Glyset

Browse PDR's full list of drug information

Glyset

Classes

Alpha-glucosidase Inhibitor Antidiabetics

Administration
Oral Administration

Administer with the first bite of each main meal.
Do not administer the dose if the patient does not have adequate oral dietary intake.

Adverse Reactions
Severe

pneumatosis cystoides intestinalis / Delayed / Incidence not known
intussusception / Delayed / Incidence not known
ileus / Delayed / Incidence not known
GI bleeding / Delayed / Incidence not known

Moderate

constipation / Delayed / Incidence not known
anemia / Delayed / Incidence not known

Mild

flatulence / Early / 41.5-41.5
diarrhea / Early / 28.7-28.7
abdominal pain / Early / 11.7-11.7
rash / Early / 4.3-4.3
borborygmi / Early / Incidence not known
nausea / Early / Incidence not known
weight loss / Delayed / Incidence not known

Common Brand Names

Glyset

Dea Class

Rx

Description

Oral alpha-glucosidase inhibitor; in contrast to acarbose, miglitol is systemically absorbed before acting in GI tract
Used for the treatment of type 2 diabetes mellitus
Agents in this class have only modest effects on A1C (i.e., mean 0.3% to 0.7% reduction)

Dosage And Indications
For the treatment of type 2 diabetes mellitus as an adjunct to diet and exercise. Oral dosage Adults

25 mg PO 3 times daily, initially, or alternately, 25 mg PO once daily to minimize gastrointestinal side effects. May increase dose after 4 to 8 weeks to 50 mg PO 3 times daily for 3 months and then 100 mg PO 3 times daily based on HbA1c if needed. Max: 100 mg PO 3 times daily. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

Dosing Considerations
Hepatic Impairment

No dosage adjustments are needed; the liver does not metabolize miglitol.

Renal Impairment

CrCl more than 60 mL/minute: No dosage adjustments needed.
CrCl 25 to 60 mL/minute: No dosage adjustment is feasible because pharmacologically the drug acts locally in the gastrointestinal tract.
CrCl 24 mL/minute or less: Limited data; the manufacturer recommends against the use of miglitol.

