, but drugs that prolong the QT interval have been associated with cases of TdP in patients with bradycardia.
Flecainide: (Major) Concurrent use of iloperidone and flecainide should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Iloperidone has been associated with QT prolongation; however, TdP has not been reported. Flecainide, a Class IC antiarrhythmic, is associated with a possible risk for QT prolongation and/or TdP; flecainide increases the QT interval, but largely due to prolongation of the QRS interval. Although causality for TdP has not been established for flecainide, patients receiving concurrent drugs which have the potential for QT prolongation may have an increased risk of developing proarrhythmias.
Fluconazole: (Contraindicated) The concurrent use of fluconazole and iloperidone is contraindicated due to the risk of life threatening arrhythmias such as torsades de pointes (TdP). Fluconazole inhibits CYP3A4, an isoenzyme partially responsible for the metabolism of iloperidone. These drugs used in combination may result in elevated iloperidone plasma concentrations, causing an increased risk for iloperidone-related adverse events, such as QT prolongation. Additionally, fluconazole has been associated with prolongation of the QT interval as well as rare cases of TdP; do not use with other drugs that may prolong the QT interval and are metabolized through CYP3A4, such as iloperidone.
Fluoxetine: (Major) Avoid coadministration of fluoxetine and iloperidone due to the potential for additive QT prolongation and risk of torsade de pointes (TdP); iloperidone levels may also be increased. If concomitant use is necessary, reduce the iloperidone dose by one-half. If fluoxetine is discontinued, increase the iloperidone dose to the previous level. Iloperidone is a CYP2D6 substrate that has been associated with QT prolongation. Fluoxetine is a strong inhibitor of CYP2D6; QT prolongation and TdP have been reported in patients treated with fluoxetine. Coadministration of fluoxetine increased the AUC of iloperidone and its metabolite P88, by about 2- to 3-fold, and decreased the AUC of its metabolite P95 by one-half.
Fluphenazine: (Moderate) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should not be used with other agents also known to have this effect, such as fluphenazine. In addition, coadministration may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Flurazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Fluvoxamine: (Major) There may be an increased risk for QT prolongation, torsade de pointes (TdP), and elevated iloperidone concentrations during concurrent use of fluvoxamine and iloperidone. Cases of QT prolongation and TdP have been reported during postmarketing use of fluvoxamine. According to the manufacturer of iloperidone, the drug should be avoided in combination with other agents also known to have this effect. In addition, fluvoxamine is a moderate CYP3A4 inhibitor, which may result in decreased clearance of CYP3A4 substrates including iloperidone. Decreased metabolism of iloperidone may lead to clinically important adverse reactions such as extrapyramidal symptoms, QT prolongation, and TdP.
Food: (Major) Advise patients to avoid cannabis use while taking CNS depressants due to the risk for additive CNS depression and potential for other cognitive adverse reactions.
Fosamprenavir: (Major) Concomitant use of iloperidone and fosamprenavir may result in altered iloperidone plasma concentrations. Iloperidone is a substrate of the hepatic isoenzyme CYP3A4. Amprenavir, the active metabolite of fosamprenavir, is a strong inhibitor and moderate inducer of CYP3A4.
Foscarnet: (Major) When possible, avoid concurrent use of foscarnet with other drugs known to prolong the QT interval, such as iloperidone. Foscarnet has been associated with postmarketing reports of both QT prolongation and torsade de pointes (TdP). Iloperidone has also been associated with QT prolongation. If these drugs are administered together, obtain an electrocardiogram and electrolyte concentrations before and periodically during treatment.
Fosinopril: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Fostemsavir: (Major) Avoid coadministration of iloperidone with fostemsavir due to the potential for additive QT prolongation. Iloperidone has been associated with QT prolongation. Supratherapeutic doses of fostemsavir (2,400 mg twice daily, four times the recommended daily dose) have been shown to cause QT prolongation. Fostemsavir causes dose-dependent QT prolongation.
Furosemide: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Gabapentin: (Moderate) Monitor for excessive sedation and somnolence during coadministration of iloperidone and gabapentin. Concurrent use may result in additive CNS depression.
Ganirelix: (Moderate) Antipsychotic-induced hyperprolactinemia results in down-regulation of the number of pituitary GnRH receptors and may interfere with the response to ganirelix, a gonadotropin-releasing hormone (GnRH) analog.
Gemifloxacin: (Major) Concurrent use of iloperidone and gemifloxacin should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Iloperidone has been associated with QT prolongation; however, TdP has not been reported. Gemifloxacin may also prolong the QT interval in some patients, with the maximal change in the QTc interval occurring approximately 5 to 10 hours following oral administration. The likelihood of QTc prolongation may increase with increasing dose of gemifloxacin; therefore, the recommended dose should not be exceeded especially in patients with renal or hepatic impairment where the Cmax and AUC are slightly higher.
Gemtuzumab Ozogamicin: (Major) Avoid coadministration of gemtuzumab ozogamicin with iloperidone due to the potential for additive QT interval prolongation and risk of torsade de pointes (TdP). If coadministration is unavoidable, obtain an ECG and serum electrolytes prior to the start of and as needed during treatment. Although QT interval prolongation has not been reported with gemtuzumab ozogamicin, it has been reported with other drugs that contain calicheamicin. Iloperidone has been associated with QT prolongation.
Gilteritinib: (Major) Avoid concomitant use of iloperidone with gilteritinib due to the potential for additive QT prolongation. Both drugs have been associated with QT prolongation; coadministration has the potential for additive effects.
Glasdegib: (Major) Avoid coadministration of glasdegib with iloperidone due to the potential for additive QT prolongation. Glasdegib therapy may result in QT prolongation and ventricular arrhythmias including ventricular fibrillation and ventricular tachycardia. Iloperidone has also been associated with QT prolongation.
Glipizide; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Glyburide; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Goserelin: (Major) Avoid coadministration of goserelin with iloperidone due to the risk of reduced efficacy of goserelin; QT prolongation may also occur. Iloperidone can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; goserelin is a GnRH analog. Iloperidone has been associated with QT prolongation. Androgen deprivation therapy (i.e., goserelin) may prolong the QT/QTc interval.
Granisetron: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as granisetron.
Guaifenesin; Hydrocodone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Guanfacine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Halogenated Anesthetics: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with halogenated anesthetics which canalso prolong the QT interval.
Haloperidol: (Major) Haloperidol should be avoided in combination with iloperidone, due to duplicative antipsychotic effects and the potential for additive effects on the QT interval. Haloperidol is associated with a possible risk for QT prolongation and torsade de pointes (TdP) and iloperidone has been associated with QT prolongation. Coadministration may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Histrelin: (Major) Avoid coadministration of histrelin with iloperidone due to the risk of reduced efficacy of histrelin; QT prolongation may also occur. Iloperidone can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; histrelin is a GnRH analog. Iloperidone has been associated with QT prolongation. Androgen deprivation therapy (i.e., histrelin) may prolong the QT/QTc interval.
Homatropine; Hydrocodone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Hydralazine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Hydralazine; Isosorbide Dinitrate, ISDN: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Hydrocodone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Hydrocodone; Ibuprofen: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Hydromorphone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Hydroxychloroquine: (Major) Concomitant use of iloperidone and hydroxychloroquine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Hydroxyzine: (Major) Avoid coadministration of iloperidone with hydroxyzine due to the potential for additive QT prolongation and torsade de pointes (TdP). In addition, because hydroxyzine causes pronounced sedation, an enhanced CNS depressant effect may occur when it is combined with other CNS depressants including iloperidone. Postmarketing data indicate that hydroxyzine causes QT prolongation and TdP. Iloperidone has also been associated with QT prolongation.
Ibuprofen; Oxycodone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Ibutilide: (Major) Ibutilide administration can cause QT prolongation and torsades de pointes (TdP); proarrhythmic events should be anticipated. The potential for proarrhythmic events with ibutilide increases with the coadministration of other drugs that prolong the QT interval. Iloperidone has been associated with QT prolongation; however, TdP has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect.
Idelalisib: (Major) Reduce the iloperidone dose by one-half if coadministered with idelalisib. If idelalisib is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Idelalisib is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Iloprost: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Incretin Mimetics: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Indapamide: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Indinavir: (Major) Reduce the iloperidone dose by one-half if coadministered with indinavir. If indinavir is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Indinavir is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Inotuzumab Ozogamicin: (Major) Avoid coadministration of inotuzumab ozogamicin with iloperidone due to the potential for additive QT prolongation and risk of torsade de pointes (TdP). If coadministration is unavoidable, obtain an ECG and serum electrolytes prior to the start of treatment, after treatment initiation, and periodically during treatment. Both inotuzumab and iloperidone have been associated with QT prolongation.
Insulin Degludec; Liraglutide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Insulin Glargine; Lixisenatide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Insulins: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and insulin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Iodixanol: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering intrathecal radiopaque contrast agents. Antipsychotics should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours post-procedure. Iloperidone has not been associated with seizure activity more frequently than placebo in clinical trials; however, lowering of the seizure threshold is generally a class effect among antipsychotics and caution is advised.
Iohexol: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering intrathecal radiopaque contrast agents. Antipsychotics should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours post-procedure. Iloperidone has not been associated with seizure activity more frequently than placebo in clinical trials; however, lowering of the seizure threshold is generally a class effect among antipsychotics and caution is advised.
Iomeprol: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering intrathecal radiopaque contrast agents. Antipsychotics should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours post-procedure. Iloperidone has not been associated with seizure activity more frequently than placebo in clinical trials; however, lowering of the seizure threshold is generally a class effect among antipsychotics and caution is advised.
Iopamidol: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering intrathecal radiopaque contrast agents. Antipsychotics should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours post-procedure. Iloperidone has not been associated with seizure activity more frequently than placebo in clinical trials; however, lowering of the seizure threshold is generally a class effect among antipsychotics and caution is advised.
