PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Androstan Derivatives

    DEA CLASS

    Rx

    DESCRIPTION

    Synthetic steroid identical to naturally-occurring 5-dehydroepiandrosterone (5-DHEA), a pro-hormone secreted by the adrenal cortex, gonads and brain tissue
    Vaginal product FDA-approved; provides a non-estrogen local vaginal therapy option
    Used to treat moderate to severe dyspareunia, a symptom of vulvar and vaginal atrophy associated with menopause

    COMMON BRAND NAMES

    INTRAROSA

    HOW SUPPLIED

    INTRAROSA Vaginal Insert: 6.5mg

    DOSAGE & INDICATIONS

    For the treatment of moderate to severe dyspareunia, a symptom of atrophic vaginitis due to menopause.
    Vaginal dosage
    Adult menopausal and post-menopausal females

    1 insert (6.5 mg) administered vaginally once daily at bedtime, using the provided applicator. The North American Menopause Society (NAMS) considers vaginal prasterone a non-estrogen hormonal treatment option in women with isolated genitourinary symptoms to improve vulvar/vaginal atrophy and dyspareunia.

    MAXIMUM DOSAGE

    Adults

    1 insert (6.5 mg) per day vaginally.

    Geriatric

    1 insert (6.5 mg) per day vaginally.

    Adolescents

    Not indicated.

    Children

    Not indicated.

    Infants

    Not indicated.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    The effect of hepatic impairment has not been studied; it appears that no dosage adjustments are needed.

    Renal Impairment

    The effect of renal impairment has not been studied;; it appears that no dosage adjustments are needed.

    ADMINISTRATION

    Intravaginal Administration

    Vaginal insert (Intrarosa)
    For intravaginal use only. Administer once daily at bedtime.
    Use the applicators that comes with the package; each applicator is for a single-use only.
    The patient should empty the bladder and wash hands before handling the vaginal insert and applicator.
    Preparing applicator for insertion:
    Remove 1 applicator from the package. Pull back on the plunger until it stops to activate the applicator; the applicator must be activated before use. Place the applicator on a clean surface.
    Tear off 1 vaginal insert along the perforations from the 7-vaginal insert strip.
    Slowly pull the plastic tabs on the vaginal insert away from each other while keeping the vaginal insert still between your fingers.
    Carefully remove the vaginal insert from the plastic wrap. If a vaginal insert falls on an unsanitary surface, replace it with a new one.
    Place the flat end of the vaginal insert into the open end of the activated applicator. The vaginal insert is now ready for insertion.
    Insertion:
    Hold the applicator between the thumb and middle finger. Leave the index (pointer) finger free to press the applicator plunger after the applicator is inserted into the vagina.
    Select the position for insertion that is most comfortable; either lying down or standing.
    Gently slide the vaginal insert end of the applicator into the vagina as far as it will comfortably go, but do not use force.
    Press the applicator plunger with the index finger to release the vaginal insert. Remove the applicator and throw it away after use.
    Wash hands after administration.

    STORAGE

    INTRAROSA:
    - Store between 41 to 86 degrees F
    - Store in refrigerator (36 to 46 degrees F) or at room temperature, not to exceed 86 degrees F

    CONTRAINDICATIONS / PRECAUTIONS

    Breast cancer, dysfunctional uterine bleeding, endometrial cancer, ovarian cancer, vaginal bleeding

    Prasterone is contraindicated for use in patients with vaginal bleeding or dysfunctional uterine bleeding of undetermined origin. Prasterone is metabolized to estrogen; prasterone use is contraindicated in known or suspected estrogen-dependent neoplasia, such as breast cancer, ovarian cancer, or endometrial cancer. Prasterone has not been adequately studied in women with breast cancer; therefore, it should not be used in women with known or suspected breast cancer or with a history of breast cancer. Unopposed estrogen therapy increases the risk of endometrial cancer in women with a uterus. Prolonged use is associated with an increased risk of neoplasm with a risk persisting for at least 8 to 15 years after estrogen therapy is discontinued. Adding a progestin to postmenopausal estrogen therapy has been shown to reduce the risk of endometrial hyperplasia, which may be a precursor to endometrial cancer. Of note, estrogen-progestin regimens carry their own unique risks compared to estrogen-alone regimens. Progestin use with prasterone has not be evaluated.

