DRUG INTERACTIONS
Acarbose: (Minor) Loop diuretics may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Chlorpheniramine; Phenylephrine; Phenyltoloxamine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Codeine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetaminophen; Dichloralphenazone; Isometheptene: (Major) Isometheptene has sympathomimetic properties. Patients taking antihypertensive agents may need to have their therapy modified. Careful blood pressure monitoring is recommended.
Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Acetaminophen; Hydrocodone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Acetaminophen; Oxycodone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Acetaminophen; Pentazocine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with pentazocine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Acetaminophen; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Acetazolamide: (Moderate) Carbonic anhydrase inhibitors promote electrolyte excretion including hydrogen ions, sodium, and potassium. They can enhance the sodium depleting effects of other diuretics when used concurrently. Pre-existing hypokalemia and hyperuricemia can also be potentiated by carbonic anhydrase inhibitors. Monitor serum potassium to determine the need for potassium supplementation and alteration in drug therapy.
Acetohexamide: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Acrivastine; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Albiglutide: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Alemtuzumab: (Moderate) Alemtuzumab may cause hypotension. Careful monitoring of blood pressure and hypotensive symptoms is recommended especially in patients with ischemic heart disease and in patients on antihypertensive agents.
Alendronate: (Moderate) When the intravenous formulation of alendronate is used for the treatment of hypercalcemia of malignancy, combination therapy with loop diuretics should be used with caution in order to avoid hypocalcemia. In patients with hypercalcemia of malignancy, the initial treatment typically includes the use of loop diuretics, in combination with saline hydration, however, diuretic therapy should not be employed prior to correction of hypovolemia and dehydration.
Alendronate; Cholecalciferol: (Moderate) When the intravenous formulation of alendronate is used for the treatment of hypercalcemia of malignancy, combination therapy with loop diuretics should be used with caution in order to avoid hypocalcemia. In patients with hypercalcemia of malignancy, the initial treatment typically includes the use of loop diuretics, in combination with saline hydration, however, diuretic therapy should not be employed prior to correction of hypovolemia and dehydration.
Alfentanil: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with alfentanil. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Aliskiren: (Moderate) Aliskiren can enhance the effects of loop-diuretics on blood pressure if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly. Patients with hyponatremia or hypovolemia may also develop reversible renal insufficiency. When aliskiren is administered in combination with furosemide, the AUC and Cmax of furosemide are reduced by approximately 30% and 50%, respectively; the pharmacokinetics of aliskiren are not affected. Patients should be monitored for loss of effect of furosemide when aliskiren is initiated. Blood pressure and electrolytes should be routinely monitored.
Aliskiren; Amlodipine: (Moderate) Aliskiren can enhance the effects of loop-diuretics on blood pressure if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly. Patients with hyponatremia or hypovolemia may also develop reversible renal insufficiency. When aliskiren is administered in combination with furosemide, the AUC and Cmax of furosemide are reduced by approximately 30% and 50%, respectively; the pharmacokinetics of aliskiren are not affected. Patients should be monitored for loss of effect of furosemide when aliskiren is initiated. Blood pressure and electrolytes should be routinely monitored.
Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Aliskiren can enhance the effects of loop-diuretics on blood pressure if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly. Patients with hyponatremia or hypovolemia may also develop reversible renal insufficiency. When aliskiren is administered in combination with furosemide, the AUC and Cmax of furosemide are reduced by approximately 30% and 50%, respectively; the pharmacokinetics of aliskiren are not affected. Patients should be monitored for loss of effect of furosemide when aliskiren is initiated. Blood pressure and electrolytes should be routinely monitored. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Aliskiren can enhance the effects of loop-diuretics on blood pressure if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly. Patients with hyponatremia or hypovolemia may also develop reversible renal insufficiency. When aliskiren is administered in combination with furosemide, the AUC and Cmax of furosemide are reduced by approximately 30% and 50%, respectively; the pharmacokinetics of aliskiren are not affected. Patients should be monitored for loss of effect of furosemide when aliskiren is initiated. Blood pressure and electrolytes should be routinely monitored. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Aliskiren; Valsartan: (Moderate) Aliskiren can enhance the effects of loop-diuretics on blood pressure if given concomitantly. This additive effect may be desirable, but dosages must be adjusted accordingly. Patients with hyponatremia or hypovolemia may also develop reversible renal insufficiency. When aliskiren is administered in combination with furosemide, the AUC and Cmax of furosemide are reduced by approximately 30% and 50%, respectively; the pharmacokinetics of aliskiren are not affected. Patients should be monitored for loss of effect of furosemide when aliskiren is initiated. Blood pressure and electrolytes should be routinely monitored. (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Alogliptin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between furosemide and all antidiabetic agents, including alogliptin. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if this drug is initiated.
Alogliptin; Metformin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between furosemide and all antidiabetic agents, including alogliptin. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if this drug is initiated.
Alogliptin; Pioglitazone: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between furosemide and all antidiabetic agents, including alogliptin. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if this drug is initiated. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between furosemide and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Alpha-glucosidase Inhibitors: (Minor) Loop diuretics may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Alprostadil: (Minor) The concomitant use of systemic alprostadil injection and antihypertensive agents, such as loop diuretics, may cause additive hypotension. Caution is advised with this combination. Systemic drug interactions with the urethral suppository (MUSE) or alprostadil intracavernous injection are unlikely in most patients because low or undetectable amounts of the drug are found in the peripheral venous circulation following administration. In those men with significant corpora cavernosa venous leakage, hypotension might be more likely. Use caution with in-clinic dosing for erectile dysfunction (ED) and monitor for the effects on blood pressure. In addition, the presence of medications in the circulation that attenuate erectile function may influence the response to alprostadil. However, in clinical trials with alprostadil intracavernous injection, anti-hypertensive agents had no apparent effect on the safety and efficacy of alprostadil.
Aluminum Hydroxide; Magnesium Hydroxide: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Aluminum Hydroxide; Magnesium Hydroxide; Simethicone: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Amikacin: (Moderate) The risk of ototoxicity or nephrotoxicity secondary to aminoglycosides may be increased by the addition of concomitant therapies with similar side effects, including loop diuretics. If loop diuretics and aminoglycosides are used together, it would be prudent to monitor renal function parameters, serum electrolytes, and serum aminoglycoside concentrations during therapy. Audiologic monitoring may be advisable during high dose therapy or therapy of long duration, when hearing loss is suspected, or in selected risk groups (e.g., neonates).
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Aminoglycosides: (Moderate) The risk of ototoxicity or nephrotoxicity secondary to aminoglycosides may be increased by the addition of concomitant therapies with similar side effects, including loop diuretics. If loop diuretics and aminoglycosides are used together, it would be prudent to monitor renal function parameters, serum electrolytes, and serum aminoglycoside concentrations during therapy. Audiologic monitoring may be advisable during high dose therapy or therapy of long duration, when hearing loss is suspected, or in selected risk groups (e.g., neonates).
Amiodarone: (Moderate) Monitor serum electrolytes if coadministration of furosemide and amiodarone is necessary. Furosemide therapy may cause electrolyte abnormalities (i.e., hypokalemia, hypomagnesemia) which can exaggerate the degree of QTc prolongation and increase the potential for torsade de pointes.
Amlodipine; Benazepril: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Amlodipine; Celecoxib: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Amlodipine; Olmesartan: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Amlodipine; Valsartan: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Amobarbital: (Moderate) Concurrent use of amobarbital with antihypertensive agents may lead to hypotension. Monitor for decreases in blood pressure during times of coadministration.
Amoxicillin: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Amoxicillin; Clarithromycin; Omeprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement. (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Amoxicillin; Clavulanic Acid: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Amphetamine: (Minor) Amphetamine and Dextroamphetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as loop diuretics. Close monitoring of blood pressure is advised.
Amphetamine; Dextroamphetamine Salts: (Minor) Amphetamine and Dextroamphetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as loop diuretics. Close monitoring of blood pressure is advised.
Amphetamine; Dextroamphetamine: (Minor) Amphetamine and Dextroamphetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as loop diuretics. Close monitoring of blood pressure is advised.
Amphotericin B cholesteryl sulfate complex (ABCD): (Moderate) Amphotericin B-induced hypokalemia can result in interactions with other drugs. Concurrent use of amphotericin B with loop diuretics can cause additive hypokalemia or hypomagnesemia due to renal potassium and magnesium wasting. It is prudent to monitor renal function parameters and serum electrolyte concentrations during co-therapy with loop diuretics and drugs which induce hypokalemia.
Amphotericin B lipid complex (ABLC): (Moderate) Amphotericin B-induced hypokalemia can result in interactions with other drugs. Concurrent use of amphotericin B with loop diuretics can cause additive hypokalemia or hypomagnesemia due to renal potassium and magnesium wasting. It is prudent to monitor renal function parameters and serum electrolyte concentrations during co-therapy with loop diuretics and drugs which induce hypokalemia.
Amphotericin B liposomal (LAmB): (Moderate) Amphotericin B-induced hypokalemia can result in interactions with other drugs. Concurrent use of amphotericin B with loop diuretics can cause additive hypokalemia or hypomagnesemia due to renal potassium and magnesium wasting. It is prudent to monitor renal function parameters and serum electrolyte concentrations during co-therapy with loop diuretics and drugs which induce hypokalemia.
Amphotericin B: (Moderate) Amphotericin B-induced hypokalemia can result in interactions with other drugs. Concurrent use of amphotericin B with loop diuretics can cause additive hypokalemia or hypomagnesemia due to renal potassium and magnesium wasting. It is prudent to monitor renal function parameters and serum electrolyte concentrations during co-therapy with loop diuretics and drugs which induce hypokalemia.