Iopromide: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering intrathecal radiopaque contrast agents. Antipsychotics should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours post-procedure. Iloperidone has not been associated with seizure activity more frequently than placebo in clinical trials; however, lowering of the seizure threshold is generally a class effect among antipsychotics and caution is advised.
Ioversol: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering intrathecal radiopaque contrast agents. Antipsychotics should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours post-procedure. Iloperidone has not been associated with seizure activity more frequently than placebo in clinical trials; however, lowering of the seizure threshold is generally a class effect among antipsychotics and caution is advised.
Irbesartan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Isavuconazonium: (Major) Concomitant use of isavuconazonium with iloperidone may result in increased serum concentrations of iloperidone. Iloperidone is a substrate of the hepatic isoenzyme CYP3A4; isavuconazole, the active moiety of isavuconazonium, is a moderate inhibitor of this enzyme. Caution and close monitoring are advised if these drugs are used together.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Moderate) In vitro studies indicate that CYP3A4 is involved in the metabolism of iloperidone. In theory, potent inducers of CYP3A4 such as rifampin may increase the elimination of iloperidone. The clinical outcome of concurrent administration with iloperidone is unknown.
Isoniazid, INH; Rifampin: (Moderate) In vitro studies indicate that CYP3A4 is involved in the metabolism of iloperidone. In theory, potent inducers of CYP3A4 such as rifampin may increase the elimination of iloperidone. The clinical outcome of concurrent administration with iloperidone is unknown.
Isosulfan Blue: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering intrathecal radiopaque contrast agents. Antipsychotics should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours post-procedure. Iloperidone has not been associated with seizure activity more frequently than placebo in clinical trials; however, lowering of the seizure threshold is generally a class effect among antipsychotics and caution is advised.
Isradipine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Itraconazole: (Major) Avoid concurrent administration of itraconazole and iloperidone. If concurrent use is necessary, the iloperidone dose should be reduced by one-half. Coadministration of itraconazole (a strong CYP3A4 inhibitor) with iloperidone (a CYP3A4 substrate) may result in elevated iloperidone plasma concentrations and could increase the risk for adverse events, including QT prolongation. If itraconazole is subsequently withdrawn, the iloperidone dose should be returned to the previous amount. In addition, both iloperidone and itraconazole are associated with QT prolongation; coadministration may increase this risk.
Ivosidenib: (Major) Avoid coadministration of ivosidenib with iloperidone due to an increased risk of QT prolongation. If concomitant use is unavoidable, monitor ECGs for QTc prolongation and monitor electrolytes; correct any electrolyte abnormalities as clinically appropriate. An interruption of therapy and dose reduction of ivosidenib may be necessary if QT prolongation occurs. Prolongation of the QTc interval and ventricular arrhythmias have been reported in patients treated with ivosidenib. Iloperidone has been associated with QT prolongation.
Ketoconazole: (Contraindicated) Avoid concomitant use of ketoconazole and iloperidone due to an increased risk for torsade de pointes (TdP) and QT/QTc prolongation. Additionally, concomitant use may increase the exposure of iloperidone, further increasing the risk for adverse effects. Reduce the iloperidone dose by one-half if concomitant use is necessary. If ketoconazole is discontinued, increase the iloperidone dose to the previous level. Iloperidone is a CYP3A4 substrate and ketoconazole is a strong CYP3A4 inhibitor. Coadministration with ketoconazole increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Labetalol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Lansoprazole; Amoxicillin; Clarithromycin: (Major) Avoid coadministration of iloperidone and clarithromycin due to the potential for QT prolongation; iloperidone exposure may also increase. If coadministration cannot be avoided, decrease the iloperidone dose by one-half. Resume the prior iloperidone dose if clarithromycin is discontinued. Clarithromycin is a strong CYP3A4 inhibitor that is associated with an established risk for QT prolongation and torsade de pointes (TdP). Iloperidone is a CYP3A4 substrate that has been associated with QT prolongation. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Lapatinib: (Major) Avoid coadministration of iloperidone with lapatinib due to the risk of QT prolongation. Iloperidone has been associated with QT prolongation. Lapatinib has also been associated with concentration-dependent QT prolongation; ventricular arrhythmias and torsade de pointes (TdP) have been reported in postmarketing experience with lapatinib.
Lasmiditan: (Moderate) Monitor for excessive sedation and somnolence during coadministration of lasmiditan and iloperidone. Concurrent use may result in additive CNS depression.
Lefamulin: (Major) Avoid coadministration of lefamulin with iloperidone as concurrent use may increase the risk of QT prolongation. If coadministration cannot be avoided, monitor ECG during treatment. Lefamulin has a concentration dependent QTc prolongation effect. The pharmacodynamic interaction potential to prolong the QT interval of the electrocardiogram between lefamulin and other drugs that effect cardiac conduction is unknown. Iloperidone has been associated with QT prolongation.
Lemborexant: (Moderate) Monitor for excessive sedation and somnolence during coadministration of lemborexant and atypical antipsyhotics. Dosage adjustments of lemborexant and the atypical antipsychotic may be necessary when administered together because of potentially additive CNS effects. The risk of next-day impairment, including impaired driving, is increased if lemborexant is taken with other CNS depressants.
Lenvatinib: (Major) Avoid coadministration of lenvatinib with iloperidone due to the risk of QT prolongation. Prolongation of the QT interval has been reported with lenvatinib therapy. Iloperidone has also been associated with QT prolongation.
Letermovir: (Moderate) A clinically relevant increase in the plasma concentration of iloperidone may occur if given with letermovir. Reduce the iloperidone dose by one-half in patients also receiving cyclosporine, because the magnitude of the interaction may be increased. When treatment with letermovir and/or cyclosporine is withdrawn from combination therapy, iloperidone dose should be increased to where it was previously. Iloperidone is partially metabolized by CYP3A4. Letermovir is a moderate CYP3A4 inhibitor; however, when given with cyclosporine, the combined effect on CYP3A4 substrates may be similar to a strong CYP3A4 inhibitor. Concurrent administration with strong CYP3A4 inhibitors increased exposure (AUC) of iloperidone and its metabolites P88 and P95 by 57%, 55%, and 35%, respectively. Administration of iloperidone with weak or moderate CYP3A4 inhibitors has not been evaluated.
Leuprolide: (Major) Avoid coadministration of leuprolide with iloperidone due to the risk of reduced efficacy of leuprolide; QT prolongation may also occur. Iloperidone can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; leuprolide is a GnRH analog. Iloperidone has been associated with QT prolongation. Androgen deprivation therapy (i.e., leuprolide) may prolong the QT/QTc interval.
Leuprolide; Norethindrone: (Major) Avoid coadministration of leuprolide with iloperidone due to the risk of reduced efficacy of leuprolide; QT prolongation may also occur. Iloperidone can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; leuprolide is a GnRH analog. Iloperidone has been associated with QT prolongation. Androgen deprivation therapy (i.e., leuprolide) may prolong the QT/QTc interval.
Levamlodipine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Levobunolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Levocetirizine: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of atypical antipsychotics and cetirizine due to the risk for additive CNS depression.
Levodopa: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or levodopa during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and levodopa may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with levodopa and other antiparkinson's treatments than traditional antipsychotics.
Levofloxacin: (Major) Concomitant use of levofloxacin and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Levoketoconazole: (Contraindicated) Avoid concomitant use of ketoconazole and iloperidone due to an increased risk for torsade de pointes (TdP) and QT/QTc prolongation. Additionally, concomitant use may increase the exposure of iloperidone, further increasing the risk for adverse effects. Reduce the iloperidone dose by one-half if concomitant use is necessary. If ketoconazole is discontinued, increase the iloperidone dose to the previous level. Iloperidone is a CYP3A4 substrate and ketoconazole is a strong CYP3A4 inhibitor. Coadministration with ketoconazole increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Linagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Linagliptin; Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Liraglutide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Lisinopril: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Lithium: (Major) Iloperidone and lithium are associated with QT prolongation. Coadministration may increase the risk of QT prolongation; therefore, iloperidone and lithium should be coadministered with caution and close monitoring. Some atypical antipsychotics are considered first-line adjunctive therapy to mood stabilizers such as lithium. However, it is advisable to monitor patients for neurotoxicity during co-administration. Neuroleptic malignant syndrome (NMS) has been observed occasionally during concurrent use of lithium and either atypical or conventional antipsychotics. Additive extrapyramidal effects have also been noted. Early case reports described an encephalopathic syndrome consisting of delirium, tremulousness, dyskinesia, seizures, leukocytosis, weakness, hyperpyrexia, confusion, extrapyramidal symptoms, elevations in laboratory values (e.g., liver function tests, blood urea nitrogen, fasting blood sugar) and, in some cases, irreversible brain damage, during use of lithium and conventional antipsychotics, particularly haloperidol. Subsequent rare reports of NMS or NMS-like reactions have been described during co-administration of lithium and atypical antipsychotics (e.g., risperidone, olanzapine, clozapine). Following resolution of NMS, there are isolated instances of re-emergence of symptoms following re-initiation of lithium as monotherapy. Lithium may be a risk factor for antipsychotic-induced NMS; however, this hypothesis has not been confirmed. In many reported cases, confounding factors have been present (e.g., previous history of NMS, high dose therapy). The ability of antipsychotics alone to precipitate NMS and the rarity of the condition further complicate assessment of lithium as a risk factor.
Lixisenatide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Lofexidine: (Major) Avoid coadministration of lofexidine and iloperidone due to the potential for additive QT prolongation. Monitor ECG if coadministration cannot be avoided. Additionally, monitor for excessive hypotension and sedation during coadministration as lofexidine can potentiate the effects of CNS depressants. Lofexidine prolongs the QT interval. In addition, there are postmarketing reports of torsade de pointes. Iloperidone has been associated with QT prolongation.
Lonafarnib: (Major) Reduce the iloperidone dose by one-half if coadministered with lonafarnib. If lonafarnib is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate and lonafarnib is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Loop diuretics: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Loperamide: (Major) Loperamide should be avoided in combination with iloperidone. At high doses, loperamide has been associated with serious cardiac toxicities, including syncope, ventricular tachycardia, QT prolongation, torsade de pointes (TdP), and cardiac arrest. Iloperidone has been associated with QT prolongation. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect. If these drugs are used together, monitor for cardiac toxicities (i.e., syncope, ventricular tachycardia, QT prolongation, TdP, cardiac arrest) and other loperamide-associated adverse reactions, such as CNS effects.