Drug Interactions

Acebutolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Acetaminophen; Aspirin: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Acetaminophen; Aspirin; Diphenhydramine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Acetazolamide: (Minor) Acetazolamide has rarely caused hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to drug-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between acetazolamide and miglitol. Diabetic patients should be monitored for a loss of blood glucose control.
Albuterol; Budesonide: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Amlodipine; Benazepril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Androgens: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
Angiotensin II receptor antagonists: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control.
Angiotensin-converting enzyme inhibitors: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Aspirin, ASA: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Aspirin, ASA; Caffeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Aspirin, ASA; Carisoprodol: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Aspirin, ASA; Dipyridamole: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Aspirin, ASA; Omeprazole: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Aspirin, ASA; Oxycodone: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Atenolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Atenolol; Chlorthalidone: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
atypical antipsychotic: (Moderate) Atypical antipsychotic therapy may aggravate diabetes mellitus and cause metabolic changes such as hyperglycemia. Monitor patients on antidiabetic agents for worsening glycemic control. The atypical antipsychotics have been associated with metabolic changes, including hyperglycemia, diabetic ketoacidosis, hyperosmolar, hyperglycemic states, and diabetic coma. Aggravation of diabetes mellitus has been reported. Possible mechanisms include atypical antipsychotic-induced insulin resistance or direct beta-cell inhibition.
Azelastine; Fluticasone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Beclomethasone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Benazepril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Beta-blockers: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Betamethasone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Betaxolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Bismuth Subsalicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Bisoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Bortezomib: (Moderate) During clinical trials of bortezomib, hypoglycemia and hyperglycemia were reported in diabetic patients receiving antidiabetic agents. Patients taking antidiabetic agents and receiving bortezomib treatment may require close monitoring of their blood glucose levels and dosage adjustment of their medication.
Brimonidine; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Budesonide: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Budesonide; Formoterol: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Captopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Cardiac glycosides: (Moderate) Acarbose, an alpha-glucosidase inhibitor, has been found to decrease the mean bioavailability (AUC) of digoxin by 16% (90% confidence interval: range 8-23%), decrease the mean Cmax of digoxin by 26% (90% confidence interval: range 16-34%), and decrease the mean trough concentration of digoxin by 9% (90% confidence limit: 19% decrease to 2% increase). Miglitol, also an alpha-glucosidase inhibitor, may impair the oral absorption of digoxin and lead to subtherapeutic serum digoxin concentrations in some patients. In healthy volunteers, coadministration of miglitol 50 mg or 100 mg with digoxin reduced the average plasma concentrations of digoxin by 19% and 28%, respectively. However, in diabetic patients under treatment with digoxin, plasma digoxin concentrations were not altered when coadministered with miglitol. The mechanism of the interaction is not well understood. The manufacturer of digoxin recommends measuring digoxin concentrations prior to initiating acarbose or miglitol. Continue monitoring during concomitant treatment and increase the digoxin dose by 20-40% as necessary. Some experts have recommended that these agents be administered 6 hours after an oral digoxin dose to ensure time for adequate digoxin absorption.
Carteolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Carvedilol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Charcoal: (Major) Charcoal is an intestinal adsorbent which may reduce the effects of the alpha-glucosidase inhibitors (e.g., acarbose or miglitol). Charcoal should not be taken concomitantly. Advise patients to avoid charcoal dietary supplements if possible. If charcoal must be taken, then separate times of administration (e.g., administer the alpha-glucosidase inhibitor at least 1 hour before or 4 hours after a charcoal dose) to limit interactions. Monitor blood glucose.
Chloroquine: (Major) Careful monitoring of blood glucose is recommended when chloroquine and antidiabetic agents, including the alpha-glucosidase inhibitors, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with chloroquine and an antidiabetic agent.
Chlorthalidone; Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
Cholestyramine: (Moderate) It has been postulated that concomitant administration of acarbose or miglitol with cholestyramine may enhance the effects of acarbose. However, the clinical significance of such an interaction is unknown and co-use may also lead to an increased incidence of gastrointestinal side effects. Administer acarbose or miglitol at least 1 hour before or at least 4-6 hours after the administration of cholestyramine.
Choline Salicylate; Magnesium Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Chromium: (Moderate) Chromium dietary supplements may lower blood glucose. As part of the glucose tolerance factor molecule, chromium appears to facilitate the binding of insulin to insulin receptors in tissues and to aid in glucose metabolism. Because blood glucose may be lowered by the use of chromium, patients who are on antidiabetic agents may need dose adjustments. Close monitoring of blood glucose is recommended.
Ciclesonide: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Cisapride: (Moderate) Because cisapride can enhance gastric emptying in diabetic patients, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents. Monitor blood glucose and adjust if cliniically indicated.
Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Clonidine: (Minor) Increased frequency of blood glucose monitoring may be required when clonidine is given with antidiabetic agents. Since clonidine inhibits the release of catecholamines, clonidine may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Clonidine does not appear to impair recovery from hypoglycemia, and has not been found to impair glucose tolerance in diabetic patients.
Colestipol: (Moderate) It has been postulated that concomitant administration of acarbose or miglitol with colestipol may enhance the effects of acarbose. However, the clinical significance of such an interaction is unknown and co-use may also lead to an increased incidence of gastrointestinal side effects. Administer acarbose or miglitol at least 1 hour before or at least 4-6 hours after the administration of colestipol.