Ampicillin: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Ampicillin; Sulbactam: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Amyl Nitrite: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary.
Angiotensin II receptor antagonists: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Angiotensin-converting enzyme inhibitors: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Apomorphine: (Moderate) Use of loop diuretics and apomorphine together can increase the hypotensive effects of apomorphine. Monitor blood pressure regularly during use of this combination.
Apraclonidine: (Minor) Alpha blockers as a class may reduce heart rate and blood pressure. While no specific drug interactions have been identified with systemic agents and apraclonidine during clinical trials, it is theoretically possible that additive blood pressure reductions could occur when apraclonidine is combined with the use of antihypertensive agents. Patients using cardiovascular drugs concomitantly with apraclonidine should have their pulse and blood pressure monitored periodically.
Aripiprazole: (Minor) Aripiprazole may enhance the hypotensive effects of antihypertensive agents.
Arsenic Trioxide: (Moderate) Use caution when using arsenic trioxide concomitantly with loop diuretics, as these can cause electrolyte abnormalities, which can increase the risk of QT prolongation.
Articaine; Epinephrine: (Moderate) Loop diuretics may antagonize the pressor effects and potentiate the arrhythmogenic and hypokalemic effects of epinephrine.
Asenapine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Aspirin, ASA; Omeprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Aspirin, ASA; Oxycodone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Atenolol; Chlorthalidone: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Atracurium: (Moderate) Concomitant use of neuromuscular blockers and loop diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Azelastine; Fluticasone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Azilsartan: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Azilsartan; Chlorthalidone: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Bacitracin: (Minor) Additive nephrotoxicity may occur with concurrent use of systemic bacitracin and other nephrotoxic agents. When possible, avoid concomitant administration of systemic bacitracin and other nephrotoxic drugs such as loop diuretics. Topical administration of any preparation containing bacitracin, especially when applied to large surface areas, also should not be given with other drugs that have a nephrotoxic potential. (Minor) Additive nephrotoxicity may occur with concurrent use of these medicines. When possible, avoid concomitant administration of systemic bacitracin and loop diuretics. Use of topically administrated preparations containing bacitracin, especially when applied to large surface areas, may have additive nephrotoxic potential with loop diuretics.
Bacitracin; Hydrocortisone; Neomycin; Polymyxin B: (Minor) Additive nephrotoxicity may occur with concurrent use of systemic bacitracin and other nephrotoxic agents. When possible, avoid concomitant administration of systemic bacitracin and other nephrotoxic drugs such as loop diuretics. Topical administration of any preparation containing bacitracin, especially when applied to large surface areas, also should not be given with other drugs that have a nephrotoxic potential.
Bacitracin; Polymyxin B: (Minor) Additive nephrotoxicity may occur with concurrent use of systemic bacitracin and other nephrotoxic agents. When possible, avoid concomitant administration of systemic bacitracin and other nephrotoxic drugs such as loop diuretics. Topical administration of any preparation containing bacitracin, especially when applied to large surface areas, also should not be given with other drugs that have a nephrotoxic potential.
Baclofen: (Moderate) Baclofen has been associated with hypotension. Concurrent use with baclofen and antihypertensive agents may result in additive hypotension. Dosage adjustments of the antihypertensive medication may be required.
Beclomethasone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Belladonna; Opium: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with opium. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Benazepril: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Bendroflumethiazide; Nadolol: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Benzhydrocodone; Acetaminophen: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with benzhydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Benzphetamine: (Minor) Benzphetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as loop diuretics. Close monitoring of blood pressure is advised.
Beta-agonists: (Moderate) Loop diuretics may potentiate hypokalemia and ECG changes seen with beta agonists. Hypokalemia due to beta agonists appears to be dose related and is more likely with high dose therapy. Caution is advised when loop diuretics are coadministered with high doses of beta agonists; potassium levels may need to be monitored.
Betamethasone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Bisacodyl: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Bosentan: (Moderate) Although no specific interactions have been documented, bosentan has vasodilatory effects and may contribute additive hypotensive effects when given with diuretics.
Brexpiprazole: (Moderate) Due to brexpiprazole's antagonism at alpha 1-adrenergic receptors, the drug may enhance the hypotensive effects of alpha-blockers and other antihypertensive agents.
Brompheniramine; Carbetapentane; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Brompheniramine; Guaifenesin; Hydrocodone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Brompheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Brompheniramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Brompheniramine; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Budesonide: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Budesonide; Formoterol: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Bupivacaine; Epinephrine: (Moderate) Loop diuretics may antagonize the pressor effects and potentiate the arrhythmogenic and hypokalemic effects of epinephrine.
Bupivacaine; Meloxicam: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Buprenorphine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with buprenorphine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Buprenorphine; Naloxone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with buprenorphine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Cabergoline: (Moderate) Cabergoline should be used cautiously with antihypertensive agents, including loop diuretics. Cabergoline has been associated with hypotension. Initial doses of cabergoline higher than 1 mg may produce orthostatic hypotension. It may be advisable to monitor blood pressure.
Cabozantinib: (Minor) Monitor for an increase in cabozantinib-related adverse reactions if coadministration with furosemide is necessary. Cabozantinib is a Multidrug Resistance Protein 2 (MRP2) substrate and furosemide is an MRP2 inhibitor. MRP2 inhibitors have the potential to increase plasma concentrations of cabozantinib; however, the clinical relevance of this interaction is unknown.
Calcium Phosphate, Supersaturated: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as diuretics, may increase the risk of acute phosphate nephropathy in patients receiving sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous. In addition, loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Canagliflozin: (Moderate) When canagliflozin is initiated, volume depletion may occur; some patients may have symptomatic hypotension. Before initiating canagliflozin assess volume status and correct any deficiency. The 3 factors associated with the largest increase in volume depletion are the use of loop diuretics, moderate renal impairment (eGFR less than 60 mL/min/1.73 m2), and age 75 years and older. In addition, loop diuretics can also decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose. Monitor blood glucose, serum electrolytes, and volume status during concurrent use.
Canagliflozin; Metformin: (Moderate) When canagliflozin is initiated, volume depletion may occur; some patients may have symptomatic hypotension. Before initiating canagliflozin assess volume status and correct any deficiency. The 3 factors associated with the largest increase in volume depletion are the use of loop diuretics, moderate renal impairment (eGFR less than 60 mL/min/1.73 m2), and age 75 years and older. In addition, loop diuretics can also decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose. Monitor blood glucose, serum electrolytes, and volume status during concurrent use. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia.
Candesartan: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Capreomycin: (Moderate) The risk of ototoxicity or nephrotoxicity secondary to capreomycin may be increased by the addition of concomitant therapies with similar side effects, including loop diuretics. Ototoxicity from furosemide or other loop diuretics, while uncommon, can be a transient or permanent side effect of significance. Ototoxicity is best documented with the loop diuretics ethacrynic acid and furosemide, but may also occur with either bumetanide or torsemide. The exact mechanism by which furosemide or other loop diuretics produce ototoxicity is unknown. Usually, reports indicate that furosemide ototoxicity is associated with rapid injection, severe renal impairment, higher than recommended dosages or infusion rates, or concomitant therapy with aminoglycoside antibiotics, ethacrynic acid, or other ototoxic drugs. If loop diuretics and capreomycin are used together, it would be prudent to monitor renal function parameters, serum electrolytes, and serum aminoglycoside concentrations during therapy. Audiologic monitoring may be advisable during high dose therapy or therapy of long duration, when hearing loss is suspected, or in selected risk groups (e.g., neonates).
Captopril: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Carbenicillin: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Carbetapentane; Chlorpheniramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Carbetapentane; Diphenhydramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Carbetapentane; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Carbetapentane; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Carbetapentane; Phenylephrine; Pyrilamine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Carbetapentane; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Carbidopa; Levodopa: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects.
Carbidopa; Levodopa; Entacapone: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects.
Carbinoxamine; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Carbinoxamine; Hydrocodone; Phenylephrine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Carbinoxamine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Carbinoxamine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Carbinoxamine; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Cardiac glycosides: (Moderate) Hypokalemia or hypomagnesemia may occur with administration of potassium-depleting drugs such as loop diuretics, increasing the risk of proarrhythmic effects of cardiac glycosides. Potassium levels should be monitored and normalized prior to and during concurrent diuretic administration and these agents.
Cariprazine: (Moderate) Orthostatic vital signs should be monitored in patients who are at risk for hypotension, such as those receiving cariprazine in combination with antihypertensive agents. Atypical antipsychotics may cause orthostatic hypotension and syncope, most commonly during treatment initiation and dosage increases. Patients should be informed about measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning, or rising slowly from a seated position. Consider a cariprazine dose reduction if hypotension occurs.
Casanthranol; Docusate Sodium: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Castor Oil: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Cefaclor: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefadroxil: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefazolin: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefdinir: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefditoren: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefepime: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefiderocol: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefixime: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefoperazone: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefotaxime: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefotetan: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefoxitin: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefpodoxime: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefprozil: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Ceftaroline: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Ceftazidime: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Ceftazidime; Avibactam: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Ceftibuten: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Ceftizoxime: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Ceftolozane; Tazobactam: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Ceftriaxone: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cefuroxime: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Celecoxib: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Celecoxib; Tramadol: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with tramadol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Cephalexin: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cephalosporins: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cephalothin: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cephradine: (Minor) Nephrotoxicity associated with cephalosporins may be potentiated by concomitant therapy with loop diuretics. Clinicians should be aware that this may occur even in patients with minor or transient renal impairment.