Loperamide; Simethicone: (Major) Loperamide should be avoided in combination with iloperidone. At high doses, loperamide has been associated with serious cardiac toxicities, including syncope, ventricular tachycardia, QT prolongation, torsade de pointes (TdP), and cardiac arrest. Iloperidone has been associated with QT prolongation. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect. If these drugs are used together, monitor for cardiac toxicities (i.e., syncope, ventricular tachycardia, QT prolongation, TdP, cardiac arrest) and other loperamide-associated adverse reactions, such as CNS effects.
Lopinavir; Ritonavir: (Major) Avoid coadministration of lopinavir with iloperidone due to the potential for additive QT prolongation. If use together is necessary, obtain a baseline ECG to assess initial QT interval and determine frequency of subsequent ECG monitoring, avoid any non-essential QT prolonging drugs, and correct electrolyte imbalances. Both drugs have been associated with QT prolongation. (Major) Reduce the iloperidone dose by one-half if coadministered with ritonavir. If ritonavir is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Ritonavir is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Lorazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Losartan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Loxapine: (Major) Caution is advisable during concurrent use of loxapine and other antipsychotics. Loxapine use has been associated with adverse events such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, and seizures. These effects may be potentiated during concurrent use of loxapine and other antipsychotics. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Lumacaftor; Ivacaftor: (Moderate) Lumacaftor; ivacaftor may reduce the efficacy of iloperidone by decreasing its systemic exposure. If used together, monitor the patient for appropriate clinical effects. Iloperidone is a CYP3A substrate. Lumacaftor is a strong inducer of CYP3A.
Lumateperone: (Moderate) Coadministration of antipsychotics, such as lumateperone and iloperidone, may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from antipsychotic combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone.
Lurasidone: (Major) Lurasidone administration has been associated with drowsiness, dizziness, orthostatic hypotension, extrapyramidal symptoms, neuroleptic malignant syndrome, and seizures. The risk of these adverse effects may be increased during concurrent use of lurasidone with other antipsychotics. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Macimorelin: (Major) Avoid concurrent administration of macimorelin with drugs that prolong the QT interval, such as iloperidone. Use of these drugs together may increase the risk of developing torsade de pointes-type ventricular tachycardia. Sufficient washout time of drugs that are known to prolong the QT interval prior to administration of macimorelin is recommended. Treatment with macimorelin has been associated with an increase in the corrected QT (QTc) interval. Iloperidone has been associated with QT prolongation.
Maprotiline: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as maprotiline.
Mecamylamine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Meclizine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Mefloquine: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as mefloquine.
Meglitinides: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Meperidine: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Meprobamate: (Moderate) The CNS-depressant effects of meprobamate can be potentiated with concomitant administration of other drugs known to cause CNS depression including antipsychotics.
Metformin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Metformin; Repaglinide: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Metformin; Rosiglitazone: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Metformin; Saxagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Metformin; Sitagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Methadone: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as methadone. Methadone is considered to be associated with an increased risk for QT prolongation and TdP, especially at higher doses (> 200 mg/day but averaging approximately 400 mg/day in adult patients). Additive CNS depression is also possible.
Methohexital: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates.
Methyclothiazide: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Methyldopa: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Metoclopramide: (Contraindicated) Avoid metoclopramide in patients receiving atypical antipsychotics. There is a potential for additive effects, including increased frequency and severity of tardive dyskinesia (TD), other extrapyramidal symptoms (EPS), and neuroleptic malignant syndrome (NMS). Some manufacturer labels for metoclopramide contraindicate the use of these drugs together, while others state avoidance is necessary. If these agents must be used together, monitor closely for movement disorders and additive CNS effects. There also may be additive sedation. Discontinue these medications at the first signs of dyskinesia.
Metolazone: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Metoprolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Metronidazole: (Major) Concomitant use of metronidazole and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Midazolam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Midostaurin: (Major) Avoid the concomitant use of midostaurin and iloperidone; both drugs have been reported to increase the QT interval. If coadministration cannot be avoided, consider electrocardiogram monitoring. In clinical trials, QT prolongation has been reported in patients who received midostaurin as single-agent therapy or in combination with cytarabine and daunorubicin.
Mifepristone: (Major) Avoid coadministration of iloperidone and chronic mifepristone therapy due to the potential for QT prolongation; increased iloperidone exposure may also occur. If coadministration cannot be avoided, reduce the iloperidone dose by one-half and use the lowest effective dose of mifepristone. If mifepristone is discontinued, increase the iloperidone dose to the previous level. Iloperidone is a CYP3A4 substrate that has been associated with QT prolongation. Mifepristone is a strong CYP3A4 inhibitor that also prolongs the QT interval. The clinical significance of this interaction with the short-term use of mifepristone for termination of pregnancy is unknown.
Miglitol: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Minoxidil: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Mirabegron: (Moderate) Mirabegron is a moderate CYP2D6 inhibitor. Exposure of drugs metabolized by CYP2D6 isoenzymes such as iloperidone may be increased whenadministered with mirabegron. Therefore, appropriate monitoring and dose adjustment may be necessary.
Mirtazapine: (Major) Concomitant use of iloperidone and mirtazapine increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Mitotane: (Major) Use caution if mitotane and iloperidone are used concomitantly, and monitor for decreased efficacy of iloperidone and a possible change in dosage requirements. Mitotane is a strong CYP3A4 inducer and iloperidone is a CYP3A4 substrate; coadministration may result in decreased plasma concentrations of iloperidone.
Mobocertinib: (Major) Concomitant use of mobocertinib and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Moexipril: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Molindone: (Major) Close monitoring is advisable during concurrent use of molindone with other antipsychotics. Because molindone shares certain pharmacological properties with other antipsychotics, additive cardiac effects (e.g., hypotension), CNS effects (e.g., drowsiness), or anticholinergic effects (e.g., constipation, xerostomia) may occur. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Monoamine oxidase inhibitors: (Moderate) Monitor blood pressure and for unusual drowsiness and sedation during coadministration of monoamine oxidase inhibitors (MAOIs) and iloperidone due to the risk for additive hypotension and CNS depression.
Morphine: (Moderate) Concomitant use of iloperidone with other centrally-acting medications, such as morphine, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Morphine; Naltrexone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications, such as morphine, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Moxifloxacin: (Major) Concurrent use of iloperidone and moxifloxacin should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Moxifloxacin has been associated with prolongation of the QT interval. Additionally, post-marketing surveillance has identified very rare cases of ventricular arrhythmias including TdP, usually in patients with severe underlying proarrhythmic conditions. The likelihood of QT prolongation may increase with increasing concentrations of moxifloxacin, therefore the recommended dose or infusion rate should not be exceeded. Iloperidone has also been associated with QT prolongation; however, TdP has not been reported.
Nabilone: (Moderate) Drugs that can cause CNS depression, if used concomitantly with atypical antipsychotics, can increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
Nadolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Nafarelin: (Moderate) Antipsychotics may cause hyperprolactinemia and should not be administered concomitantly with nafarelin since hyperprolactinemia down-regulates the number of pituitary GnRH receptors.
Nalbuphine: (Moderate) Monitor for excessive sedation and somnolence during coadministration of lumateperone and nalbuphine. Concurrent use may result in additive CNS depression.
Nateglinide: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Nebivolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Nebivolol; Valsartan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Nefazodone: (Major) Reduce the iloperidone dose by one-half if coadministered with nefazodone. If nefazodone is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Nefazodone is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Nelfinavir: (Major) Reduce the iloperidone dose by one-half if coadministered with nelfinavir. If nelfinavir is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Nelfinavir is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Nicardipine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Nifedipine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Nilotinib: (Major) Avoid the concomitant use of nilotinib and iloperidone; significant prolongation of the QT interval may occur. Sudden death and QT prolongation have been reported in patients who received nilotinib therapy. Additionally, iloperidone has been associated with QT prolongation.
Nimodipine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Nirmatrelvir; Ritonavir: (Major) Reduce the iloperidone dose by one-half if coadministered with ritonavir. If ritonavir is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Ritonavir is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Nisoldipine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Nitroprusside: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Non-Ionic Contrast Media: (Major) Use of medications that lower the seizure threshold should be carefully evaluated when considering intrathecal radiopaque contrast agents. Antipsychotics should be discontinued at least 48 hours before myelography and should not be resumed for at least 24 hours post-procedure. Iloperidone has not been associated with seizure activity more frequently than placebo in clinical trials; however, lowering of the seizure threshold is generally a class effect among antipsychotics and caution is advised.