    Pregnancy

    Prasterone is only indicated in postmenopausal women. There are no data with prasterone use in pregnancy regarding any drug-associated risks. Animal reproduction studies have not been conducted with prasterone. Studies of the role of endogenous fetal and maternal prasterone (DHEA) in pregnancy indicate that the ratio of DHEA or DHEAS to other hormones in the serum or placenta may influence the processes of fetal development, parturition, and labor. Endogenous DHEA and DHEAS appear to be important in the functional development of the adrenal cortex and other endocrine activities in the fetus; it is assumed that exogenous DHEA supplementation to a pregnant woman could potentially have deleterious effects on fetal development or viability. The androgenic effects of DHEA could potentially result in masculinization of a female fetus. Do not administer prasterone to a pregnant woman.

    Breast-feeding

    Prasterone is only indicated in postmenopausal women. There is no information on the presence of prasterone in human milk, the effects on the breastfed infant, or the effects on milk production. Most hormones are excreted in breast milk. Like other androgenic hormones, it is possible that prasterone could inhibit lactation. Due to the potential harm to a nursing infant, prasterone use should be avoided during breast-feeding.

    Children, infants

    Prasterone is only indicated for use in menopausal and postmenopausal females, and is not indicated in infants, children, or adolescents. Safety and effectiveness have not been established in pediatric patients.