Cetirizine; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlophedianol; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chloral Hydrate: (Major) According to the manufacturer, coadministration of furosemide with chloral hydrate is not recommended. Intravenous administration of furosemide within 24 hours of taking chloral hydrate has resulted in flushing, sweating, restlessness, nausea, increased blood pressure, and tachycardia in isolated cases.
Chloroprocaine: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents.
Chlorothiazide: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Chlorpheniramine; Codeine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chlorpheniramine; Dihydrocodeine; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Hydrocodone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Chlorpheniramine; Hydrocodone; Phenylephrine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chlorpheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpheniramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chlorpheniramine; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Chlorpropamide: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Chlorthalidone: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Chlorthalidone; Clonidine: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Cholestyramine: (Moderate) In a study of 6 healthy volunteers, concurrent administration of cholestyramine with oral furosemide reduced the bioavailability of furosemide by 95% and reduced the diuretic response by 77%. Concomitant administration with colestipol reduced furosemide bioavailability by 80% and the diuretic response by 58%. The manufacturer of colestipol recommends administering other drugs at least 1 hour before or at least 4-6 hours after the administration of colestipol and that the interval between the administration of colestipol and other drugs should be as long as possible.
Ciclesonide: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Cidofovir: (Contraindicated) The administration of cidofovir with another potentially nephrotoxic agent, such as diuretics, is contraindicated. Diuretics should be discontinued at least 7 days prior to beginning cidofovir.
Cisapride: (Major) Cisapride should be used with great caution in patients receiving potassium-wasting diuretic therapies, such as loop diuretics. Drugs that are associated with depletion of electrolytes may cause cisapride-induced cardiac arrhythmias.
Cisatracurium: (Moderate) Concomitant use of neuromuscular blockers and loop diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Cisplatin: (Moderate) Closely monitor renal function and audiometric testing if concomitant use of cisplatin and furosemide is necessary. Both cisplatin and furosemide can cause nephrotoxicity and ototoxicity, which may be additive when used together.
Citalopram: (Moderate) Citalopram causes dose-dependent QT interval prolongation. Concurrent use of citalopram and medications known to cause electrolyte imbalance may increase the risk of developing QT prolongation. Therefore, caution is advisable during concurrent use of citalopram and diuretics. In addition, patients receiving a diuretic during treatment with citalopram may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH has been reported during therapy with SSRIs. Cases involving serum sodium levels lower than 110 mmol/l have occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of citalopram should be considered in patients who develop symptomatic hyponatremia.
Cocaine: (Major) Use of cocaine with antihypertensive agents may increase the antihypertensive effects of the antihypertensive medications or may potentiate cocaine-induced sympathetic stimulation.
Codeine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Codeine; Guaifenesin: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Codeine; Phenylephrine; Promethazine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Codeine; Promethazine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Co-Enzyme Q10, Ubiquinone: (Moderate) Co-enzyme Q10, ubiquinone (CoQ10) may lower blood pressure. CoQ10 use in combination with antihypertensive agents may lead to additional reductions in blood pressure in some individuals. Patients who choose to take CoQ10 concurrently with antihypertensive medications should receive periodic blood pressure monitoring. Patients should be advised to inform their prescriber of their use of CoQ10.
Colestipol: (Moderate) In a study of 6 healthy volunteers, concurrent administration of cholestyramine with oral furosemide reduced the bioavailability of furosemide by 95% and reduced the diuretic response by 77%. Concomitant administration with colestipol reduced furosemide bioavailability by 80% and the diuretic response by 58%. The manufacturer of colestipol recommends administering other drugs at least 1 hour before or at least 4-6 hours after the administration of colestipol and that the interval between the administration of colestipol and other drugs should be as long as possible.
Corticosteroids: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Cortisone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Cosyntropin: (Moderate) Use cosyntropin cautiously in patients receiving diuretics. Cosyntropin may accentuate the electrolyte loss associated with diuretic therapy.
Cyclosporine: (Moderate) Coadministration of furosemide and cyclosporine increases the risk of gouty arthritis. This is a result of furosemide-induced hyperuricemia and the impairment of renal urate excretion by cyclosporine.
Dapagliflozin: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Dapagliflozin; Metformin: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia.
Dapagliflozin; Saxagliptin: (Moderate) Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving dapagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Darifenacin: (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Moderate) The manufacturer of dasabuvir; ombitasvir; paritaprevir; ritonavir and ombitasvir; paritaprevir; ritonavir recommends caution and clinical monitoring if administered concurrently with furosemide. Use of these drugs in combination has resulted in elevated furosemide maximum plasma concentrations (Cmax). Individualize the dose of furosemide based on the patient's clinical response. The dose should be re-adjusted after completion of the hepatitis C treatment regimen. (Moderate) The manufacturer of dasabuvir; ombitasvir; paritaprevir; ritonavir recommends caution and clinical monitoring if administered concurrently with furosemide. Use of these drugs in combination has resulted in elevated furosemide maximum plasma concentrations (Cmax). Individualize the dose of furosemide based on the patient's clinical response. The dose should be re-adjusted after completion of the 4-drug hepatitis C treatment regimen.
Deflazacort: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Desloratadine; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Desmopressin: (Major) Desmopressin, when used in the treatment of nocturia is contraindicated with loop diuretics because of the risk of severe hyponatremia.
Desvenlafaxine: (Moderate) Patients receiving a diuretic during treatment with a Serotonin norepinephrine reuptake inhibitor (SNRI) may be at greater risk of developing hyponatremia and/or the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH may occur during therapy with SNRIs. Cases involving serum sodium levels lower than 110 mmol/L have been reported. Discontinuation of the SNRI should be considered in patients who develop symptomatic hyponatremia.
Dexamethasone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Dexbrompheniramine; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dexlansoprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Dextroamphetamine: (Minor) Amphetamine and Dextroamphetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as loop diuretics. Close monitoring of blood pressure is advised.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dextromethorphan; Quinidine: (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension.
Diazoxide: (Moderate) Additive hypotensive effects can occur with the concomitant administration of diazoxide with loop diuretics. This interaction can be therapeutically advantageous, but dosages must be adjusted accordingly. The manufacturer advises that IV diazoxide should not be administered to patients within 6 hours of receiving other antihypertensive agents.
Dichlorphenamide: (Moderate) Concomitant use of dichlorphenamide and furosemide is not recommended because of an increased risk of furosemide-related adverse effects and risk for hypokalemia. Monitor closely for signs of drug toxicity if coadministration cannot be avoided in some patients furosemide dose adjustment might be necessary. Increased furosemide exposure is possible. Dichlorphenamide inhibits OAT1. Furosemide is an OAT1 substrate. Dichlorphenamide also increases potassium excretion and can cause hypokalemia and should be used cautiously with other drugs that may cause hypokalemia including furosemide. Measure potassium concentrations at baseline and periodically during dichlorphenamide treatment. If hypokalemia occurs or persists, consider reducing the dose or discontinuing dichlorphenamide therapy.
Diclofenac: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Diclofenac; Misoprostol: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Dicloxacillin: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Diethylpropion: (Major) Diethylpropion has vasopressor effects and may limit the benefit of loop diuretics. Although leading drug interaction texts differ in the potential for an interaction between diethylpropion and this group of antihypertensive agents, these effects are likely to be clinically significant and have been described in hypertensive patients on these medications.
Diflunisal: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Digitoxin: (Moderate) Hypokalemia or hypomagnesemia may occur with administration of potassium-depleting drugs such as loop diuretics, increasing the risk of proarrhythmic effects of cardiac glycosides. Potassium levels should be monitored and normalized prior to and during concurrent diuretic administration and these agents.
Digoxin: (Moderate) Hypokalemia or hypomagnesemia may occur with administration of potassium-depleting drugs such as loop diuretics, increasing the risk of proarrhythmic effects of cardiac glycosides. Potassium levels should be monitored and normalized prior to and during concurrent diuretic administration and these agents.
Dihydrocodeine; Guaifenesin; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Diphenhydramine; Hydrocodone; Phenylephrine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Diphenhydramine; Ibuprofen: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Diphenhydramine; Naproxen: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Diphenhydramine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Docusate Sodium; Senna: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Docusate: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Dofetilide: (Major) Hypokalemia or hypomagnesemia may occur with administration of potassium-depleting drugs such as loop diuretics increasing the potential for dofetilide-induced torsade de pointes. Potassium levels should be within the normal range prior and during administration of dofetilide.
Dolasetron: (Moderate) Caution is advisable during concurrent use of dolasetron and loop diuretics as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with dolasetron.
Doxacurium: (Moderate) Concomitant use of neuromuscular blockers and loop diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Droperidol: (Moderate) Caution is advised when using droperidol in combination with loop diuretics which may lead to electrolyte abnormalities, especially hypokalemia or hypomagnesemia, as such abnormalities may increase the risk for QT prolongation or cardiac arrhythmias.
Dulaglutide: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Duloxetine: (Moderate) Patients receiving a diuretic during treatment with a Serotonin norepinephrine reuptake inhibitor (SNRI) may be at greater risk of developing hyponatremia and/or the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH may occur during therapy with SNRIs. Cases involving serum sodium levels lower than 110 mmol/L have been reported. Discontinuation of the SNRI should be considered in patients who develop symptomatic hyponatremia.