Ofloxacin: (Major) Concomitant use of ofloxacin and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Olanzapine: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as olanzapine. Limited data, including some case reports, suggest that olanzapine may be associated with a significant prolongation of the QTc interval in rare instances. In addition, coadministration may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Olanzapine; Fluoxetine: (Major) Avoid coadministration of fluoxetine and iloperidone due to the potential for additive QT prolongation and risk of torsade de pointes (TdP); iloperidone levels may also be increased. If concomitant use is necessary, reduce the iloperidone dose by one-half. If fluoxetine is discontinued, increase the iloperidone dose to the previous level. Iloperidone is a CYP2D6 substrate that has been associated with QT prolongation. Fluoxetine is a strong inhibitor of CYP2D6; QT prolongation and TdP have been reported in patients treated with fluoxetine. Coadministration of fluoxetine increased the AUC of iloperidone and its metabolite P88, by about 2- to 3-fold, and decreased the AUC of its metabolite P95 by one-half. (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as olanzapine. Limited data, including some case reports, suggest that olanzapine may be associated with a significant prolongation of the QTc interval in rare instances. In addition, coadministration may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Olanzapine; Samidorphan: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as olanzapine. Limited data, including some case reports, suggest that olanzapine may be associated with a significant prolongation of the QTc interval in rare instances. In addition, coadministration may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Oliceridine: (Moderate) Concomitant use of oliceridine with iloperidone may cause excessive sedation and somnolence. Limit the use of oliceridine with iloperidone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
Olmesartan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Ondansetron: (Major) Concomitant use of ondansetron and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. Do not exceed 16 mg of IV ondansetron in a single dose; the degree of QT prolongation associated with ondansetron significantly increases above this dose.
Opicapone: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or COMT inhibitor during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and COMT inhibitors may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with COMT inhibitors and other Parkinson's treatments than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Osilodrostat: (Major) Avoid coadministration of osilodrostat and iloperidone due to the potential for additive QT prolongation. Iloperidone has been associated with QT prolongation. Osilodrostat is associated with dose-dependent QT prolongation.
Osimertinib: (Major) According to the manufacturer of iloperidone, coadministration with other agents known to prolong the QT interval, such as osimertinib, should be avoided. Concentration-dependent QTc prolongation occurred during clinical trials of osimertinib, and iloperidone has also been associated with QT prolongation.
Oxaliplatin: (Major) Avoid coadministration of iloperidone and oxaliplatin due to an additive risk of QT prolongation. Iloperidone has been associated with QT prolongation. QT prolongation and ventricular arrhythmias including fatal torsade de pointes have also been reported with oxaliplatin use in postmarketing experience.
Oxazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Oxycodone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Oxymorphone: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Ozanimod: (Major) In general, do not initiate ozanimod in patients taking iloperidone due to the risk of additive bradycardia, QT prolongation, and torsade de pointes (TdP). If treatment initiation is considered, seek advice from a cardiologist. Ozanimod initiation may result in a transient decrease in heart rate and atrioventricular conduction delays. Ozanimod has not been studied in patients taking concurrent QT prolonging drugs; however, QT prolonging drugs have been associated with TdP in patients with bradycardia. Iloperidone has been associated with QT prolongation.
Pacritinib: (Major) Concomitant use of pacritinib and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Paliperidone: (Major) Paliperidone has been associated with QT prolongation; torsade de pointes (TdP) and ventricular fibrillation have been reported in the setting of overdose. According to the manufacturer, since paliperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as iloperidone. In addition, coadministration of antipsychotics may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, tardive dyskinesia, or seizures. If coadministration is considered necessary and the patient has known risk factors for cardiac disease or arrhythmias, close monitoring is essential.
Panobinostat: (Major) QT prolongation has been reported with panobinostat therapy in patients with multiple myeloma in a clinical trial; use of panobinostat with other agents that prolong the QT interval is not recommended. Obtain an electrocardiogram at baseline and periodically during treatment. Hold panobinostat if the QTcF increases to >= 480 milliseconds during therapy; permanently discontinue if QT prolongation does not resolve. Drugs with a possible risk for QT prolongation and torsade de pointes that should be used cautiously and with close monitoring with panobinostat include iloperidone.
Paroxetine: (Major) Reduce the iloperidone dose by one-half if coadministered with paroxetine. If paroxetine is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP2D6 substrate. Paroxetine is a strong inhibitor of CYP2D6. Coadministration of paroxetine increased mean steady-state peak concentrations of iloperidone and its metabolite P88, by about 1.6 fold, and decreased mean steady-state peak concentrations of its metabolite P95 by one-half.
Pasireotide: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as pasireotide.
Pazopanib: (Major) Avoid coadministration of iloperidone and pazopanib; both drugs prolong the QT interval. If coadministration cannot be avoided, closely monitor the patient for QT interval prolongation.
Peginterferon Alfa-2b: (Moderate) Peginterferon alfa-2b is a moderate CYP2D6 inhibitor. Exposure of drugs metabolized by CYP2D6 such as iloperidone may be increased when co-administered with peginterferon alfa-2b. Coadministration with potent CYP2D6 inhibitors results in a 2.3 fold increase in iloperidone plasma exposure and dosage adjustments are required. Appropriate monitoring may be necessary.
Pentamidine: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as pentamidine.
Pentazocine: (Moderate) Coadministration of pentazocine with atypical antipsychotics may result in additive respiratory and CNS depression and anticholinergic effects, such as urinary retention and constipation. Use pentazocine with caution in any patient receiving medication with CNS depressant and/or anticholinergic activity.
Pentazocine; Naloxone: (Moderate) Coadministration of pentazocine with atypical antipsychotics may result in additive respiratory and CNS depression and anticholinergic effects, such as urinary retention and constipation. Use pentazocine with caution in any patient receiving medication with CNS depressant and/or anticholinergic activity.
Pentobarbital: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates.
Perindopril: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Perindopril; Amlodipine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Perphenazine: (Moderate) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation. According to the manufacturer, iloperidone should be avoided in combination with other drugs having an association with QT prolongation. Co-administration of perphenazine with atypical agents (e.g., lurasidone and others) may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Perphenazine; Amitriptyline: (Moderate) Perphenazine, a phenothiazine, is associated with a possible risk for QT prolongation. Theoretically, perphenazine may increase the risk of QT prolongation if coadministered with drugs with a possible risk for QT prolongation. According to the manufacturer, iloperidone should be avoided in combination with other drugs having an association with QT prolongation. Co-administration of perphenazine with atypical agents (e.g., lurasidone and others) may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Phenobarbital: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates.
Phenoxybenzamine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Phentolamine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Pimavanserin: (Major) Coadministration of pimavanserin and iloperidone should be avoided. Pimavanserin may cause QT prolongation. Iloperidone has also been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. Coadministration may increase the risk for QT prolongation.
Pimozide: (Contraindicated) Iloperidone has a risk of QT prolongation and is contraindicated with pimozide. Concurrent use of pimozide with atypical agents may increase the risk of adverse effects such as drowsiness, sedation, dizziness, orthostatic hypotension, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Pindolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Pioglitazone: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Pioglitazone; Glimepiride: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Pioglitazone; Metformin: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition. (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and metformin use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Pitolisant: (Major) Avoid coadministration of pitolisant with iloperidone as concurrent use may increase the risk of QT prolongation. Pitolisant prolongs the QT interval. Iloperidone has also been associated with QT prolongation.
Ponesimod: (Major) In general, do not initiate ponesimod in patients taking iloperidone due to the risk of additive bradycardia, QT prolongation, and torsade de pointes (TdP). If treatment initiation is considered, seek advice from a cardiologist. Ponesimod initiation may result in a transient decrease in heart rate and atrioventricular conduction delays. Ponesimod has not been studied in patients taking concurrent QT prolonging drugs; however, QT prolonging drugs have been associated with TdP in patients with bradycardia. Iloperidone has been associated with QT prolongation.
Posaconazole: (Contraindicated) The concurrent use of posaconazole and iloperidone is contraindicated due to the risk of life threatening arrhythmias such as torsades de pointes (TdP). Posaconazole is a potent inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of iloperidone. These drugs used in combination may result in elevated iloperidone plasma concentrations, causing an increased risk for iloperidone-related adverse events, such as QT prolongation. Additionally, posaconazole has been associated with prolongation of the QT interval as well as rare cases of TdP; do not use with other drugs that may prolong the QT interval and are metabolized through CYP3A4, such as iloperidone.
Potassium-sparing diuretics: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Pramipexole: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or pramipexole during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and pramipexole may interfere with the effectiveness of each other. Additive CNS depressant effects are also possible. In general, atypical antipsychotics are less likely to interfere with pramipexole than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Pramlintide: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Prazosin: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Pregabalin: (Moderate) Monitor for excessive sedation and somnolence during coadministration of iloperidone and pregabalin. Concurrent use may result in additive CNS depression.
Primaquine: (Major) Due to the potential for QT interval prolongation with primaquine, caution is advised with other drugs that prolong the QT interval. Drugs with a possible risk for QT prolongation and TdP that should be used cautiously and with close monitoring with primaquine include iloperidone.
Primidone: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates.
Procainamide: (Major) Iloperidone should be avoided in combination with procainamide. Procainamide administration is associated with QT prolongation and torsades de pointes (TdP). Iloperidone has been associated with QT prolongation; however, TdP has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect.
Prochlorperazine: (Moderate) Prochlorperazine, a phenothiazine, is associated with a possible risk for QT prolongation. According to the manufacturer, iloperidone should be avoided in combination with other drugs having an association with QT prolongation. Co-administration of prochlorperazine with atypical agents (e.g., lurasidone and others) may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Promethazine: (Major) Iloperidone has been associated with QT prolongation. Promethazine, a phenothiazine, is associated with a possible risk for QT prolongation. Due to the risk of additive QT prolongation and potential for serious arrhythmias, other drugs having an association with QT prolongation are best avoided with iloperidone. Co-administration of promethazine and antipsychotics may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from these combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone.