    ADVERSE REACTIONS

    Mild

    vaginal discharge / Delayed / 5.7-14.2

    DRUG INTERACTIONS

    Abarelix: (Major) Concomitant use of androgens or estrogens with abarelix is relatively contraindicated, as both could counteract the therapeutic effect of abarelix.
    Acarbose: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Alogliptin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Alogliptin; Metformin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Alogliptin; Pioglitazone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Alpha-glucosidase Inhibitors: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Alprazolam: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Anastrozole: (Major) Prasterone, dehydroepiandrosterone, DHEA is converted via hydrosteroid dehydrogenases and aromatase into androstenedione, testosterone, and estradiol by peripheral tissues. Prasterone or DHEA supplements should not be given concurrently with any aromatase inhibitors, as DHEA could interfere with the pharmacologic action of the aromatase inhibitor and compromise aromatase inhibitor effectiveness. Conversely, aromatase inhibitors (e.g., aminoglutethimide, anastrozole, exemestane, letrozole, testolactone, vorozole) could interfere with biotransformation of DHEA.
    Anticoagulants: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Antithrombin III: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Apixaban: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Argatroban: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Aromatase Inhibitors: (Major) Prasterone, dehydroepiandrosterone, DHEA is converted via hydrosteroid dehydrogenases and aromatase into androstenedione, testosterone, and estradiol by peripheral tissues. Prasterone or DHEA supplements should not be given concurrently with any aromatase inhibitors, as DHEA could interfere with the pharmacologic action of the aromatase inhibitor and compromise aromatase inhibitor effectiveness. Conversely, aromatase inhibitors (e.g., aminoglutethimide, anastrozole, exemestane, letrozole, testolactone, vorozole) could interfere with biotransformation of DHEA.
    Aspirin, ASA: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Aspirin, ASA; Butalbital; Caffeine: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Aspirin, ASA; Caffeine: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Aspirin, ASA; Caffeine; Dihydrocodeine: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Aspirin, ASA; Carisoprodol: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Aspirin, ASA; Dipyridamole: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Aspirin, ASA; Omeprazole: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Aspirin, ASA; Oxycodone: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Aspirin, ASA; Pravastatin: (Moderate) Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects, which may prolong bleeding times. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with aspirin, should be monitored for side effects or the need for dosage adjustments.
    Azelastine; Fluticasone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Beclomethasone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Benzodiazepines: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Betamethasone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Betrixaban: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Bivalirudin: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Budesonide: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Budesonide; Formoterol: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Budesonide; Glycopyrrolate; Formoterol: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Canagliflozin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Canagliflozin; Metformin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Cetrorelix: (Major) Prasterone, dehydroepiandrosterone, DHEA is converted via hydrosteroid dehydrogenases and aromatase into androstenedione, testosterone, and estradiol by peripheral tissues. DHEA is a weak androgen that has complex hormonal effects. It is unclear what actions prasterone, dehydroepiandrosterone, DHEA would have on other exogenous hormonal regimens. It would seem prudent to not administer DHEA with infertility or hormonal cancer treatments such as GnRH analogs (cetrorelix, ganirelix, goserelin, histrelin, leuprolide, or triptorelin) since DHEA may theoretically interfere with these therapies.
    Chlordiazepoxide: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Chlordiazepoxide; Amitriptyline: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Chlordiazepoxide; Clidinium: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Ciclesonide: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Clomiphene: (Major) In women, androgens may antagonize the effects of some fertility treatments. Prasterone, dehydroepiandrosterone, DHEA is converted via hydrosteroid dehydrogenases and aromatase into androstenedione, testosterone, and estradiol by peripheral tissues. Increased endogenous levels of the hormone prasterone, dehydroepiandrosterone, DHEA have been associated with hyperandrogenism and infertility; it is postulated that nutritional supplementation with DHEA may reduce the response to clomiphene treatment.
    Clonazepam: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Clorazepate: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Conjugated Estrogens: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Conjugated Estrogens; Bazedoxifene: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Conjugated Estrogens; Medroxyprogesterone: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Corticosteroids: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Cortisone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Cyclosporine: (Moderate) Androgens may increase concentrations of cyclosporine, potentially increasing the risk of nephrotoxicity. Until further data are available, close monitoring of cyclosporine serum concentrations is prudent during coadministration with androgens.
    Dabigatran: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Dalteparin: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Danaparoid: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Dapagliflozin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Dapagliflozin; Metformin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Dapagliflozin; Saxagliptin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Darbepoetin Alfa: (Moderate) Androgens are known to stimulate erythropoiesis. Concurrent administration of androgens can increase the patient's response to darbepoetin alfa, reducing the amount required to treat anemia.
    Deflazacort: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Degarelix: (Major) Concomitant use of androgens with degarelix is relatively contraindicated, as androgens could counteract the therapeutic effect of degarelix.
    Desirudin: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Desogestrel; Ethinyl Estradiol: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Dexamethasone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Diazepam: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Dienogest; Estradiol valerate: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Diethylstilbestrol, DES: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Dipeptidyl Peptidase-4 Inhibitors: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Drospirenone; Estetrol: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Drospirenone; Estradiol: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Drospirenone; Ethinyl Estradiol: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Drospirenone; Ethinyl Estradiol; Levomefolate: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Edoxaban: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Elagolix; Estradiol; Norethindrone acetate: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Empagliflozin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Empagliflozin; Linagliptin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Empagliflozin; Linagliptin; Metformin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Empagliflozin; Metformin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Enoxaparin: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Epoetin Alfa: (Moderate) Androgens are known to stimulate erythropoiesis. Concurrent administration of androgens can increase the patient's response to epoetin alfa, reducing the amount required to treat anemia. Because adverse reactions have been associated with an abrupt increase in blood viscosity, this drug combination should be avoided, if possible. Further evaluation of this combination needs to be made.
    Ertugliflozin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Ertugliflozin; Metformin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Ertugliflozin; Sitagliptin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Estazolam: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Esterified Estrogens: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Esterified Estrogens; Methyltestosterone: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Estradiol Cypionate; Medroxyprogesterone: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Estradiol: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Estradiol; Levonorgestrel: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Estradiol; Norethindrone: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Estradiol; Norgestimate: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Estradiol; Progesterone: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Estrogens: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Estropipate: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Ethinyl Estradiol: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Ethinyl Estradiol; Levonorgestrel; Folic Acid; Levomefolate: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Ethinyl Estradiol; Norelgestromin: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Ethinyl Estradiol; Norethindrone Acetate: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Ethinyl Estradiol; Norgestrel: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Ethynodiol Diacetate; Ethinyl Estradiol: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Etonogestrel; Ethinyl Estradiol: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Exemestane: (Major) Prasterone, dehydroepiandrosterone, DHEA is converted via hydrosteroid dehydrogenases and aromatase into androstenedione, testosterone, and estradiol by peripheral tissues. Prasterone or DHEA supplements should not be given concurrently with any aromatase inhibitors, as DHEA could interfere with the pharmacologic action of the aromatase inhibitor and compromise aromatase inhibitor effectiveness. Conversely, aromatase inhibitors (e.g., aminoglutethimide, anastrozole, exemestane, letrozole, testolactone, vorozole) could interfere with biotransformation of DHEA.