Empagliflozin: (Moderate) When empagliflozin is initiated in patients already receiving loop diuretics, volume depletion can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may also be at a greater risk for volume depletion and perhaps symptomatic hypotension. Before initiating empagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving empagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
Empagliflozin; Linagliptin: (Moderate) When empagliflozin is initiated in patients already receiving loop diuretics, volume depletion can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may also be at a greater risk for volume depletion and perhaps symptomatic hypotension. Before initiating empagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving empagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Minor) Loop diurectics may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, such as linagliptin. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Empagliflozin; Linagliptin; Metformin: (Moderate) When empagliflozin is initiated in patients already receiving loop diuretics, volume depletion can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may also be at a greater risk for volume depletion and perhaps symptomatic hypotension. Before initiating empagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving empagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. (Minor) Loop diurectics may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, such as linagliptin. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Empagliflozin; Metformin: (Moderate) When empagliflozin is initiated in patients already receiving loop diuretics, volume depletion can occur. Patients with impaired renal function, low systolic blood pressure, or who are elderly may also be at a greater risk for volume depletion and perhaps symptomatic hypotension. Before initiating empagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. Loop diuretics can decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. Patients receiving empagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia.
Enalapril, Enalaprilat: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Enalapril; Felodipine: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Enflurane: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Ephedrine: (Major) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by loop diuretics. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Ephedrine; Guaifenesin: (Major) The cardiovascular effects of sympathomimetics, such as ephedrine, may reduce the antihypertensive effects produced by loop diuretics. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Epinephrine: (Moderate) Loop diuretics may antagonize the pressor effects and potentiate the arrhythmogenic and hypokalemic effects of epinephrine.
Epoprostenol: (Moderate) Epoprostenol can have additive effects when administered with other antihypertensive agents. These effects can be used to therapeutic advantage, but dosage adjustments may be necessary.
Eprosartan: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Ertugliflozin; Metformin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia.
Ertugliflozin; Sitagliptin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Escitalopram: (Moderate) Patients receiving a diuretic during treatment with escitalopram may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH has been reported during therapy with SSRIs. Cases involving serum sodium levels lower than 110 mmol/l have occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of escitalopram should be considered in patients who develop symptomatic hyponatremia.
Esomeprazole: (Moderate) Proton pump inhibitors, such as esomeprazole, have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Estradiol Cypionate; Medroxyprogesterone: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Estradiol: (Minor) Estrogens can induce fluid retention and may increase blood pressure in some patients; patients who are receiving antihypertensive agents concurrently with hormone therapy should be monitored for antihypertensive effectiveness.
Etodolac: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Etomidate: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Exenatide: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Famotidine; Ibuprofen: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Fenoprofen: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Fentanyl: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with fentanyl. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Fexofenadine; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Fish Oil, Omega-3 Fatty Acids (Dietary Supplements): (Moderate) High doses of fish oil supplements may produce a blood pressure lowering effect. It is possible that additive reductions in blood pressure may be seen when fish oils are used in a patient already taking antihypertensive agents.
Fludrocortisone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Flunisolide: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Fluoxetine: (Moderate) Patients receiving a diuretic during treatment with fluoxetine may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH has been reported during therapy with SSRIs. Cases involving serum sodium levels lower than 110 mmol/l have occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of fluoxetine should be considered in patients who develop symptomatic hyponatremia.
Flurbiprofen: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Fluticasone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Fluticasone; Salmeterol: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Fluticasone; Vilanterol: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Fluvoxamine: (Moderate) Patients receiving a diuretic during treatment with fluvoxamine may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH has been reported during therapy with SSRIs. Cases involving serum sodium levels lower than 110 mmol/L have occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of fluvoxamine should be considered in patients who develop symptomatic hyponatremia.
Formoterol; Mometasone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Foscarnet: (Moderate) Avoid concurrent use of loop diuretics with foscarnet. Coadministration may impair the renal tubular secretion of foscarnet, thereby increasing the possibility for toxicity. When use of a diuretic is indicated in patients being treated with foscarnet, consider a thiazide diuretic.
Fosinopril: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Fospropofol: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Gallium Ga 68 Dotatate: (Major) Avoid use of other diuretics with mannitol, if possible. Concomitant administration may potentiate the renal toxicity of mannitol.
General anesthetics: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Gentamicin: (Moderate) The risk of ototoxicity or nephrotoxicity secondary to aminoglycosides may be increased by the addition of concomitant therapies with similar side effects, including loop diuretics. If loop diuretics and aminoglycosides are used together, it would be prudent to monitor renal function parameters, serum electrolytes, and serum aminoglycoside concentrations during therapy. Audiologic monitoring may be advisable during high dose therapy or therapy of long duration, when hearing loss is suspected, or in selected risk groups (e.g., neonates).
Ginseng, Panax ginseng: (Major) Ginseng may decrease the effectiveness of loop diuretics. One case report described a temporal relationship between the use of ginseng and resistance to furosemide therapy, resulting in edema, hypertension, and hospitalization on 2 separate occasions. Other nutritional products were taken concurrently by the patient were not specified in the report. A mechanism of action or causal relationship has not been definitively established.
Glimepiride: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Glimepiride; Rosiglitazone: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between furosemide and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Glipizide: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Glipizide; Metformin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Glyburide: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Glyburide; Metformin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Granisetron: (Moderate) According to the manufacturer, caution is warranted when administering granisetron to patients with preexisting electrolyte abnormalities. Patients taking certain diuretics may develop an electrolyte abnormality that may lead to cardiac dysrhythmias and/or QT prolongation. Hypokalemia or hypomagnesemia may occur with administration of potassium-depleting drugs such as loop diuretics and thiazide diuretics, increasing the potential for cardiac arrhythmias.
Guaifenesin; Hydrocodone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Guaifenesin; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Guaifenesin; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Halofantrine: (Major) Due to the risks of cardiac toxicity of halofantrine in patients with hypokalemia and/or hypomagnesemia, the use of halofantrine should be avoided when feasible in those patients receiving potassium-wasting diuretic therapies such as loop diuretics.
Haloperidol: (Moderate) Caution is advisable during concurrent use of haloperidol and loop diuretics as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with haloperidol. Concomitant use may also cause additive hypotension.
Halothane: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Homatropine; Hydrocodone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Hydralazine; Isosorbide Dinitrate, ISDN: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary.
Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Hydrocodone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Hydrocodone; Ibuprofen: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Hydrocodone; Phenylephrine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Hydrocodone; Potassium Guaiacolsulfonate: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Hydrocodone; Potassium Guaiacolsulfonate; Pseudoephedrine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Hydrocodone; Pseudoephedrine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Hydrocortisone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Hydromorphone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydromorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Ibandronate: (Moderate) When the intravenous formulation of ibandronate is used for the treatment of hypercalcemia of malignancy, combination therapy with loop diuretics should be used with caution in order to avoid hypocalcemia. In patients with hypercalcemia of malignancy, the initial treatment typically includes the use of loop diuretics, in combination with saline hydration, however, diuretic therapy should not be employed prior to correction of hypovolemia and dehydration.
Ibuprofen lysine: (Moderate) Ibuprofen lysine may reduce the effect of diuretics; diuretics can increase the risk of nephrotoxicity of NSAIDs in dehydrated patients. During coadministration of NSAIDs and diuretic therapy, patients should be monitored for changes in the effectiveness of their diuretic therapy and for signs and symptoms of renal impairment.
Ibuprofen: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Ibuprofen; Oxycodone: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Ibuprofen; Pseudoephedrine: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Iloperidone: (Moderate) Secondary to alpha-blockade, iloperidone can produce vasodilation that may result in additive effects during concurrent use with antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of iloperidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Iloprost: (Moderate) Further reductions in blood pressure may occur when inhaled iloprost is administered to patients receiving other antihypertensive agents.
Inamrinone: (Moderate) Hypokalemia may occur due to excessive diuresis during inamrinone therapy. Fluid and electrolyte changes and renal function should be carefully monitored during inamrinone therapy.
Incretin Mimetics: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Indomethacin: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Inotersen: (Moderate) Use caution with concomitant use of inotersen and diuretics due to the risk of glomerulonephritis and nephrotoxicity.
Insulin Degludec; Liraglutide: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Insulin Glargine; Lixisenatide: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Insulins: (Minor) Monitor patients receiving insulin closely for worsening glycemic control when bumetanide, furosemide, and torsemide are instituted. Bumetanide, furosemide, and torsemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents.
Intravenous Lipid Emulsions: (Moderate) High doses of fish oil supplements may produce a blood pressure lowering effect. It is possible that additive reductions in blood pressure may be seen when fish oils are used in a patient already taking antihypertensive agents.
Irbesartan: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Isocarboxazid: (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with diuretics. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider.
Isoflurane: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Isoproterenol: (Moderate) The pharmacologic effects of isoproterenol may cause an increase in blood pressure. If isoproterenol is used concomitantly with antihypertensives, the blood pressure should be monitored as the administration of isoproterenol can compromise the effectiveness of antihypertensive agents.
Isosorbide Dinitrate, ISDN: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary.
Isosorbide Mononitrate: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary.
Kanamycin: (Moderate) The risk of ototoxicity or nephrotoxicity secondary to aminoglycosides may be increased by the addition of concomitant therapies with similar side effects, including loop diuretics. If loop diuretics and aminoglycosides are used together, it would be prudent to monitor renal function parameters, serum electrolytes, and serum aminoglycoside concentrations during therapy. Audiologic monitoring may be advisable during high dose therapy or therapy of long duration, when hearing loss is suspected, or in selected risk groups (e.g., neonates).