Promethazine; Dextromethorphan: (Major) Iloperidone has been associated with QT prolongation. Promethazine, a phenothiazine, is associated with a possible risk for QT prolongation. Due to the risk of additive QT prolongation and potential for serious arrhythmias, other drugs having an association with QT prolongation are best avoided with iloperidone. Co-administration of promethazine and antipsychotics may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from these combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone.
Promethazine; Phenylephrine: (Major) Iloperidone has been associated with QT prolongation. Promethazine, a phenothiazine, is associated with a possible risk for QT prolongation. Due to the risk of additive QT prolongation and potential for serious arrhythmias, other drugs having an association with QT prolongation are best avoided with iloperidone. Co-administration of promethazine and antipsychotics may also increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. Although the incidence of tardive dyskinesia from these combinations has not been established and data are very limited, the risk may be increased during combined use versus use of an antipsychotic alone.
Propafenone: (Major) Concomitant use of propafenone and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Propranolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Pseudoephedrine; Triprolidine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Pyrilamine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Quazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Quetiapine: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as quetiapine. Quetiapine may be associated with a significant prolongation of the QTc interval in rare instances. In addition, coadministration may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Quinapril: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Quinidine: (Contraindicated) Quinidine administration is associated with QT prolongation and torsades de pointes (TdP). Quinidine inhibits CYP2D6 and has QT-prolonging actions; quinidine is contraindicated with other drugs that prolong the QT interval and are metabolized by CYP2D6 as the effects on the QT interval may be increased during concurrent use of these agents. Drugs that prolong the QT and are substrates for CYP2D6 that are contraindicated with quinidine include iloperidone.
Quinine: (Major) Concurrent use of quinine and iloperidone should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Quinine has been associated with prolongation of the QT interval and rare cases of TdP. Iloperidone has also been associated with QT prolongation; however, TdP has not been reported. In addition, concentrations of iloperidone may be increased with concomitant use of quinine. Iloperidone is a CYP3A4 and CYP2D6 substrate and quinine is an inhibitor of both enzymes.
Quizartinib: (Major) Concomitant use of quizartinib and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Ramipril: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Ranolazine: (Major) Avoid coadministration of iloperidone and ranolazine. Iloperidone has been associated with QT prolongation. Ranolazine is associated with dose- and plasma concentration-related increases in the QTc interval. Although there are no studies examining the effects of ranolazine in patients receiving other QT prolonging drugs, coadministration of such drugs may result in additive QT prolongation.
Rasagiline: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or rasagiline during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and rasagiline may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with rasagiline than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Relugolix: (Major) According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect. Androgen deprivation therapy (i.e., relugolix) may also prolong the QT/QTc interval.
Relugolix; Estradiol; Norethindrone acetate: (Major) According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect. Androgen deprivation therapy (i.e., relugolix) may also prolong the QT/QTc interval.
Remifentanil: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Remimazolam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Repaglinide: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Ribociclib: (Major) Avoid coadministration of ribociclib with iloperidone due to an increased risk for QT prolongation. Systemic exposure of iloperidone may also be increased resulting in increase in treatment-related adverse reactions. Iloperidone is a CYP3A4 substrate that has been associated with QT prolongation. Ribociclib is a strong CYP3A4 inhibitor that has also been shown to prolong the QT interval in a concentration-dependent manner. Concomitant use may increase the risk for QT prolongation.
Ribociclib; Letrozole: (Major) Avoid coadministration of ribociclib with iloperidone due to an increased risk for QT prolongation. Systemic exposure of iloperidone may also be increased resulting in increase in treatment-related adverse reactions. Iloperidone is a CYP3A4 substrate that has been associated with QT prolongation. Ribociclib is a strong CYP3A4 inhibitor that has also been shown to prolong the QT interval in a concentration-dependent manner. Concomitant use may increase the risk for QT prolongation.
Rifampin: (Moderate) In vitro studies indicate that CYP3A4 is involved in the metabolism of iloperidone. In theory, potent inducers of CYP3A4 such as rifampin may increase the elimination of iloperidone. The clinical outcome of concurrent administration with iloperidone is unknown.
Rilpivirine: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as rilpivirine. Supratherapeutic doses of rilpivirine (75 to 300 mg/day) have caused QT prolongation.
Risperidone: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as risperidone. In addition, coadministration may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Ritonavir: (Major) Reduce the iloperidone dose by one-half if coadministered with ritonavir. If ritonavir is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate. Ritonavir is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Rolapitant: (Major) Use caution if iloperidone and rolapitant are used concurrently, and monitor for iloperidone-related adverse effects, including QT prolongation. Iloperidone is a CYP2D6 substrate that is individually dose-titrated, and rolapitant is a moderate CYP2D6 inhibitor; the inhibitory effect of rolapitant is expected to persist beyond 28 days for an unknown duration. Exposure to another CYP2D6 substrate, following a single dose of rolapitant increased about 3-fold on Days 8 and Day 22. The inhibition of CYP2D6 persisted on Day 28 with a 2.3-fold increase in the CYP2D6 substrate concentrations, the last time point measured.
Romidepsin: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as romidepsin. If coadministration is necessary, appropriate cardiovascular monitoring precautions should be considered, such as the monitoring of electrolytes and ECGs at baseline and periodically during treatment.
Ropinirole: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or ropinirole during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and ropinirole may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with ropinirole than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Rosiglitazone: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Rotigotine: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, excess sedation, and diminished effectiveness of the atypical antipsychotic or rotigotine during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and rotigotine may interfere with the effectiveness of each other. Additive CNS depressant effects are also possible. In general, atypical antipsychotics are less likely to interfere with rotigotine than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Sacubitril; Valsartan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Safinamide: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or safinamide during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and safinamide may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with safinamide than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Saquinavir: (Major) Avoid coadministration of iloperidone and saquinavir boosted with ritonavir due to the potential for QT prolongation and increased iloperidone exposure. If coadministration cannot be avoided, reduce the dose of iloperidone by one-half and closely monitor for evidence of QT prolongation. If saquinavir boosted with ritonavir is withdrawn from combination therapy, increase the iloperidone dose to where it was before. Iloperidone is a CYP3A4 substrate that prolongs the QT interval. Saquinavir boosted with ritonavir is a strong CYP3A4 inhibitor that also prolongs the QT interval.
Saxagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Secobarbital: (Moderate) Barbiturates can cause CNS depression, and if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. In theory, the use of barbiturates and iloperidone may also result in an increase in iloperidone elimination as a result of the CYP inducing effects of barbiturates.
Selegiline: (Moderate) Monitor for loss of selegiline efficacy, signs and symptoms of serotonin syndrome, particularly during treatment initiation and dosage increase, and unusual drowsiness and sedation during concomitant atypical antipsychotic and selegiline use. Dopamine antagonists, such as atypical antipsychotics, may diminish the effectiveness of selegiline. Concomitant use may increase the risk for serotonin syndrome or additive CNS depression. If serotonin syndrome occurs, discontinue therapy.
Selpercatinib: (Major) Avoid coadministration of selpercatinib with iloperidone due to the risk of additive QT prolongation. Monitor ECGs more frequently for QT prolongation if coadministration is necessary. Concentration-dependent QT prolongation has been observed with selpercatinib therapy. Iloperidone has been associated with QT prolongation.
Semaglutide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Sertraline: (Major) Concomitant use of sertraline and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary. The degree of QT prolongation associated with sertraline is not clinically significant when administered within the recommended dosage range; QT prolongation has been described at 2 times the maximum recommended dose.
SGLT2 Inhibitors: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Siponimod: (Major) Avoid coadministration of siponimod and iloperidone due to the potential for additive QT prolongation. Consult a cardiologist regarding appropriate monitoring if siponimod use is required. Siponimod therapy prolonged the QT interval at recommended doses in a clinical study. Iloperidone has been associated with QT prolongation.
Sitagliptin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and dipeptidyl peptidase-4 (DPP-4) inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Sodium Stibogluconate: (Major) Concomitant use of sodium stibogluconate and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Solifenacin: (Major) Solifenacin has been associated with dose-dependent prolongation of the QT interval. Torsades de pointes (TdP) has been reported with post-marketing use, although causality was not determined. Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect.
Sorafenib: (Major) Avoid coadministration of iloperidone with sorafenib due to the risk of QT prolongation. Both drugs have been associated with QT prolongation.
Sotagliflozin: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and SGLT2 inhibitor use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Sotalol: (Major) Concomitant use of sotalol and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Spironolactone: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Stiripentol: (Moderate) Monitor for excessive sedation and somnolence during coadministration of stiripentol and iloperidone. CNS depressants can potentiate the effects of stiripentol.
Sufentanil: (Moderate) Concomitant use of iloperidone with other centrally-acting medications such as opiate agonists, may increase both the frequency and the intensity of adverse effects including drowsiness, sedation, and dizziness.
Sulfonylureas: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and sulfonylurea use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Sunitinib: (Major) Avoid coadministration of iloperidone with sunitinib. Since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect such as sunitinib, which cause dose-dependent QT prolongation, leading to an increased risk for ventricular arrhythmias including torsades de points (TdP).
Suvorexant: (Moderate) Monitor for excessive sedation and somnolence during coadministration of suvorexant and atypical antipsyhotics. Dosage adjustments of suvorexant and the atypical antipsychotic may be necessary when administered together because of potentially additive CNS effects. The risk of next-day impairment, including impaired driving, is increased if suvorexant is taken with other CNS depressants.