    Fludrocortisone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Flunisolide: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Flurazepam: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Fluticasone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Fluticasone; Salmeterol: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Fluticasone; Umeclidinium; Vilanterol: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Fluticasone; Vilanterol: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Fondaparinux: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Formoterol; Mometasone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Ganirelix: (Major) Prasterone, dehydroepiandrosterone, DHEA is converted via hydrosteroid dehydrogenases and aromatase into androstenedione, testosterone, and estradiol by peripheral tissues. DHEA is a weak androgen that has complex hormonal effects. It is unclear what actions prasterone, dehydroepiandrosterone, DHEA would have on other exogenous hormonal regimens. It would seem prudent to not administer DHEA with infertility or hormonal cancer treatments such as GnRH analogs (cetrorelix, ganirelix, goserelin, histrelin, leuprolide, or triptorelin) since DHEA may theoretically interfere with these therapies.
    Glipizide; Metformin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Glyburide; Metformin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Goserelin: (Major) Avoid concurrent use of androgens with gonadotropin releasing hormone (GnRH) agonists such as goserelin. Goserelin inhibits steroidogenesis; concomitant use with androgens may counteract this therapeutic effect.
    Heparin: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Histrelin: (Major) Avoid concurrent use of androgens with gonadotropin releasing hormone (GnRH) agonists such as histrelin. Histrelin inhibits steroidogenesis; concomitant use with androgens may counteract this therapeutic effect.
    Hydrocortisone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Hydroxyprogesterone: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with progestins.
    Incretin Mimetics: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Insulins: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Lepirudin: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Letrozole: (Major) Prasterone, dehydroepiandrosterone, DHEA is converted via hydrosteroid dehydrogenases and aromatase into androstenedione, testosterone, and estradiol by peripheral tissues. Prasterone or DHEA supplements should not be given concurrently with any aromatase inhibitors, as DHEA could interfere with the pharmacologic action of the aromatase inhibitor and compromise aromatase inhibitor effectiveness. Conversely, aromatase inhibitors (e.g., aminoglutethimide, anastrozole, exemestane, letrozole, testolactone, vorozole) could interfere with biotransformation of DHEA.
    Leuprolide: (Major) Leuprolide inhibits steroidogenesis. While no drug interactions have been reported with leuprolide, therapy with androgens would be relatively contraindicated and would counteract the therapeutic effect of leuprolide.
    Leuprolide; Norethindrone: (Major) Leuprolide inhibits steroidogenesis. While no drug interactions have been reported with leuprolide, therapy with androgens would be relatively contraindicated and would counteract the therapeutic effect of leuprolide.
    Levonorgestrel; Ethinyl Estradiol: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Linagliptin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Linagliptin; Metformin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Lorazepam: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Meglitinides: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Mestranol; Norethindrone: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Metformin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Metformin; Repaglinide: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Metformin; Rosiglitazone: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Metformin; Saxagliptin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Metformin; Sitagliptin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Methoxy polyethylene glycol-epoetin beta: (Moderate) Androgens are known to stimulate erythropoiesis. Despite the fact that endogenous generation of erythropoietin is depressed in patients with chronic renal failure, other tissues besides the kidney can synthesize erythropoietin, albeit in small amounts. Concurrent administration of androgens can increase the patient's response to MPG-epoetin beta, reducing the amount required to treat anemia. Because adverse reactions have been associated with an abrupt increase in blood viscosity, this drug combination should be avoided, if possible. Further evaluation of this combination needs to be made.
    Methylprednisolone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Midazolam: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Miglitol: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Mometasone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Nafarelin: (Major) Gonadotropin releasing hormone (GnRH) agonists (i.e.,nafarelin) inhibit steroidogenesis, therefore the concomitant use of these agents with androgens may counteract this therapeutic effect. Avoid concurrent use of androgens with GnRH agonists.
    Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Norethindrone; Ethinyl Estradiol: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Norgestimate; Ethinyl Estradiol: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Oxazepam: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Pentosan: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Pioglitazone; Metformin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Platelet Inhibitors: (Moderate) Prasterone is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Pramlintide: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Prednisolone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Prednisone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Progestins: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with progestins.
    Quazepam: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Relugolix; Estradiol; Norethindrone acetate: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    Remimazolam: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Ribociclib; Letrozole: (Major) Prasterone, dehydroepiandrosterone, DHEA is converted via hydrosteroid dehydrogenases and aromatase into androstenedione, testosterone, and estradiol by peripheral tissues. Prasterone or DHEA supplements should not be given concurrently with any aromatase inhibitors, as DHEA could interfere with the pharmacologic action of the aromatase inhibitor and compromise aromatase inhibitor effectiveness. Conversely, aromatase inhibitors (e.g., aminoglutethimide, anastrozole, exemestane, letrozole, testolactone, vorozole) could interfere with biotransformation of DHEA.
    Rivaroxaban: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Saw Palmetto, Serenoa repens: (Major) Drug interactions with Saw palmetto, Serenoa repens have not been specifically studied or reported. Saw palmetto extracts appear to have antiandrogenic effects. The antiandrogenic effects of Saw palmetto, Serenoa repens would be expected to antagonize the actions of androgens; it would seem illogical for patients taking androgens to use this herbal supplement.
    Saxagliptin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Segesterone Acetate; Ethinyl Estradiol: (Moderate) Either additive or antagonistic effects could potentially occur if prasterone is combined with estrogen therapy.
    SGLT2 Inhibitors: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Simvastatin; Sitagliptin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Sitagliptin: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Sulfonylureas: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Temazepam: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Thiazolidinediones: (Moderate) Changes in insulin sensitivity or glycemic control may occur in patients treated with androgens. In diabetic patients, the metabolic effects of androgens may decrease blood glucose and, therefore, may decrease antidiabetic agent dosage requirements. Monitor blood glucose and HbA1C when these drugs are used together.
    Tinzaparin: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.
    Triamcinolone: (Moderate) Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations.
    Triazolam: (Major) Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism. In one study of elderly volunteers, half of the patients received DHEA 200 mg/day PO for 2 weeks, followed by a single dose of triazolam 0.25 mg. Triazolam clearance was reduced by close to 30% in the DHEA-pretreated patients vs. the control group; however, the effect of DHEA on CYP3A4 metabolism appeared to vary widely among subjects. While more study is needed, benzodiazepine-induced CNS sedation and other adverse effects might be increased in some individuals if DHEA is co-administered.
    Triptorelin: (Major) Gonadotropin releasing hormone (GnRH) agonists (i.e.,triptorelin) inhibit steroidogenesis, therefore the concomitant use of these agents with androgens may counteract this therapeutic effect. Avoid concurrent use of androgens with GnRH agonists.
    Warfarin: (Major) Prasterone (DHEA) is contraindicated for use in patients with active deep vein thrombosis, pulmonary embolism or history of these conditions. Prasterone is also contraindicated in patients with active arterial thromboembolic disease (for example, stroke and myocardial infarction), or a history of these conditions. Thus, patients receiving anticoagulation due to a history of these conditions are not candidates for prasterone treatment. DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X. Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of the potential effects on coagulation, patients receiving prasterone or DHEA concurrently with preventative anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments.