Ketamine: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Ketoprofen: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Ketorolac: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Lactulose: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Lansoprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Lansoprazole; Amoxicillin; Clarithromycin: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement. (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Lansoprazole; Naproxen: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Leflunomide: (Moderate) Closely monitor for furosemide-induced side effects such as excessive fluid loss or hypotension when these drugs are used together. In some patients, a dosage reduction of furosemide may be required. Following oral administration, leflunomide is metabolized to an active metabolite, teriflunomide, which is responsible for essentially all of leflunomide's in vivo activity. Teriflunomide is an inhibitor of the renal uptake organic anion transporter OAT3. Use of teriflunomide with furosemide, a substrate of OAT3, may increase furosemide plasma concentrations.
Levodopa: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects.
Levomethadyl: (Moderate) Hypokalemia or hypomagnesemia may occur with administration of potassium-depleting drugs such as loop diuretics, increasing the risk of proarrhythmic effects of levomethadyl. Potassium levels should be monitored and normalized prior to and during concurrent diuretic administration and these agents.
Levomilnacipran: (Moderate) Patients receiving a diuretic during treatment with a Serotonin norepinephrine reuptake inhibitor (SNRI) may be at greater risk of developing hyponatremia and/or the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH may occur during therapy with SNRIs. Cases involving serum sodium levels lower than 110 mmol/L have been reported. Discontinuation of the SNRI should be considered in patients who develop symptomatic hyponatremia.
Levorphanol: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with levorphanol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Levothyroxine: (Moderate) Use high doses (more than 80 mg) of furosemide and thyroid hormones together with caution. High doses of furosemide may inhibit the binding of thyroid hormones to carrier proteins, resulting in a transient increase in free thyroid hormones followed by an overall decrease in total thyroid hormone concentrations.
Levothyroxine; Liothyronine (Porcine): (Moderate) Use high doses (more than 80 mg) of furosemide and thyroid hormones together with caution. High doses of furosemide may inhibit the binding of thyroid hormones to carrier proteins, resulting in a transient increase in free thyroid hormones followed by an overall decrease in total thyroid hormone concentrations.
Levothyroxine; Liothyronine (Synthetic): (Moderate) Use high doses (more than 80 mg) of furosemide and thyroid hormones together with caution. High doses of furosemide may inhibit the binding of thyroid hormones to carrier proteins, resulting in a transient increase in free thyroid hormones followed by an overall decrease in total thyroid hormone concentrations.
Lidocaine; Epinephrine: (Moderate) Loop diuretics may antagonize the pressor effects and potentiate the arrhythmogenic and hypokalemic effects of epinephrine.
Linagliptin: (Minor) Loop diurectics may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, such as linagliptin. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Linagliptin; Metformin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. (Minor) Loop diurectics may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, such as linagliptin. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Liothyronine: (Moderate) Use high doses (more than 80 mg) of furosemide and thyroid hormones together with caution. High doses of furosemide may inhibit the binding of thyroid hormones to carrier proteins, resulting in a transient increase in free thyroid hormones followed by an overall decrease in total thyroid hormone concentrations.
Liraglutide: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Lisdexamfetamine: (Minor) Lisdexamfetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as loop diuretics. Close monitoring of blood pressure is advised.
Lisinopril: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Lithium: (Moderate) Loop diuretic-induced sodium loss may increase serum lithium concentrations. Start with lower doses of lithium or reduce dosage and frequently monitoring serum lithium concentrations and signs of lithium toxicity. However, the effect of loop diuretics on lithium clearance relative to thiazide diuretics is generally minor. In one small study evaluating the pharmacokinetic effects of several different medications on a single 600 mg dose of lithium carbonate, administration of furosemide resulted in an 11% decrease in lithium clearance. According to the Beers Criteria, concurrent use of lithium and loop diuretics may result in a clinically important drug interaction in older adults; avoid concurrent use if possible. If the combination is necessary, monitoring of lithium concentrations is recommended.
Lixisenatide: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Loratadine; Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Losartan: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Lovastatin; Niacin: (Moderate) Cutaneous vasodilation induced by niacin may become problematic if high-dose niacin is used concomitantly with other antihypertensive agents. This effect is of particular concern in the setting of acute myocardial infarction, unstable angina, or other acute hemodynamic compromise.
Lubiprostone: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Lurasidone: (Moderate) Due to the antagonism of lurasidone at alpha-1 adrenergic receptors, the drug may enhance the hypotensive effects of alpha-blockers and other antihypertensive agents. If concurrent use of lurasidone and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
Magnesium Citrate: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Magnesium Hydroxide: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Magnesium Salts: (Moderate) Diuretics may interfere with the kidneys ability to regulate magnesium concentrations. Long-term use of diuretics may impair the magnesium-conserving ability of the kidneys and lead to hypomagnesemia. (Moderate) Diuretics may interfere with the kidneys ability to regulate magnesium concentrations. Long-term use of loop diuretics may impair the magnesium-conserving ability of the kidneys and lead to hypomagnesemia. In addition, use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as diuretics.
Magnesium Sulfate; Potassium Sulfate; Sodium Sulfate: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as diuretics.
Mannitol: (Major) Avoid use of other diuretics with mannitol, if possible. Concomitant administration may potentiate the renal toxicity of mannitol.
Maraviroc: (Moderate) Use caution and closely monitor for increased adverse effects during concurrent administration of maraviroc and furosemide as increased maraviroc concentrations may occur. Maraviroc is a substrate of multidrug resistance-associated protein (MRP2); furosemide is an inhibitor of MRP2. The effects of this transporter on the concentrations of maraviroc are unknown, although an increase in concentrations and thus, toxicity, are possible.
Meclofenamate Sodium: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Mefenamic Acid: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Meglitinides: (Minor) Loop diuretics have been associated with hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between loop diuretics and all antidiabetic agents. Monitor for a loss of diabetic control.
Meloxicam: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Meperidine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with meperidine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Meperidine; Promethazine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with meperidine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Mestranol; Norethindrone: (Minor) Estrogen containing oral contraceptives can induce fluid retention and may increase blood pressure in some patients; monitor patients receiving concurrent therapy to confirm that the desired antihypertensive effect is being obtained.
Metformin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia.
Metformin; Repaglinide: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. (Minor) Loop diuretics have been associated with hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between loop diuretics and all antidiabetic agents. Monitor for a loss of diabetic control.
Metformin; Rosiglitazone: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between furosemide and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Metformin; Saxagliptin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Metformin; Sitagliptin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Methadone: (Moderate) Diuretics can cause electrolyte disturbances such as hypomagnesemia and hypokalemia, which may prolong the QT interval. As methadone may also prolong the QT interval, cautious coadministration with diuretics is needed.
Methamphetamine: (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as loop diuretics. Close monitoring of blood pressure is advised.
Methazolamide: (Moderate) Loop diuretics may increase the risk of hypokalemia if used concurrently with methazolamide. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy. There may also be an additive diuretic or hyperuricemic effect.
Methohexital: (Moderate) Concurrent use of methohexital and antihypertensive agents increases the risk of developing hypotension.
Methotrexate: (Moderate) Furosemide undergoes significant renal tubular secretion. Concomitant administration of furosemide with other drugs that undergo significant renal tubular secretion, such as methotrexate, may result in decreased effect of furosemide and, conversely, decreased elimination of the other drug. High dose treatment of both furosemide and other drugs that undergo renal tubular secretion may result in increased toxicity of both drugs.
Methyclothiazide: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Methylcellulose: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Methylphenidate Derivatives: (Moderate) Periodic evaluation of blood pressure is advisable during concurrent use of methylphenidate derivatives and antihypertensive agents, particularly during initial coadministration and after dosage increases of methylphenidate derivatives. Methylphenidate derivatives can reduce the hypotensive effect of antihypertensive agents such as loop diuretics.
Methylprednisolone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Metolazone: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Miglitol: (Minor) Loop diuretics may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Milnacipran: (Moderate) Patients receiving a diuretic during treatment with a Serotonin norepinephrine reuptake inhibitor (SNRI) may be at greater risk of developing hyponatremia and/or the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH may occur during therapy with SNRIs. Cases involving serum sodium levels lower than 110 mmol/L have been reported. Discontinuation of the SNRI should be considered in patients who develop symptomatic hyponatremia.
Milrinone: (Moderate) Concurrent administration of antihypertensive agents could lead to additive hypotension when administered with milrinone. Titrate milrinone dosage according to hemodynamic response.
Mineral Oil: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Mirtazapine: (Moderate) Hyponatremia has been reported very rarely during mirtazapine administration. Caution is advisable in patients receiving medications known to cause hyponatremia, such as diuretics. Hyponatremia may manifest as headache, difficulty concentrating, memory impairment, confusion, weakness, and unsteadiness which may result in falls. Severe manifestations include hallucinations, syncope, seizure, coma, respiratory arrest, and death. Symptomatic hyponatremia may require discontinuation of mirtazapine, as well as implementation of the appropriate medical interventions.
Mivacurium: (Moderate) Concomitant use of neuromuscular blockers and loop diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Moexipril: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Mometasone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Morphine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with morphine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. Morphine may also cause acute urinary retention by causing a spasm of the bladder sphincter; men with enlarged prostates may have a higher risk of this reaction.
Morphine; Naltrexone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a loop diuretic is administered with morphine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. Morphine may also cause acute urinary retention by causing a spasm of the bladder sphincter; men with enlarged prostates may have a higher risk of this reaction.