Tacrolimus: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should not be used with other agents also known to have this effect, such as tacrolimus. If coadministration is necessary, reducing the tacrolimus dose, close monitoring of tacrolimus whole blood concentrations, and monitoring for QT prolongation is recommended.
Tamoxifen: (Major) Concomitant use of tamoxifen and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Telavancin: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as telavancin.
Telmisartan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Telmisartan; Amlodipine: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Temazepam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Terazosin: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Terbinafine: (Major) Reduce the iloperidone dose by one-half if coadministered with terbinafine. If terbinafine is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP2D6 substrate. Terbinafine is a strong inhibitor of CYP2D6. Coadministration of other strong CYP2D6 inhibitors increased mean steady-state peak concentrations of iloperidone and its metabolite P88, by up to 3-fold, and decreased mean steady-state peak concentrations of its metabolite P95 by one-half.
Tetrabenazine: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as tetrabenazine. Tetrabenazine causes a small increase in the corrected QT interval (QTc).
Thiazide diuretics: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Thioridazine: (Contraindicated) Iloperidone has been associated with QT prolongation. Due to the risk of additive QT prolongation and potential for serious arrhythmias, including torsade de pointes (TdP), the concurrent use of iloperidone and thioridazine is considered contraindicated. In addition, coadministration may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Thiothixene: (Major) Caution is advisable during concurrent use of thiothixene and other antipsychotics. Thiothixene use has been associated with adverse events such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, and seizures. These effects may be potentiated during concurrent use of loxapine and other antipsychotics. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Timolol: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Tipranavir: (Major) Reduce the iloperidone dose by one-half if coadministered with tipranavir. If tipranavir is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 and CYP2D6 substrate. Tipranavir is a strong inhibitor of both CYP3A4 and CYP2D6. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively. A strong CYP2D6 inhibitor increased mean steady-state peak concentrations of iloperidone and its metabolite P88, by about 1.6-fold, and decreased mean steady-state peak concentrations of its metabolite P95 by one-half. Drugs that inhibit both CYP3A4 and CYP2D6 do not add to the effect of either inhibitor given alone.
Tirzepatide: (Moderate) Monitor blood glucose during concomitant atypical antipsychotic and incretin mimetic use. Atypical antipsychotic therapy may aggravate diabetes mellitus. Atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Tolcapone: (Moderate) Monitor for movement disorders, unusual changes in moods or behavior, and diminished effectiveness of the atypical antipsychotic or COMT inhibitor during coadministration. Due to mutually opposing effects on dopamine, atypical antipsychotics and COMT inhibitors may interfere with the effectiveness of each other. In general, atypical antipsychotics are less likely to interfere with COMT inhibitors and other Parkinson's treatments than traditional antipsychotics. The Beers Criteria recognize quetiapine and clozapine as exceptions to the general recommendation to avoid all antipsychotics in older adults with Parkinson's disease.
Tolterodine: (Major) Concurrent use of iloperidone and tolterodine should be avoided due to an increased risk for QT prolongation and torsade de pointes (TdP). Tolterodine has been associated with dose-dependent prolongation of the QT interval, especially in poor CYP2D6 metabolizers. Iloperidone has also been associated with QT prolongation.
Toremifene: (Major) Avoid coadministration of iloperidone with toremifene due to the risk of additive QT prolongation. Iloperidone has been associated with QT prolongation. Toremifene has also been shown to prolong the QTc interval in a dose- and concentration-related manner.
Torsemide: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Tramadol: (Moderate) Coadministration should be avoided if possible. Antipsychotics may enhance the seizure risk of tramadol. Additive CNS depression may also be seen with the concomitant use of tramadol and iloperidone.
Tramadol; Acetaminophen: (Moderate) Coadministration should be avoided if possible. Antipsychotics may enhance the seizure risk of tramadol. Additive CNS depression may also be seen with the concomitant use of tramadol and iloperidone.
Trandolapril: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Trandolapril; Verapamil: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Trazodone: (Major) Concomitant use of trazodone and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Treprostinil: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Triamterene: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Triazolam: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications including anxiolytics, sedatives, and hypnotics.
Triclabendazole: (Major) Concomitant use of triclabendazole and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Trifluoperazine: (Moderate) Trifluoperazine, a phenothiazine, is associated with a possible risk for QT prolongation. According to the manufacturer, iloperidone should not be used with other drugs having an association with QT prolongation. In addition, co-administration of trifluoperazine with atypical agents (e.g., aripiprazole, lurasidone and others) may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures. The likelihood of these pharmacodynamic interactions varies based upon the individual properties of the co-administered antipsychotic agent. Although the incidence of tardive dyskinesia from combination antipsychotic therapy has not been established and data are very limited, the risk appears to be increased during use of a conventional and atypical antipsychotic versus use of a conventional antipsychotic alone.
Triprolidine: (Moderate) Drugs that can cause CNS depression, if used concomitantly with iloperidone, may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness. Caution should be used when iloperidone is given in combination with other centrally-acting medications, such as sedating H1-blockers.
Triptorelin: (Major) Avoid coadministration of triptorelin with iloperidone due to the risk of reduced efficacy of triptorelin; QT prolongation may also occur. Iloperidone can cause hyperprolactinemia, which reduces the number of pituitary gonadotropin releasing hormone (GnRH) receptors; triptorelin is a GnRH analog. Iloperidone has been associated with QT prolongation. Androgen deprivation therapy (i.e., triptorelin) may prolong the QT/QTc interval.
Tucatinib: (Major) Reduce the iloperidone dose by one-half if coadministered with tucatinib. If tucatinib is discontinued, increase the iloperidone dose to the previous level. Increased iloperidone exposure may occur with concurrent use. Iloperidone is a CYP3A4 substrate and tucatinib is a strong CYP3A4 inhibitor. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Valsartan: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Vandetanib: (Major) Avoid coadministration of vandetanib with iloperidone due to an increased risk of QT prolongation and torsade de pointes (TdP). Vandetanib can prolong the QT interval in a concentration-dependent manner; TdP and sudden death have been reported in patients receiving vandetanib. Iloperidone has also been associated with QT prolongation.
Vardenafil: (Major) Concomitant use of vardenafil and iloperidone increases the risk of QT/QTc prolongation and torsade de pointes (TdP). Avoid concomitant use if possible, especially in patients with additional risk factors for TdP. Consider taking steps to minimize the risk for QT/QTc interval prolongation and TdP, such as electrolyte monitoring and repletion and ECG monitoring, if concomitant use is necessary.
Vemurafenib: (Major) Avoid coadministration of iloperidone and vemurafenib due to the potential for QT prolongation. If coadministration cannot be avoided, ECG monitoring is recommended; closely monitor the patient for QT interval prolongation. Both iloperidone and vemurafenib have been associated with QT prolongation.
Venlafaxine: (Major) Venlafaxine is associated with a possible risk of QT prolongation. Other atypical antipsychotics associated with a risk for QT prolongation and torsades de pointes (TdP) that should be used cautiously with venlafaxine include iloperidone. In addition, venlafaxine is a weak inhibitor of CYP2D6, and increases in plasma concentrations of antipsychotics primarily metabolized via CYP2D6, such as risperidone, may occur. Atypical antipsychotics with partial metabolism via CYP2D6 include iloperidone.
Verapamil: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Voclosporin: (Major) Avoid concomitant use of iloperidone and voclosporin due to the risk of additive QT prolongation. Iloperidone has been associated with QT prolongation. Voclosporin has been associated with QT prolongation at supratherapeutic doses.
Vonoprazan; Amoxicillin; Clarithromycin: (Major) Avoid coadministration of iloperidone and clarithromycin due to the potential for QT prolongation; iloperidone exposure may also increase. If coadministration cannot be avoided, decrease the iloperidone dose by one-half. Resume the prior iloperidone dose if clarithromycin is discontinued. Clarithromycin is a strong CYP3A4 inhibitor that is associated with an established risk for QT prolongation and torsade de pointes (TdP). Iloperidone is a CYP3A4 substrate that has been associated with QT prolongation. Coadministration of another strong CYP3A4 inhibitor increased the AUC of iloperidone and its metabolites P88 and P95 by 57%, 55% and 35%, respectively.
Voriconazole: (Major) Avoid concurrent administration of voriconazole and iloperidone. If concurrent use is necessary, the iloperidone dose should be reduced by one-half. Coadministration of voriconazole (a strong CYP3A4 inhibitor) with iloperidone (a CYP3A4 substrate) may result in elevated iloperidone plasma concentrations and may increase the risk for adverse events, including QT prolongation. If voriconazole is subsequently withdrawn, the iloperidone dose should be returned to the previous amount. In addition, both iloperidone and voriconazole are associated with QT prolongation; coadministration may increase this risk. Voriconazole has also been associated with rare cases of torsades de pointes, cardiac arrest, and sudden death. If these drugs are given together, closely monitor for prolongation of the QT interval. Rigorous attempts to correct any electrolyte abnormalities (i.e., potassium, magnesium, calcium) should be made before initiating concurrent therapy.
Vorinostat: (Major) Iloperidone has been associated with QT prolongation; however, torsade de pointes (TdP) has not been reported. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect, such as vorinostat.
Zaleplon: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of atypical antipsychotics and zaleplon due to the risk for additive CNS depression and next-day psychomotor impairment; dose adjustments may be necessary.
Ziprasidone: (Major) Concomitant use of ziprasidone and iloperidone should be avoided due to the potential for additive QT prolongation. Clinical trial data indicate that ziprasidone causes QT prolongation; there are postmarketing reports of torsade de pointes (TdP) in patients with multiple confounding factors. Iloperidone has been associated with QT prolongation. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect. In addition, coadministration of atypical antipsychotics may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures.
Zolpidem: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of atypical antipsychotics and zolpidem due to the risk for additive CNS depression and next-day psychomotor impairment; dose adjustments may be necessary. Limit the dose of Intermezzo sublingual tablets to 1.75 mg/day.
Zonisamide: (Moderate) Zonisamide may cause decreased sweating (oligohidrosis), elevated body temperature (hyperthermia), heat intolerance, or heat stroke. The manufacturer recommends caution in using concurrent drug therapies that may predispose patients to heat-related disorders such as antipsychotics. Monitor patients for heat intolerance, decreased sweating, or increased body temperature if zonisamide is used with any of these agents.