    PREGNANCY AND LACTATION

    Pregnancy

    Prasterone is only indicated in postmenopausal women. There are no data with prasterone use in pregnancy regarding any drug-associated risks. Animal reproduction studies have not been conducted with prasterone. Studies of the role of endogenous fetal and maternal prasterone (DHEA) in pregnancy indicate that the ratio of DHEA or DHEAS to other hormones in the serum or placenta may influence the processes of fetal development, parturition, and labor. Endogenous DHEA and DHEAS appear to be important in the functional development of the adrenal cortex and other endocrine activities in the fetus; it is assumed that exogenous DHEA supplementation to a pregnant woman could potentially have deleterious effects on fetal development or viability. The androgenic effects of DHEA could potentially result in masculinization of a female fetus. Do not administer prasterone to a pregnant woman.

    Prasterone is only indicated in postmenopausal women. There is no information on the presence of prasterone in human milk, the effects on the breastfed infant, or the effects on milk production. Most hormones are excreted in breast milk. Like other androgenic hormones, it is possible that prasterone could inhibit lactation. Due to the potential harm to a nursing infant, prasterone use should be avoided during breast-feeding.

    MECHANISM OF ACTION

    The mechanism of action of prasterone in postmenopausal women with vulvar and vaginal atrophy is not fully established. Prasterone is a synthetic steroid that is chemically identical to the naturally-occurring pro-hormone 5-dehydroepiandrosterone (5-DHEA), a pro-hormone secreted by the adrenal cortex, gonads and brain tissue. Exogenous prasterone is converted into active estrogens in the same manner as endogenous prasterone or DHEA. Endogenous DHEA is synthesized by the conversion of cholesterol via CYP11A1 to pregnenolone, followed by CYP17 conversion to DHEA and then to DHEAS via dehydroepiandrosterone sulfatransferase. The synthesis of DHEA occurs exclusively in the adrenal cortex in women. In females, DHEA serum levels are high in neonates right after birth, rapidly fall within 5 months, then begin to rise at the age of 7 years. Endogenous DHEA concentration then peaks again in females at roughly the 20th and 40th year of life. DHEA levels decline steadily after the fifth decade.

    PHARMACOKINETICS

    Prasterone is administered intravaginally. Exogenous prasterone is metabolized in the same manner as endogenous prasterone. Human steroidogenic enzymes such as hydroxysteroid dehydrogenases, 5-alpha-reductases, and aromatases transform prasterone into androgens and estrogens.
     
    Affected cytochrome P450 (CYP450) isoenzymes and drug transporters: Data not available.

    Other Route(s)

    In a clinical study, administration of prasterone vaginal insert once daily for 7 days resulted in a mean prasterone Cmax and exposure (AUC 0 to 24) at Day 7 of 4.4 ng/mL and 56.2 ng x hour/mL, respectively, which were significantly higher than those in the group treated with placebo. The Cmax and AUC of the metabolites testosterone and estradiol were also slightly higher in women treated with prasterone compared to those receiving placebo.