Nabumetone: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Nafcillin: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Naproxen: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Naproxen; Esomeprazole: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. (Moderate) Proton pump inhibitors, such as esomeprazole, have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Naproxen; Pseudoephedrine: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Nateglinide: (Minor) Loop diuretics have been associated with hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between loop diuretics and all antidiabetic agents. Monitor for a loss of diabetic control.
Nebivolol; Valsartan: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Nefazodone: (Minor) Although relatively infrequent, nefazodone may cause orthostatic hypotension in some patients; this effect may be additive with antihypertensive agents. Blood pressure monitoring and dosage adjustments of either drug may be necessary.
Neomycin; Polymyxin B; Bacitracin: (Minor) Additive nephrotoxicity may occur with concurrent use of systemic bacitracin and other nephrotoxic agents. When possible, avoid concomitant administration of systemic bacitracin and other nephrotoxic drugs such as loop diuretics. Topical administration of any preparation containing bacitracin, especially when applied to large surface areas, also should not be given with other drugs that have a nephrotoxic potential.
Nesiritide, BNP: (Major) The potential for hypotension may be increased when coadministering nesiritide with antihypertensive agents.
Neuromuscular blockers: (Moderate) Concomitant use of neuromuscular blockers and loop diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Niacin, Niacinamide: (Moderate) Cutaneous vasodilation induced by niacin may become problematic if high-dose niacin is used concomitantly with other antihypertensive agents. This effect is of particular concern in the setting of acute myocardial infarction, unstable angina, or other acute hemodynamic compromise.
Niacin; Simvastatin: (Moderate) Cutaneous vasodilation induced by niacin may become problematic if high-dose niacin is used concomitantly with other antihypertensive agents. This effect is of particular concern in the setting of acute myocardial infarction, unstable angina, or other acute hemodynamic compromise.
Nitisinone: (Moderate) Monitor for increased furosemide-related adverse effects including excessive fluid loss or hypotension if coadministered with nitisinone. Increased furosemide exposure is possible. Nitisinone inhibits OAT3. Furosemide is an OAT3 substrate. When coadministered, the AUC of furosemide increased by 72% and Cmax increased by 12%.
Nitrates: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary.
Nitroglycerin: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary.
Nitroprusside: (Moderate) Additive hypotensive effects may occur when nitroprusside is used concomitantly with other antihypertensive agents. Dosages should be adjusted carefully, according to blood pressure.
Non-Ionic Contrast Media: (Major) Do not use diuretics before non-ionic contrast media administration. Concomitant use of diuretics and non-ionic contrast media may increase the risk for acute kidney injury, including renal failure.
Norepinephrine: (Moderate) Diuretics can cause decreased arterial responsiveness to norepinephrine, but the effect is not sufficient to preclude their coadministration.
Octreotide: (Moderate) Patients receiving diuretics or other agents to control fluid and electrolyte balance may require dosage adjustments while receiving octreotide due to additive effects.
Olanzapine: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Olanzapine; Fluoxetine: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents. (Moderate) Patients receiving a diuretic during treatment with fluoxetine may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH has been reported during therapy with SSRIs. Cases involving serum sodium levels lower than 110 mmol/l have occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of fluoxetine should be considered in patients who develop symptomatic hyponatremia.
Olanzapine; Samidorphan: (Moderate) Olanzapine may induce orthostatic hypotension and thus enhance the effects of antihypertensive agents.
Oliceridine: (Moderate) Monitor patients for signs of diminished diuresis and/or effects on blood pressure if diuretics are used concomitantly with oliceridine; increase the dosage of the diuretic as needed. Opioids can reduce the efficacy of diuretics by inducing the release of antidiuretic hormone.
Olmesartan: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Ombitasvir; Paritaprevir; Ritonavir: (Moderate) The manufacturer of dasabuvir; ombitasvir; paritaprevir; ritonavir and ombitasvir; paritaprevir; ritonavir recommends caution and clinical monitoring if administered concurrently with furosemide. Use of these drugs in combination has resulted in elevated furosemide maximum plasma concentrations (Cmax). Individualize the dose of furosemide based on the patient's clinical response. The dose should be re-adjusted after completion of the hepatitis C treatment regimen.
Omeprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Omeprazole; Amoxicillin; Rifabutin: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement. (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Omeprazole; Sodium Bicarbonate: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Ondansetron: (Moderate) The coadministration of ondansetron with diuretics associated with hypokalemia could increase the risk of QT prolongation. Potassium levels should be within the normal range prior to and during therapy with ondansetron.
Oprelvekin, rh-IL-11: (Major) Patients receiving loop diuretics during oprelvekin, rh-IL-11 therapy are at increased risk for developing severe hypokalemia; close monitoring of fluid and electrolyte status is warranted during concurrent diuretic and oprelvekin therapy.
Oxacillin: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Oxaprozin: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Oxybutynin: (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Oxycodone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Oxymetazoline: (Major) The vasoconstricting actions of oxymetazoline, an alpha adrenergic agonist, may reduce the antihypertensive effects produced by diuretics. If these drugs are used together, closely monitor for changes in blood pressure.
Oxymorphone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with oxymorphone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Paliperidone: (Moderate) Paliperidone may cause orthostatic hypotension, thereby enhancing the hypotensive effects of antihypertensive agents. Orthostatic vital signs should be monitored in patients receiving paliperidone and loop diuretics who are susceptible to hypotension.
Pamidronate: (Moderate) Because both loop diuretics and intravenously administered bisphosphonates (i.e., alendronate, ibandronate, pamidronate, and zoledronic acid) can cause a decrease in serum calcium, caution is advised when used concomitantly in the treatment of hypercalcemia of malignancy in order to avoid hypocalcemia. In patients with hypercalcemia of malignancy, the initial treatment typically includes the use of loop diuretics, in combination with saline hydration, however, diuretic therapy should not be employed prior to correction of hypovolemia and dehydration.
Pancuronium: (Moderate) Concomitant use of neuromuscular blockers and loop diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Pantoprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Paromomycin: (Moderate) The risk of ototoxicity or nephrotoxicity secondary to aminoglycosides may be increased by the addition of concomitant therapies with similar side effects, including loop diuretics. If loop diuretics and aminoglycosides are used together, it would be prudent to monitor renal function parameters, serum electrolytes, and serum aminoglycoside concentrations during therapy. Audiologic monitoring may be advisable during high dose therapy or therapy of long duration, when hearing loss is suspected, or in selected risk groups (e.g., neonates).
Paroxetine: (Moderate) Patients receiving a diuretic during treatment with paroxetine may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH has been reported during therapy with SSRIs. Cases involving serum sodium levels lower than 110 mmol/l have occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of paroxetine should be considered in patients who develop symptomatic hyponatremia.
Pasireotide: (Moderate) Cautious use of pasireotide and loop diuretics is advised as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with pasireotide. Assess the patient's potassium and magnesium concentration before and periodically during pasireotide receipt. Correct hypokalemia and hypomagnesemia before pasireotide receipt.
Penicillin G Benzathine: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Penicillin G Benzathine; Penicillin G Procaine: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Penicillin G Procaine: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Penicillin G: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Penicillin V: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Penicillins: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Pentamidine: (Moderate) Drugs that are associated with hypokalemia and/or hypomagnesemia such as loop diuretics should be used with caution in patients also receiving pentamidine. Since pentamidine may cause QT prolongation independently of electrolyte imbalances, the risk for cardiac arrhythmias is potentiated by the concomitant use of agents associated with electrolyte loss. .
Pentazocine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with pentazocine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Pentazocine; Naloxone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with pentazocine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Pentoxifylline: (Moderate) Pentoxifylline has been used concurrently with antihypertensive drugs (beta blockers, diuretics) without observed problems. Small decreases in blood pressure have been observed in some patients treated with pentoxifylline; periodic systemic blood pressure monitoring is recommended for patients receiving concomitant antihypertensives. If indicated, dosage of the antihypertensive agents should be reduced.
Perindopril: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Perindopril; Amlodipine: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Phenelzine: (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with diuretics. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider.
Phentermine; Topiramate: (Moderate) Topiramate is a carbonic anhydrase inhibitor. Concurrent use of topiramate with non-potassium sparing diuretics (e.g., loop diuretics) may potentiate the potassium-wasting action of these diuretics. Monitor baseline and periodic potassium concentrations during coadministration.
Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Phenytoin: (Moderate) Limited clinical data suggest that phenytoin can interfere with the clinical response to furosemide. Phenytoin has been shown to decrease furosemide oral bioavailability by up to 50 percent without affecting its systemic clearance.
Pimozide: (Moderate) Caution is advisable during concurrent use of pimozide and loop diuretics as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with pimozide. Potassium deficiencies should be corrected prior to treatment with pimozide and normalized potassium levels should be maintained during treatment.
Pioglitazone: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between furosemide and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Pioglitazone; Glimepiride: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between furosemide and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Pioglitazone; Metformin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between furosemide and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Piperacillin: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Piperacillin; Tazobactam: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Piroxicam: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Plazomicin: (Moderate) The risk of ototoxicity or nephrotoxicity secondary to aminoglycosides may be increased by the addition of concomitant therapies with similar side effects, including loop diuretics. If loop diuretics and aminoglycosides are used together, it would be prudent to monitor renal function parameters, serum electrolytes, and serum aminoglycoside concentrations during therapy. Audiologic monitoring may be advisable during high dose therapy or therapy of long duration, when hearing loss is suspected, or in selected risk groups (e.g., neonates).
Polycarbophil: (Moderate) Loop diuretics may increase the risk of hypokalemia, especially in patients receiving prolonged therapy with laxatives such as calcium polycarbophil. Monitor serum potassium to determine the need for potassium supplementation and/or alteration in drug therapy.