psychomotor impairment; dose adjustments may be necessary.
Ziprasidone: (Major) Concomitant use of ziprasidone and iloperidone should be avoided due to the potential for additive QT prolongation. Clinical trial data indicate that ziprasidone causes QT prolongation; there are postmarketing reports of torsade de pointes (TdP) in patients with multiple confounding factors. Iloperidone has been associated with QT prolongation. According to the manufacturer, since iloperidone may prolong the QT interval, it should be avoided in combination with other agents also known to have this effect. In addition, coadministration of atypical antipsychotics may increase the risk of adverse effects such as drowsiness, dizziness, orthostatic hypotension, anticholinergic effects, extrapyramidal symptoms, neuroleptic malignant syndrome, or seizures.
Zolpidem: (Moderate) Monitor for unusual drowsiness and sedation during coadministration of atypical antipsychotics and zolpidem due to the risk for additive CNS depression and next-day psychomotor impairment; dose adjustments may be necessary. Limit the dose of Intermezzo sublingual tablets to 1.75 mg/day.
Zonisamide: (Moderate) Zonisamide may cause decreased sweating (oligohidrosis), elevated body temperature (hyperthermia), heat intolerance, or heat stroke. The manufacturer recommends caution in using concurrent drug therapies that may predispose patients to heat-related disorders such as antipsychotics. Monitor patients for heat intolerance, decreased sweating, or increased body temperature if zonisamide is used with any of these agents.