Conjugated Estrogens; Medroxyprogesterone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Corticosteroids: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Cortisone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Cyclosporine: (Moderate) Cyclosporine has been reported to cause hyperglycemia; this effect appears to be dose-related and caused by direct beta-cell toxicity. Therefore, a pharmacodynamic interaction is possible. Monitor the blood glucose.
Daclatasvir: (Moderate) Closely monitor blood glucose levels if daclatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as daclatasvir.
Deflazacort: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Desogestrel; Ethinyl Estradiol: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Dexamethasone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Diazoxide: (Minor) Diazoxide, when administered intravenously or orally, produces a prompt dose-related increase in blood glucose level, due primarily to an inhibition of insulin release from the pancreas, and also to an extrapancreatic effect. The hyperglycemic effect begins within an hour and generally lasts no more than 8 hours in the presence of normal renal function. The hyperglycemic effect of diazoxide is expected to be antagonized by certain antidiabetic agents (e.g., insulin or a sulfonylurea). Blood glucose should be closely monitored.
Dienogest; Estradiol valerate: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Disopyramide: (Moderate) Disopyramide may enhance the hypoglycemic effects of antidiabetic agents. Patients receiving disopyramide concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Dorzolamide; Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Drospirenone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Drospirenone; Estetrol: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Drospirenone; Estradiol: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Drospirenone; Ethinyl Estradiol: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Elagolix; Estradiol; Norethindrone acetate: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Elbasvir; Grazoprevir: (Moderate) Closely monitor blood glucose levels if elbasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as elbasvir.
Enalapril, Enalaprilat: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Esmolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Estradiol; Levonorgestrel: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Estradiol; Norethindrone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Estradiol; Norgestimate: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Estradiol; Progesterone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Estramustine: (Minor) Estramustine is an estrogen-containing medication and may decrease glucose tolerance. Patients receiving antidiabetic agents should monitor their blood glucose levels frequently due to this potential pharmacodynamic interaction.
Estrogens: (Minor) Patients receiving antidiabetic agents should be periodically monitored for changes in glycemic control when hormone therapy is instituted or discontinued. Estrogens can decrease the hypoglycemic effects of antidiabetic agents by impairing glucose tolerance. Changes in glucose tolerance occur more commonly in patients receiving 50 mcg or more of ethinyl estradiol (or equivalent) per day in combined oral contraceptives (COCs), which are not commonly used in practice since the marketing of lower dose COCs, patches, injections and rings. The presence or absence of a concomitant progestin may influence the significance of any hormonal effect on glucose homeostasis.
Ethinyl Estradiol; Norelgestromin: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Ethinyl Estradiol; Norethindrone Acetate: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Ethinyl Estradiol; Norgestrel: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Ethotoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
Ethynodiol Diacetate; Ethinyl Estradiol: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Etonogestrel: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Etonogestrel; Ethinyl Estradiol: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Fibric acid derivatives: (Moderate) Dose reductions and increased frequency of glucose monitoring may be required when antidiabetic agents are administered with fibric acid derivatives (e.g., clofibrate, fenofibric acid, fenofibrate, gemfibrozil). Fibric acid derivatives may enhance the hypoglycemic effects of antidiabetic agents through increased insulin sensitivity and decreased glucagon secretion.
Fludrocortisone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Flunisolide: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Fluoxetine: (Moderate) In patients with diabetes mellitus, fluoxetine may alter glycemic control. Hypoglycemia has occurred during fluoxetine therapy. Hyperglycemia has developed in patients with diabetes mellitus following discontinuation of the drug. The dosage of insulin and/or other antidiabetic agents may need to be adjusted when therapy with fluoxetine is instituted or discontinued.
Fluticasone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Fluticasone; Salmeterol: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Fluticasone; Vilanterol: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Formoterol; Mometasone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Fosinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Fosphenytoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
Garlic, Allium sativum: (Moderate) Patients receiving antidiabetic agents should use dietary supplements of Garlic, Allium sativum with caution. Constituents in garlic might have some antidiabetic activity, and may increase serum insulin levels and increase glycogen storage in the liver. Monitor blood glucose and glycemic control. Patients with diabetes should inform their health care professionals of their intent to ingest garlic dietary supplements. Some patients may require adjustment to their hypoglycemic medications over time. One study stated that additional garlic supplementation (0.05 to 1.5 grams PO per day) contributed to improved blood glucose control in patients with type 2 diabetes mellitus within 1 to 2 weeks, and had positive effects on total cholesterol and high/low density lipoprotein regulation over time. It is unclear if hemoglobin A1C is improved or if improvements are sustained with continued treatment beyond 24 weeks. Other reviews suggest that garlic may provide modest improvements in blood lipids, but few studies demonstrate decreases in blood glucose in diabetic and non-diabetic patients. More controlled trials are needed to discern if garlic has an effect on blood glucose in patients with diabetes. When garlic is used in foods or as a seasoning, or at doses of 50 mg/day or less, it is unlikely that blood glucose levels are affected to any clinically significant degree.
Gastrointestinal Enzymes: (Moderate) Digestive enzyme preparations containing carbohydrate-splitting enzymes may reduce the pharmacologic effect of alpha-glucosidase inhibitors and should not be administered concurrently. Separating the timing of administration should limit an interaction, but is not usually feasible given the usual timing of administration around meals for both drugs.
Glecaprevir; Pibrentasvir: (Moderate) Closely monitor blood glucose levels if glecaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as glecaprevir. (Moderate) Closely monitor blood glucose levels if pibrentasvir is administered with antidiabetic agents. Dose adjustments of