Polyethylene Glycol: (Moderate) There have been rare reports of generalized tonic-clonic seizures associated with electrolyte abnormalities in patients using polyethylene glycol colon preparation products. In addition, there have been rare reports of serious arrhythmias associated with the use of ionic osmotic laxative products for bowel preparation. Some of these events are associated with electrolyte imbalance. Therefore, polyethylene glycol; electrolytes preparations should be used with caution in patients using concomitant medications that increase the risk of electrolyte abnormalities such as loop diuretics.
Polyethylene Glycol; Electrolytes: (Moderate) There have been rare reports of generalized tonic-clonic seizures associated with electrolyte abnormalities in patients using polyethylene glycol colon preparation products. In addition, there have been rare reports of serious arrhythmias associated with the use of ionic osmotic laxative products for bowel preparation. Some of these events are associated with electrolyte imbalance. Therefore, polyethylene glycol; electrolytes preparations should be used with caution in patients using concomitant medications that increase the risk of electrolyte abnormalities such as loop diuretics. (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as diuretics.
Polyethylene Glycol; Electrolytes; Ascorbic Acid: (Moderate) There have been rare reports of generalized tonic-clonic seizures associated with electrolyte abnormalities in patients using polyethylene glycol colon preparation products. In addition, there have been rare reports of serious arrhythmias associated with the use of ionic osmotic laxative products for bowel preparation. Some of these events are associated with electrolyte imbalance. Therefore, polyethylene glycol; electrolytes preparations should be used with caution in patients using concomitant medications that increase the risk of electrolyte abnormalities such as loop diuretics. (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as diuretics.
Polyethylene Glycol; Electrolytes; Bisacodyl: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy. (Moderate) There have been rare reports of generalized tonic-clonic seizures associated with electrolyte abnormalities in patients using polyethylene glycol colon preparation products. In addition, there have been rare reports of serious arrhythmias associated with the use of ionic osmotic laxative products for bowel preparation. Some of these events are associated with electrolyte imbalance. Therefore, polyethylene glycol; electrolytes preparations should be used with caution in patients using concomitant medications that increase the risk of electrolyte abnormalities such as loop diuretics.
Polymyxin B: (Moderate) Systemic polymyxin B is nephrotoxic and should be used cautiously with loop diuretics, which may cause azotemia and may increase the risk for renal toxicity when coadministered. Close monitoring of renal status and for drug toxicity is recommended. Diminishing urine output and a rising BUN are indications to discontinue systemic polymyxin B therapy.
Porfimer: (Major) Avoid coadministration of porfimer with furosemide due to the risk of increased photosensitivity. All patients treated with porfimer will be photosensitive. Concomitant use of other photosensitizing agents like furosemide may increase the risk of a photosensitivity reaction.
Pramlintide: (Minor) Loop diuretics may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents. Monitor patient for diabetic control.
Prazosin: (Moderate) The first dose response (acute postural hypotension) of prazosin may be exaggerated in patients who are receiving loop diuretics. This effect can be minimized by reducing the prazosin dose to 1 to 2 mg three times a day, by introducing the loop diuretic cautiously, and then by retitrating prazosin to clinical response.
Prednisolone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Prednisone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Prilocaine; Epinephrine: (Moderate) Loop diuretics may antagonize the pressor effects and potentiate the arrhythmogenic and hypokalemic effects of epinephrine.
Probenecid: (Moderate) Probenecid can interfere with the natriuresis and plasma renin activity increases caused by diuretics such as furosemide. Furosemide can in turn increase the levels of serum uric acid, antagonizing the effects of probenecid.
Probenecid; Colchicine: (Moderate) Probenecid can interfere with the natriuresis and plasma renin activity increases caused by diuretics such as furosemide. Furosemide can in turn increase the levels of serum uric acid, antagonizing the effects of probenecid.
Procainamide: (Moderate) Procainamide can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents. Intravenous administration of procainamide is more likely to cause hypotensive effects.
Procaine: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents.
Promethazine; Phenylephrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Propofol: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Pseudoephedrine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Pseudoephedrine; Triprolidine: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Psyllium: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Quetiapine: (Moderate) Caution is advisable during concurrent use of quetiapine and loop diuretics as electrolyte imbalance caused by diuretics may increase the risk of QT prolongation with quetiapine.
Quinapril: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Quinidine: (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension.
Rabeprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with loop diuretics (furosemide, bumetanide, torsemide, and ethacrynic acid). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
Ramipril: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Rapacuronium: (Moderate) Concomitant use of neuromuscular blockers and loop diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Rasagiline: (Moderate) Additive hypotensive effects may be seen when monoamine oxidase inhibitors (MAOIs) are combined with antihypertensives. Careful monitoring of blood pressure is suggested during concurrent therapy of MAOIs with diuretics. Patients should be instructed to rise slowly from a sitting position, and to report syncope or changes in blood pressure or heart rate to their health care provider.
Repaglinide: (Minor) Loop diuretics have been associated with hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between loop diuretics and all antidiabetic agents. Monitor for a loss of diabetic control.
Risperidone: (Moderate) Risperidone may induce orthostatic hypotension and thus enhance the hypotensive effects of antihypertensive agents. Lower initial doses or slower dose titration of risperidone may be necessary in patients receiving antihypertensive agents concomitantly. Furthermore, two of four placebo-controlled trials showed that elderly patients with dementia-related psychosis receiving the combination of risperidone and furosemide had a higher incidence of mortality than those receiving either agent alone. The mechanism for this adverse association is unknown. Caution should be exercised when the combined use of risperidone and furosemide is necessary in those with dementia-related psychosis.
Rocuronium: (Moderate) Concomitant use of neuromuscular blockers and loop diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Rofecoxib: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Rosiglitazone: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between furosemide and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Sacubitril; Valsartan: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Salicylates: (Moderate) Salicylates may decrease the diuretic, natriuretic, and antihypertensive actions of diuretics, possibly through inhibition of renal prostaglandin synthesis. Patients receiving loop diuretics and salicylates should be monitored for changes in the effectiveness of their diuretic therapy.
Saxagliptin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Semaglutide: (Minor) Loop diuretics, such as bumetanide, furosemide, and torsemide, may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents, including incretin mimetics. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Senna: (Minor) The risk of hypokalemia due to loop diuretics may be increased in patients receiving prolonged therapy with certain laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy in patients receiving loop diuretics. Senna rarely causes hypokalemia with proper use.
Serotonin norepinephrine reuptake inhibitors: (Moderate) Patients receiving a diuretic during treatment with a Serotonin norepinephrine reuptake inhibitor (SNRI) may be at greater risk of developing hyponatremia and/or the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH may occur during therapy with SNRIs. Cases involving serum sodium levels lower than 110 mmol/L have been reported. Discontinuation of the SNRI should be considered in patients who develop symptomatic hyponatremia.
Sertraline: (Moderate) Patients receiving a diuretic during treatment with sertraline may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH has been reported during therapy with SSRIs. Cases involving serum sodium levels lower than 110 mmol/l have occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of sertraline should be considered in patients who develop symptomatic hyponatremia.
Sevoflurane: (Moderate) General anesthetics can potentiate the hypotensive effects of antihypertensive agents.
Silodosin: (Moderate) During clinical trials with silodosin, the incidence of dizziness and orthostatic hypotension was higher in patients receiving concomitant antihypertensive treatment. Thus, caution is advisable when silodosin is administered with antihypertensive agents.
Simvastatin; Sitagliptin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Sitagliptin: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between these drugs and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely if these drugs are initiated.
Sodium Phosphate Monobasic Monohydrate; Sodium Phosphate Dibasic Anhydrous: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as diuretics, may increase the risk of acute phosphate nephropathy in patients receiving sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous. In addition, loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Sodium picosulfate; Magnesium oxide; Anhydrous citric acid: (Moderate) Use caution when prescribing sodium picosulfate; magnesium oxide; anhydrous citric acid in patients taking concomitant medications that may affect renal function such as diuretics. In addition, use caution in patients receiving drugs where hypokalemia is a particular risk.
Sodium Polystyrene Sulfonate: (Moderate) Sodium polystyrene sulfonate should be used cautiously with other agents that can induce hypokalemia such as loop diuretics, insulins, or intravenous sodium bicarbonate. Because of differences in onset of action, sodium polystyrene sulfonate is often used with these agents. With appropriate monitoring, hypokalemia can be avoided.
Sodium Sulfate; Magnesium Sulfate; Potassium Chloride: (Moderate) Diuretics may interfere with the kidneys ability to regulate magnesium concentrations. Long-term use of loop diuretics may impair the magnesium-conserving ability of the kidneys and lead to hypomagnesemia. In addition, use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as diuretics.
Solifenacin: (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms. Risk versus benefit should be addressed in patients receiving diuretics and solifenacin.
Sorbitol: (Moderate) Loop diuretics may increase the risk of hypokalemia especially in patients receiving prolonged therapy with laxatives. Monitor serum potassium levels to determine the need for potassium supplementation and/or alteration in drug therapy.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Streptomycin: (Moderate) The risk of ototoxicity or nephrotoxicity secondary to aminoglycosides may be increased by the addition of concomitant therapies with similar side effects, including loop diuretics. If loop diuretics and aminoglycosides are used together, it would be prudent to monitor renal function parameters, serum electrolytes, and serum aminoglycoside concentrations during therapy. Audiologic monitoring may be advisable during high dose therapy or therapy of long duration, when hearing loss is suspected, or in selected risk groups (e.g., neonates).