How Supplied

Fanapt Oral Tab: 1mg, 2mg, 4mg, 6mg, 8mg, 10mg, 12mg, 1-2-4-6mg

Maximum Dosage
Adults

24 mg/day PO.

Elderly

24 mg/day PO.

Adolescents

Safety and efficacy have not been established.

Children

Safety and efficacy have not been established.

Mechanism Of Action

The exact mechanism responsible for the therapeutic effects of antipsychotics is unknown. However, it has been theorized that the efficacy of iloperidone is mediated through dopamine (D2) and serotonin (5-HT2) antagonism. In vitro data indicate that iloperidone has high affinity binding for dopamine (D2 and D3) receptors, serotonin (5-HT2A) receptors, and norepinephrine (NE-alpha1) receptors, moderate affinity for D4, 5-HT6, and 5-HT7, and low affinity for 5-HT1A, D1, and histamine (H1) receptors. Unlike some other antipsychotics, iloperidone does not have appreciable affinity for cholinergic muscarinic receptors. Iloperidone is an antagonist at D2, D3, 5-HT1A, and NE alpha-1/alpha-2C receptors. The affinity of the metabolite P88 is generally equal to or less than iloperidone. The metabolite P95 demonstrates affinity for 5-HT2A, NE-alpha1A, NE-alpha1B, NE-alpha1D, and NE-alpha2C receptors. According to results from clinical trials, iloperidone appears to be effective for both positive and negative symptoms of schizophrenia.
 
Dopamine receptor blockade in the tuberoinfundibular tract results in prolactin release. This receptor blockade can result in hyperprolactinemia, which can lead to adverse effects such as weight gain, menstrual irregularity, galactorrhea, and gynecomastia. Endocrine effects resulting from increased prolactin levels have been observed in some patients receiving iloperidone.
 
Iloperidone exhibits alpha-1 adrenergic receptor antagonism. Clinically, this may result in orthostatic hypotension, dizziness, tachycardia, and syncope.

Pharmacokinetics

Iloperidone is administered orally as tablets. Iloperidone and its metabolites are about 95% protein bound. The apparent volume of distribution is 1,340 to 2,800 L. Metabolism occurs through carbonyl reduction, hydroxylation (mediated by CYP2D6), and O-demethylation (mediated by CYP3A4). One of the primary metabolites (P95) represents 47.9% of the AUC of iloperidone and its metabolites in plasma for extensive metabolizers (EM) and 25% for poor metabolizers (PM) of CYP2D6. The active metabolite P88 represents 19.5% of total plasma exposure in EMs and 34% in PMs. The mean elimination half-life is 18 hours in EMs and 33 hours in PMs. The mean elimination half-lives of P88 and P95 in EMs are 26 hours and 23 hours, respectively, and in PMs are 37 hours and 31 hours, respectively. Less than 1% of a dose is excreted unchanged. Radioactive studies showed that the majority of radioactive materials were recovered in the urine (mean 58.2% and 45.1% in EMs and PMs, respectively), with 19.9% to 22.1% of the dose recovered in the feces.
 
Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: CYP2D6, CYP3A4
Iloperidone is a major substrate of CYP2D6, a minor substrate of CYP3A4, and a weak CYP3A4 inhibitor. Coadministration with potent CYP2D6 inhibitors results in a 2.3 fold increase in iloperidone plasma exposure and dosage adjustments are required. Dosage adjustments are also recommended by the manufacturer during concurrent use of some CYP3A4 inhibitors. Iloperidone and P88 are not P-gp substrates. While iloperidone is a weak P-gp inhibitor, drug interactions of significance do not appear to occur due to P-gp inhibition. In vitro studies indicate that iloperidone is not a substrate for CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, or CYP2E1 and does not substantially inhibit the metabolism of drugs metabolized by CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, or CYP2E1. In vitro studies also show that it does not have inducing effects on CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP3A4, or CYP3A5.

Oral Route

Iloperidone is well absorbed with peak plasma concentrations occurring 2 to 4 hours after a dose. Administration with a standard high-fat meal does not have a significant effect on the pharmacokinetics of the drug; therefore, iloperidone may be administered without regard to meals. Steady-state concentrations are reached within 3 to 4 days.

Pregnancy And Lactation
Pregnancy

The safe use of iloperidone during pregnancy has not been established; therefore, the drug is recommended for use during pregnancy only when the benefits outweigh the risks. During animal studies, iloperidone caused developmental toxicity (e.g., decreased fetal weight and length, decreased fetal skeletal ossification, minor fetal skeletal anomalies and variations, and increased early intrauterine deaths). Neonates exposed to antipsychotics during the third trimester of pregnancy are at risk for extrapyramidal and/or withdrawal symptoms following delivery. There have been reports of agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress and feeding disorder in these neonates. These complications have varied in severity and have ranged from self-limited to those requiring intensive care unit support and prolonged hospitalization. Neonates exhibiting signs or symptoms of extrapyramidal effects or withdrawal should be carefully monitored. The knowledge about long-term neurobehavioral effects in offspring is limited for all antipsychotic agents and requires further investigation. According to the American Psychiatric Association treatment guidelines for schizophrenia, consider pregnancy testing in women of childbearing potential prior to initiation of an antipsychotic. The National Pregnancy Registry for Psychiatric Medications is dedicated to evaluating the safety of psychiatric medications that may be taken by women during pregnancy to treat a wide range of mood, anxiety, or psychiatric disorders. The primary goal of this Registry is to determine the frequency of major malformations, such as heart defects, cleft lip, or neural tube defects, in babies exposed to various psychiatric drugs during pregnancy. It is not known if antipsychotics, through their effect on prolactin, would affect labor or delivery. There is a pregnancy exposure registry that monitors outcomes in pregnant patients exposed to iloperidone; information about the registry can be obtained at womensmentalhealth.org/research/pregnancyregistry or by calling 1-866-961-2388.