the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as pibrentasvir.
Green Tea: (Moderate) Green tea catechins have been shown to decrease serum glucose concentrations in vitro. Patients with diabetes mellitus taking antidiabetic agents should be monitored closely for hypoglycemia if consuming green tea products.
Hydantoins: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Hydrocortisone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Hydroxychloroquine: (Moderate) Careful monitoring of blood glucose is recommended when hydroxychloroquine and antidiabetic agents, including the alpha-glucosidase inhibitors, are coadministered. A decreased dose of the antidiabetic agent may be necessary as severe hypoglycemia has been reported in patients treated concomitantly with hydroxychloroquine and an antidiabetic agent.
Hydroxyprogesterone: (Minor) Progestins, like hydroxyprogesterone, can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Indapamide: (Moderate) Indapamide can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between indapamide and antidiabetic agents, like alpha-glucosidase inhibitors.
Isocarboxazid: (Moderate) Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents. Animal data indicate that MAOIs may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to certain antidiabetic agents.
Labetalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Lanreotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when lanreotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Lanreotide inhibits the secretion of insulin and glucagon. Patients treated with lanreotide may experience either hypoglycemia or hyperglycemia.
Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Ledipasvir; Sofosbuvir: (Moderate) Closely monitor blood glucose levels if ledipasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agent(s) may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as ledipasvir. (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
Leuprolide; Norethindrone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Levobunolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Levonorgestrel: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Levonorgestrel; Ethinyl Estradiol: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Levonorgestrel; Ethinyl Estradiol; Ferrous Fumarate: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Lisinopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Lithium: (Moderate) Lithium may cause variable effects on glycemic control when used in patients receiving antidiabetic agents. Monitor blood glucose concentrations closely if lithium is coadministered with antidiabetic agents. Dosage adjustments of antidiabetic agents may be necessary.
Lonapegsomatropin: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
Loop diuretics: (Minor) Loop diuretics may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Lorcaserin: (Moderate) In general, weight reduction may increase the risk of hypoglycemia in patients with type 2 diabetes mellitus treated with antidiabetic agents, such as insulin and/or insulin secretagogues (e.g., sulfonylureas). In clinical trials, lorcaserin use was associated with reports of hypoglycemia. Blood glucose monitoring is warranted in patients with type 2 diabetes prior to starting and during lorcaserin treatment. Dosage adjustments of anti-diabetic medications should be considered. If a patient develops hypoglycemia during treatment, adjust anti-diabetic drug regimen accordingly. Of note, lorcaserin has not been studied in combination with insulin.
Magnesium Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Mecasermin, Recombinant, rh-IGF-1: (Moderate) Use caution in combining mecasermin, recombinant, rh-IGF-1 or mecasermin rinfabate (rh-IGF-1/rh-IGFBP-3) with antidiabetic agents. Patients should be advised to eat within 20 minutes of mecasermin administration. Glucose monitoring is important when initializing or adjusting mecasermin therapies, when adjusting concomitant antidiabetic therapy, and in the event of hypoglycemic symptoms. An increased risk for hypoglycemia is possible. The hypoglycemic effect induced by IGF-1 activity may be exacerbated. The amino acid sequence of mecasermin (rh-IGF-1) is approximately 50 percent homologous to insulin and cross binding with either receptor is possible. Treatment with mecasermin has been shown to improve insulin sensitivity and to improve glycemic control in patients with either Type 1 or Type 2 diabetes mellitus when used alone or in conjunction with insulins.
Medroxyprogesterone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Methazolamide: (Minor) Carbonic anhydrase inhibitors, such as methazolamide, may cause hyperglycemia and glycosuria that may decrease the hypoglycemic effect of miglitol. Additional serum glucose monitoring may be required with dose adjustment of migltol if indicated.
Methenamine; Sodium Salicylate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Methylprednisolone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Metoprolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Metyrapone: (Moderate) In patients taking insulin or other antidiabetic agents, the signs and symptoms of acute metyrapone toxicity (e.g., symptoms of acute adrenal insufficiency) may be aggravated or modified.
Moexipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Mometasone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Monoamine oxidase inhibitors: (Moderate) Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents. Animal data indicate that MAOIs may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to certain antidiabetic agents.
Nadolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Nebivolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Nebivolol; Valsartan: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Neomycin: (Minor) Neomycin increased the unpleasant gastrointestinal side-effects of acarbose. A similar reaction may be expected with miglitol. If such adverse effects are severe, the dosage of miglitol can be reduced during neomycin treatment.
Niacin, Niacinamide: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
Niacin; Simvastatin: (Moderate) Niacin (nicotinic acid) interferes with glucose metabolism and can result in hyperglycemia. Changes in glycemic control can usually be corrected through modification of hypoglycemic therapy. Monitor patients taking antidiabetic agents for changes in glycemic control if niacin (nicotinic acid) is added or deleted to the medication regimen. Dosage adjustments may be necessary.
Nicotine: (Minor) Nicotine activates neuroendocrine pathways and may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Norethindrone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Norethindrone; Ethinyl Estradiol: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Norgestimate; Ethinyl Estradiol: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Norgestrel: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Octreotide: (Moderate) Monitor patients receiving octreotide concomitantly with insulin or other antidiabetic agents for changes in glycemic control and adjust doses of these medications accordingly. Octreotide alters the balance between the counter-regulatory hormones of insulin, glucagon, and growth hormone, which may result in hypoglycemia or hyperglycemia. The hypoglycemia or hyperglycemia which occurs during octreotide acetate therapy is usually mild but may result in overt diabetes mellitus or necessitate dose changes in insulin or other hypoglycemic agents. In patients with concomitant type1 diabetes mellitus, octreotide is likely to affect glucose regulation, and insulin requirements may be reduced. Symptomatic hypoglycemia, which may be severe, has been reported in type 1 diabetic patients. In Type 2 diabetes patients with partially intact insulin reserves, octreotide administration may result in decreases in plasma insulin levels and hyperglycemia.
Olanzapine; Fluoxetine: (Moderate) In patients with diabetes mellitus, fluoxetine may alter glycemic control. Hypoglycemia has occurred during fluoxetine therapy. Hyperglycemia has developed in patients with diabetes mellitus following discontinuation of the drug. The dosage of insulin and/or other antidiabetic agents may need to be adjusted when therapy with fluoxetine is instituted or discontinued.
Olopatadine; Mometasone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Orlistat: (Minor) Weight-loss may affect glycemic control in patients with diabetes mellitus. In many patients, glycemic control may improve. A reduction in dose of oral hypoglycemic medications may be required in some patients taking orlistat. Monitor blood glucose and glycemic control and adjust therapy as clinically indicated.
Pancrelipase: (Moderate) Digestive enzyme preparations containing carbohydrate-splitting enzymes may reduce the pharmacologic effect of alpha-glucosidase inhibitors and should not be administered concurrently. Separating the timing of administration should limit an interaction, but is not usually feasible given the usual timing of administration around meals for both drugs.
Pasireotide: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pasireotide treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pasireotide inhibits the secretion of insulin and glucagon. Patients treated with pasireotide may experience either hypoglycemia or hyperglycemia.
Pegvisomant: (Moderate) Monitor blood glucose levels regularly in patients with diabetes, especially when pegvisomant treatment is initiated or when the dose is altered. Adjust treatment with antidiabetic agents as clinically indicated. Pegvisomant increases sensitivity to insulin by lowering the activity of growth hormone, and in some patients glucose tolerance improves with treatment. Patients with diabetes treated with pegvisomant and antidiabetic agents may be more likely to experience hypoglycemia.
Pentamidine: (Moderate) Pentamidine can be harmful to pancreatic cells. This effect may lead to hypoglycemia acutely, followed by hyperglycemia with prolonged pentamidine therapy. Monitor for needed adjustments in diabetes treatments.
Pentoxifylline: (Moderate) Pentoxiphylline has been used concurrently with antidiabetic agents without observed problems, but it may enhance the hypoglycemic action of antidiabetic agents. Patients should be monitored for changes in glycemic control while receiving pentoxifylline in combination with antidiabetic agents.