Streptozocin: (Minor) Because streptozocin is nephrotoxic, concurrent or subsequent administration of other nephrotoxic agents (e.g,. aminoglycosides, amphotericin B, cisplatin, foscarnet, or diuretics) could exacerbate the renal insult.
Succinylcholine: (Moderate) Concomitant use of neuromuscular blockers and loop diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Sucralfate: (Moderate) According to the manufacturer for furosemide, simultaneous administration of sucralfate and furosemide may reduce its natriuretic and antihypertensive effects. Patients receiving both drugs should be observed closely to determine if the desired diuretic and/or antihypertensive effect of furosemide is achieved. The intake of furosemide and sucralfate is recommended to be separated by at least two hours.
Sufentanil: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with sufentanil. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Sulfonylureas: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Sulindac: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Sumatriptan; Naproxen: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Tapentadol: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with tapentadol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Telavancin: (Moderate) Concurrent or sequential use of telavancin with other potentially nephrotoxic drugs such as loop diuretics may lead to additive nephrotoxicity. Closely monitor renal function and adjust telavancin doses based on calculated creatinine clearance.
Telmisartan: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Telmisartan; Amlodipine: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Teriflunomide: (Moderate) Teriflunomide is an inhibitor of the renal uptake organic anion transporter OAT3. Use of teriflunomide with furosemide, a substrate of OAT3, may increase furosemide plasma concentrations. Monitor for increased adverse effects from furosemide, such as excessive fluid loss or hypotension.
Tetracaine: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. Use extreme caution with the concomitant use of tetracaine and antihypertensive agents.
Thiazide diuretics: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Thiazolidinediones: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus, probably due to diuretic-induced hypokalemia. Because of this, a potential pharmacodynamic interaction exists between furosemide and all antidiabetic agents. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Thiopental: (Moderate) Concurrent use of thiopental and alpha-blockers or antihypertensive agents increases the risk of developing hypotension.
Thiothixene: (Moderate) Thiothixene should be used cautiously in patients receiving antihypertensive agents. Additive hypotensive effects are possible.
Thyroid hormones: (Moderate) Use high doses (more than 80 mg) of furosemide and thyroid hormones together with caution. High doses of furosemide may inhibit the binding of thyroid hormones to carrier proteins, resulting in a transient increase in free thyroid hormones followed by an overall decrease in total thyroid hormone concentrations.
Ticarcillin: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Ticarcillin; Clavulanic Acid: (Minor) Furosemide may compete with penicillin for renal tubular secretion, increasing penicillin serum concentrations. This combination should be used with caution and patients monitored for increased side effects.
Tizanidine: (Moderate) Concurrent use of tizanidine with antihypertensive agents can result in significant hypotension. Caution is advised when tizanidine is to be used in patients receiving concurrent antihypertensive therapy.
Tobramycin: (Moderate) The risk of ototoxicity or nephrotoxicity secondary to aminoglycosides may be increased by the addition of concomitant therapies with similar side effects, including loop diuretics. If loop diuretics and aminoglycosides are used together, it would be prudent to monitor renal function parameters, serum electrolytes, and serum aminoglycoside concentrations during therapy. Audiologic monitoring may be advisable during high dose therapy or therapy of long duration, when hearing loss is suspected, or in selected risk groups (e.g., neonates).
Tolazamide: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Tolbutamide: (Minor) Furosemide may cause hyperglycemia and glycosuria in patients with diabetes mellitus. This interference can lead to a loss of diabetic control, so diabetic patients should be monitored closely.
Tolmetin: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Tolterodine: (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Tolvaptan: (Moderate) Monitor serum sodium closely if tolvaptan and furosemide are used together. Coadministration increases the risk of too rapid correction of serum sodium.
Topiramate: (Moderate) Topiramate is a carbonic anhydrase inhibitor. Concurrent use of topiramate with non-potassium sparing diuretics (e.g., loop diuretics) may potentiate the potassium-wasting action of these diuretics. Monitor baseline and periodic potassium concentrations during coadministration.
Tramadol: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with tramadol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Tramadol; Acetaminophen: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with tramadol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
Trandolapril: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Trandolapril; Verapamil: (Moderate) Coadministration of loop diuretics and Angiotensin-converting enzyme inhibitors (ACE inhibitors) may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Tranylcypromine: (Contraindicated) The use of hypotensive agents and tranylcypromine is contraindicated by the manufacturer of tranylcypromine because the effects of hypotensive agents may be markedly potentiated.
Trazodone: (Minor) Due to additive hypotensive effects, patients receiving antihypertensive agents concurrently with trazodone may have excessive hypotension. Decreased dosage of the antihypertensive agent may be required when given with trazodone.
Triamcinolone: (Moderate) Corticosteroids may accentuate the electrolyte loss associated with diuretic therapy resulting in hypokalemia and/or hypomagnesemia. While glucocorticoids with mineralocorticoid activity (e.g., cortisone, hydrocortisone) can cause sodium and fluid retention. Close monitoring of electrolytes should occur in patients receiving these drugs concomitantly.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Trospium: (Minor) Diuretics can increase urinary frequency, which may aggravate bladder symptoms.
Tubocurarine: (Moderate) Concomitant use of neuromuscular blockers and loop diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Valdecoxib: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Valsartan: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of furosemide and Angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor antagonists may result in severe hypotension and deterioration in renal function, including renal failure. Hyponatremia or hypovolemia predisposes patients to acute hypotensive episodes following initiation of ACE inhibitor therapy. While ACE inhibitors and loop diuretics are routinely administered together in the treatment of heart failure, if an ACE inhibitor is to be administered to a patient receiving furosemide, initial doses should be conservative. (Moderate) Concomitant use of a thiazide diuretiic, or the related drug metolazone, with a loop diuretic can cause additive electrolyte and fluid loss. In patients with creatinine clearances > 30 ml/min, the combinations may also lead to profound fluid and electrolyte loss in some patients. Thus, use cautiously and with monitoring of renal function, blood pressure, cardiac status, electrolytes (especially potassium), and monitor the clinical response for the condition treated.
Vancomycin: (Moderate) Vancomycin should be used cautiously with other ototoxic drugs such as furosemide.
Vasopressin, ADH: (Minor) Use of furosemide with vasopressin increases the effect of vasopressin on osmolar clearance and urine flow. Furosemide increases osmolar clearance 4-fold and urine flow 9-fold when coadministered with exogenous vasopressin in healthy subjects.
Vecuronium: (Moderate) Concomitant use of neuromuscular blockers and loop diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
Venlafaxine: (Moderate) Patients receiving a diuretic during treatment with a Serotonin norepinephrine reuptake inhibitor (SNRI) may be at greater risk of developing hyponatremia and/or the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH may occur during therapy with SNRIs. Cases involving serum sodium levels lower than 110 mmol/L have been reported. Discontinuation of the SNRI should be considered in patients who develop symptomatic hyponatremia.
Verteporfin: (Moderate) Use caution if coadministration of verteporfin with furosemide is necessary due to the risk of increased photosensitivity. Verteporfin is a light-activated drug used in photodynamic therapy; all patients treated with verteporfin will be photosensitive. Concomitant use of other photosensitizing agents like furosemide may increase the risk of a photosensitivity reaction.
Vilazodone: (Moderate) Patients receiving vilazodone with medications known to cause hyponatremia, such as diuretics, may be at increased risk of developing hyponatremia. Hyponatremia has occurred in association with the use of antidepressants such as selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), and mirtazapine. Hyponatremia may manifest as headache, difficulty concentrating, memory impairment, confusion, weakness, and unsteadiness which may result in falls. Severe manifestations include hallucinations, syncope, seizure, coma, respiratory arrest, and death. Symptomatic hyponatremia may require discontinuation of vilazodone, as well as implementation of the appropriate medical interventions.
Vorinostat: (Moderate) Use vorinostat and loop diuretics together with caution; the risk of QT prolongation and arrhythmias may be increased if electrolyte abnormalities occur. Loop diuretics may cause electrolyte imbalances including low potassium; hypomagnesemia, hypokalemia, or hypocalcemia may increase the risk of QT prolongation with vorinostat. Frequently monitor serum electrolytes if concomitant use of these drugs is necessary.
Vortioxetine: (Moderate) Patients receiving a diuretic during treatment with vortioxetine may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Clinically significant hyponatremia has been reported during therapy with vortioxetine. One case involving serum sodium levels lower than 110 mmol/l has occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of vortioxetine should be considered in patients who develop symptomatic hyponatremia.
Yohimbine: (Moderate) Yohimbine can increase blood pressure and therefore can antagonize the therapeutic action of antihypertensive agents. Use with particular caution in hypertensive patients with high or uncontrolled BP.
Ziconotide: (Moderate) Patients taking diuretics with ziconotide may be at higher risk of depressed levels of consciousness. If altered consciousness occurs, consideration of diuretic cessation is warranted in addition to ziconotide discontinuation.
Ziprasidone: (Moderate) Monitor potassium and magnesium levels when loop diuretics are used during ziprasidone therapy. The risk of QT prolongation from ziprasidone is increased in the presence of hypokalemia or hypomagnesemia.
Zoledronic Acid: (Moderate) Loop diuretics should be used with caution in combination with zoledronic acid in order to avoid hypocalcemia. In patients with hypercalcemia of malignancy, the initial treatment typically includes the use of loop diuretics, in combination with saline hydration, however, diuretic therapy should not be employed prior to correction of hypovolemia and dehydration.