Perindopril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Perindopril; Amlodipine: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Phenelzine: (Moderate) Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents. Animal data indicate that MAOIs may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to certain antidiabetic agents.
Phenothiazines: (Minor) Phenothiazines, especially chlorpromazine, may increase blood glucose concentrations. Patients who are taking antidiabetic agents should monitor for worsening glycemic control when a phenothiazine is instituted.
Phenytoin: (Minor) Phenytoin and other hydantoins have the potential to increase blood glucose and thus interact with antidiabetic agents pharmacodynamically. Monitor blood glucose for changes in glycemic control. Dosage adjustments may be necessary in some patients.
Pindolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Pramlintide: (Moderate) Because pramlintide delays gastric emptying and nutritive absorption, the manufacturer recommends avoiding the use of pramlintide with other drugs that slow nutritive absorption (e.g., alpha-glucosidase inhibitors, such as miglitol and acarbose).
Prednisolone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Prednisone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Progesterone: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Progestins: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Propranolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Protease inhibitors: (Moderate) New onset diabetes mellitus, exacerbation of diabetes mellitus, and hyperglycemia due to insulin resistance have been reported with use of anti-retroviral protease inhibitors.
Quinapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Quinolones: (Moderate) Monitor blood glucose carefully when systemic quinolones and antidiabetic agents, including alpha-glucosidase inhibitors, are coadministered. Discontinue the quinolone if a hypoglycemic reaction occurs and initiate appropriate therapy immediately. Disturbances of blood glucose, including hyperglycemia and hypoglycemia, have been reported in patients treated concomitantly with quinolones and an antidiabetic agent. Hypoglycemia, sometimes resulting in coma, can occur.
Ramipril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Relugolix; Estradiol; Norethindrone acetate: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Salicylates: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Salsalate: (Moderate) Salicylates, by inhibiting prostaglandin E2 synthesis, can indirectly increase insulin secretion. Thus, salicylates can decrease blood sugar. In large doses, salicylates uncouple oxidative phosphorylation, deplete hepatic and muscle glycogen, and cause hyperglycemia and glycosuria. After acute overdose, aspirin can cause either hypo- or hyperglycemia. Large doses of aspirin should be used cautiously in patients receiving antidiabetic agents.
Segesterone Acetate; Ethinyl Estradiol: (Minor) Progestins can impair glucose tolerance. Patients receiving antidiabetic agents should be closely monitored for signs indicating changes in diabetic control when therapy with progestins is instituted or discontinued.
Sofosbuvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir.
Sofosbuvir; Velpatasvir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir.
Sofosbuvir; Velpatasvir; Voxilaprevir: (Moderate) Closely monitor blood glucose levels if sofosbuvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as sofosbuvir. (Moderate) Closely monitor blood glucose levels if velpatasvir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as velpatasvir. (Moderate) Closely monitor blood glucose levels if voxilaprevir is administered with antidiabetic agents. Dose adjustments of the antidiabetic agents may be needed. Altered blood glucose control, resulting in serious symptomatic hypoglycemia, has been reported in diabetic patients receiving antidiabetic agents in combination with direct acting antivirals, such as voxilaprevir.
Somapacitan: (Moderate) Patients with diabetes mellitus should be monitored closely during somapacitan therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somapacitan therapy is instituted in these patients. Growth hormones, such as somapacitan, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somapacitan, especially in those with risk factors for diabetes mellitus.
Somatrogon: (Moderate) Monitor for loss of glycemic control if concomitant use of somatrogon and antidiabetic drugs is necessary; a dose adjustment of the antidiabetic drug may be needed. Growth hormones, such as somatrogon, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control.
Somatropin, rh-GH: (Moderate) Patients with diabetes mellitus should be monitored closely during somatropin (recombinant rhGH) therapy. Antidiabetic drugs (e.g., insulin or oral agents) may require adjustment when somatropin therapy is instituted in these patients. Growth hormones, such as somatropin, may decrease insulin sensitivity, leading to glucose intolerance and loss of blood glucose control. Therefore, glucose levels should be monitored periodically in all patients treated with somatropin, especially in those with risk factors for diabetes mellitus.
Sotalol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Sulfonamides: (Moderate) Sulfonamides may enhance the hypoglycemic action of antidiabetic agents; patients with diabetes mellitus should be closely monitored during sulfonamide treatment. Sulfonamides may induce hypoglycemia in some patients by increasing the secretion of insulin from the pancreas. Patients at risk include those with compromised renal function, those fasting for prolonged periods, those that are malnourished, and those receiving high or excessive doses of sulfonamides.
Sympathomimetics: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Tacrolimus: (Moderate) Tacrolimus has been reported to cause hyperglycemia. The mechanism of hyperglycemia is thought to be through direct beta-cell toxicity. Patients should be monitored for worsening of glycemic control if therapy with tacrolimus is initiated in patients receiving antidiabetic agents.
Tegaserod: (Moderate) Because tegaserod can enhance gastric emptying in patients with diabetes, blood glucose can be affected, which, in turn, may affect the clinical response to antidiabetic agents.
Thiazide diuretics: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Thyroid hormones: (Minor) Addition of thyroid hormones to antidiabetic or insulin therapy may result in increased dosage requirements of the antidiabetic agents. Blood sugars should be carefully monitored when thyroid therapy is added, dosages are changed, or if thyroid hormones are discontinued.
Timolol: (Moderate) Increased frequency of blood glucose monitoring may be required when a beta blocker is given with antidiabetic agents. Since beta blockers inhibit the release of catecholamines, these medications may hide symptoms of hypoglycemia such as tremor, tachycardia, and blood pressure changes. Other symptoms, like headache, dizziness, nervousness, mood changes, or hunger are not blunted. Beta-blockers also exert complex actions on the body's ability to regulate blood glucose. Some beta-blockers, particularly non-selective beta-blockers such as propranolol, have been noted to potentiate insulin-induced hypoglycemia and a delay in recovery of blood glucose to normal levels. Hyperglycemia has been reported as well and is possibly due to beta-2 receptor blockade in the beta cells of the pancreas. A selective beta-blocker may be preferred in patients with diabetes mellitus, if appropriate for the patient's condition. Selective beta-blockers, such as atenolol or metoprolol, do not appear to potentiate insulin-induced hypoglycemia. While beta-blockers may have negative effects on glycemic control, they reduce the risk of cardiovascular disease and stroke in patients with diabetes and their use should not be avoided in patients with compelling indications for beta-blocker therapy when no other contraindications are present.
Trandolapril: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Trandolapril; Verapamil: (Moderate) ACE inhibitors may enhance the hypoglycemic effects of insulin or other antidiabetic agents by improving insulin sensitivity. Patients receiving antidiabetic agents can become hypoglycemic if ACE inhibitors are administered concomitantly. Patients receiving these drugs concomitantly with antidiabetic agents should be monitored for changes in glycemic control.
Tranylcypromine: (Moderate) Serum glucose should be monitored closely when MAOIs are added to any regimen containing antidiabetic agents. Animal data indicate that MAOIs may stimulate insulin secretion. Inhibitors of MAO type A have been shown to prolong the hypoglycemic response to certain antidiabetic agents.
Triamcinolone: (Moderate) Monitor patients receiving antidiabetic agents closely for worsening glycemic control when corticosteroids are instituted and for signs of hypoglycemia when corticosteroids are discontinued. Systemic and inhaled corticosteroids are known to increase blood glucose and worsen glycemic control in patients taking antidiabetic agents. The main risk factors for impaired glucose tolerance due to corticosteroids are the dose of steroid and duration of treatment. Corticosteroids stimulate hepatic glucose production and inhibit peripheral glucose uptake into muscle and fatty tissues, producing insulin resistance. Decreased insulin production may occur in the pancreas due to a direct effect on pancreatic beta cells.
Triamterene: (Minor) Triamterene can interfere with the hypoglycemic effects of antidiabetic agents. This can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Triamterene; Hydrochlorothiazide, HCTZ: (Minor) Triamterene can interfere with the hypoglycemic effects of antidiabetic agents. This can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Vonoprazan; Amoxicillin; Clarithromycin: (Moderate) The concomitant use of clarithromycin and antidiabetic agents can result in significant hypoglycemia. Careful monitoring of blood glucose is recommended.
Warfarin: (Moderate) The manufacturer has stated that miglitol does not appear to affect the pharmacokinetics or pharmacodynamics of warfarin. There has been, however, one case report published of an interaction between warfarin and acarbose published. The mechanism or incidence of the interaction has not been established. INRs should be closely observed during the first month of acarbose or miglitol therapy.

How Supplied

Glyset/Miglitol Oral Tab: 25mg, 50mg, 100mg

Maximum Dosage
Adults

300 mg/day PO.

Geriatric

300 mg/day PO.

Adolescents

Safety and efficacy have not been established.

Children

Safety and efficacy not been established.

Mechanism Of Action

Miglitol is an inhibitor of alpha-glucosidases present in the brush-border of the enterocytes located in the proximal portion of the small intestine. While the mechanisms of action for the alpha-glucosidase inhibitors are similar, they are not identical.
 
Miglitol is a more potent inhibitor of sucrase and maltase than is acarbose. In contrast to acarbose, miglitol does not inhibit pancreatic alpha-amylase but does inhibit isomaltose. The inhibition of sucrase prevents the conversion of sucrose to fructose and glucose, whereas inhibition of maltase and isomaltase results in delayed digestion of starch. Since alpha-glucosidases are responsible for breaking down carbohydrates, alpha-glucosidase inhibition results in delayed carbohydrate digestion and absorption. Clinically, due to delayed intraluminal production of monosaccharides (i.e., glucose), postprandial plasma glucose increases are delayed and prolonged, and plasma insulin response is blunted. Miglitol interacts weakly with the sodium-dependent glucose transporter but does not appear to affect the physiologic absorption of glucose to a clinically relevant extent. Miglitol has minimal effects on fasting glucose and causes a modest decrease in hemoglobin A1C. Miglitol only minimally inhibits lactase and is not expected to produce lactose intolerance. Miglitol does not enhance insulin secretion when used as monotherapy. Miglitol overdose will not result in hypoglycemia.[29368]
 
Miglitol must be administered at the start of a meal to have maximal efficacy. The alpha-glucosidase inhibitors are competitive inhibitors; this means they must be present at the site of enzymatic action at the same time that carbohydrates are present in the small intestine. The affinity of the alpha-glucosidase inhibitors for the alpha-glucosidase receptors is much greater than that of the oligo- or di-saccharides in foods. Taking miglitol more than 15 minutes after the start of the meal may reduce the impact of the medication on post-prandial blood glucose. To be clinically effective, the patient must be consuming a diet high in complex carbohydrates (roughly 50% of calories or more).[24280]
 
Miglitol was shown not to have any significant effects on body weight. Due to polysaccharide metabolism by colonic microflora and the capacity of the large bowel to conserve calories, there is minimal calorie loss associated with miglitol therapy. In some studies, alpha-glucosidase inhibitors are associated with decreases in triglyceride levels and iron absorption, however, it is not clear if these effects are clinically significant.[24280]

Pharmacokinetics

Miglitol is administered orally. Miglitol distributes primarily into extracellular fluid and is minimally protein bound. Unlike acarbose, miglitol is not metabolized in any way, and is excreted unchanged by the kidneys. Over 95% of a 25 mg dose is recovered in the urine within 24 hours; at higher doses the cumulative percent recovered is somewhat less due to lower bioavailability of the higher doses. The plasma elimination half-life of miglitol is about 2 hours in healthy adults.
 
Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: None

Oral Route

After oral administration of a 25 mg dose, systemic absorption is rapid and nearly complete. Miglitol is absorbed via a jejunal transport mechanism similar to that of glucose absorption. Oral absorption of miglitol is saturable at high doses; only 50% to 70% of a 100-mg dose is systemically absorbed. There is no evidence at this time that systemic absorption is required for miglitol activity, but it appears that miglitol concentrates in intestinal enterocytes to exhibit its action locally in the GI tract.

Pregnancy And Lactation
Pregnancy

Miglitol is classified in FDA pregnancy category B. In animal studies, miglitol crosses the placenta to a limited extent. Doses up to 10 times the human dose (based on body surface area) in rats or rabbits were not teratogenic in either species. However, fetotoxicity, defined as decreased fetal weight, delayed ossification, or decreased fetal viability, was noted in doses over 4 times the maximum human dose. No untoward effects on animal fertility have been noted. No studies of miglitol use during human pregnancy are available; and some medications that may be used with miglitol are not indicated for use in the pregnant woman. Miglitol should be used in pregnancy only if clearly needed. Most experts recommend insulin as the therapy of choice to maintain blood glucose as close to normal as possible during pregnancy in patients with Type I or II diabetes mellitus, and, if diet therapy alone is not successful, for those patients with gestational diabetes.

According to the manufacturer, small amounts of miglitol are excreted into human breast milk (less than 0.02% of a 100 mg oral maternal dose). The amount of miglitol estimated to reach an infant during feeding is roughly 0.4% of the maternal dose, which is considered a low clinical exposure. However, the manufacturer has recommended against breast-feeding while on miglitol. Other antidiabetic medications (i.e., sulfonylureas), if utilized currently with miglitol, may influence the decision to withhold breast-feeding. Because acarbose, another alpha-glucosidase inhibitor, has limited systemic absorption, clinically significant exposure via breast milk is not expected ; therefore, acarbose may represent a reasonable alternative agent for some patients. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to a maternally ingested drug, healthcare providers are encouraged to report the adverse effect to the FDA.