Methergine

Browse PDR's full list of drug information

Methergine

Classes

Labor Inducers

Administration

Hazardous Drugs Classification
NIOSH 2016 List: Group 3
NIOSH (Draft) 2020 List: Table 2
Observe and exercise appropriate precautions for handling, preparation, administration, and disposal of hazardous drugs.
INJECTABLE Drugs: Use double chemotherapy gloves and a protective gown. Prepare in a biological safety cabinet or compounding aseptic containment isolator with a closed system drug transfer device. Eye/face and respiratory protection may be needed during preparation and administration.
ORAL TABLETS: Use gloves to handle. Cutting, crushing, or otherwise manipulating tablets will increase exposure and require additional protective equipment. Oral liquid drugs require double chemotherapy gloves and protective gown. Eye/face and respiratory protection may be needed during preparation and administration.

Oral Administration

Administer orally with water.
Advise patient not to exceed the recommended dosage or duration of methylergonovine therapy.

Injectable Administration

For intramuscular or intravenous use only. Periarterial or intraarterial injection must be strictly avoided.
Because methylergonovine is vasoconstrictive, monitor patient's blood pressure, heart rate, and uterine response prior to and during administration.
Do not exceed recommended dosage limits.
Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit. The injection solution should be clear and colorless; discard discolored solutions.

Intravenous Administration

Do not routinely administer IV because of the possibility of inducing sudden hypertensive and cerebrovascular accidents. Only use IV route if essential as a life-saving measure.
Give IV slowly over a period of no less than 60 seconds, with careful monitoring of blood pressure, heart rate, and uterine response.

Intramuscular Administration

Inject deeply into a large muscle.

Adverse Reactions
Severe

water intoxication / Delayed / Incidence not known
seizures / Delayed / Incidence not known
anaphylactoid reactions / Rapid / Incidence not known
fetal death / Delayed / Incidence not known
teratogenesis / Delayed / Incidence not known
uterine rupture / Early / Incidence not known
spontaneous fetal abortion / Delayed / Incidence not known
bradycardia / Rapid / Incidence not known
ventricular tachycardia / Early / Incidence not known
ventricular fibrillation / Early / Incidence not known
AV block / Early / Incidence not known
stroke / Early / Incidence not known
myocardial infarction / Delayed / Incidence not known
coronary vasospasm / Early / Incidence not known
neonatal respiratory depression / Rapid / Incidence not known

Moderate

hypertension / Early / 10.0
hallucinations / Early / Incidence not known
hypotension / Rapid / Incidence not known
hematuria / Delayed / Incidence not known
phlebitis / Rapid / Incidence not known
uterine contractions / Early / Incidence not known
chest pain (unspecified) / Early / Incidence not known
sinus tachycardia / Rapid / Incidence not known
dyspnea / Early / Incidence not known
palpitations / Early / Incidence not known
peripheral vasoconstriction / Rapid / Incidence not known
angina / Early / Incidence not known

Mild

vomiting / Early / 1.0-10.0
abdominal pain / Early / 1.0-10.0
nausea / Early / 1.0-10.0
headache / Early / 10.0
dysgeusia / Early / Incidence not known
dizziness / Early / Incidence not known
muscle cramps / Delayed / Incidence not known
rash / Early / Incidence not known
nasal congestion / Early / Incidence not known
tinnitus / Delayed / Incidence not known
diarrhea / Early / Incidence not known
paresthesias / Delayed / Incidence not known
diaphoresis / Early / Incidence not known

Common Brand Names

Methergine

Dea Class

Rx

Description

Oral and parenteral semisynthetic ergot alkaloid derivative
Preferred over other ergot alkaloids to prevent postpartum uterine atony and hemorrhage
Rarely causes ergot-related toxicity with appropriate prescription use

Dosage And Indications
For the management of uterine atony, subinvolution of the uterus, and postpartum bleeding after delivery of the placenta or uterine hemorrhage in the second stage of labor after delivery of the anterior shoulder. Oral dosage Adults

0.2 mg PO 3 to 4 times daily for up to 7 days.

Intramuscular dosage Adults

0.2 mg IM as a single dose, initially, after delivery of the anterior shoulder or placenta, or during the puerperium, initially; may repeat dose every 2 to 4 hours as needed. However, it is unlikely that additional doses will be of benefit if there is no response after first dose.

Intravenous dosage Adults

0.2 mg IV as a single dose, initially, after delivery of the anterior shoulder or placenta, or during the puerperium; may repeat dose every 2 to 4 hours as needed. Guidelines do not recommend intravenous administration. 

Dosing Considerations
Hepatic Impairment

Specific data are not available; use caution in patients with hepatic impairment as ergot alkaloids are primarily metabolized and excreted via the liver.

Renal Impairment

Specific data are not available; use caution in patients with renal impairment.

Drug Interactions

Acebutolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Acetaminophen; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Acrivastine; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Adagrasib: (Contraindicated) Coadministration of ergot alkaloids and adagrasib is contraindicated due to the potential for increased ergot exposure. Increased plasma concentrations of ergot alkaloids are associated with risk of acute ergot toxicity which is characterized by peripheral vasospasm and ischemia of the extremities and other tissues. Ergot alkaloids are CYP3A substrates and adagrasib is a strong CYP3A inhibitor.
Almotriptan: (Contraindicated) Serotonin-receptor agonists (triptans) are contraindicated for use within 24 hours of treatment with ergot alkaloids (e.g., dihydroergotamine, methysergide) or ergot-type medications to avoid the potential for serious coronary ischemia. Ergot alkaloids have been reported to cause prolonged vasospastic reactions which may be additive with the effects of triptans. Additionally, ergot alkaloids are serotonergic agents whose effects on serotonin may be additive to those of the serotonin-receptor agonists.
Amiodarone: (Moderate) Monitor for an increase in ergotamine-related adverse effects and adjust the ergot alkaloid dosage as necessary if concomitant use of amiodarone is required. Concomitant use may increase the systemic exposure of ergot alkaloids and increase the risk for adverse reactions such as vasospasm which may lead to cerebral ischemia and ischemia of the extremities. Ergot alkaloids are CYP3A substrates and amiodarone is a moderate CYP3A inhibitor.
Amlodipine: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Amlodipine; Atorvastatin: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Amlodipine; Benazepril: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Amlodipine; Celecoxib: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Amlodipine; Olmesartan: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Amlodipine; Valsartan: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Amoxicillin; Clarithromycin; Omeprazole: (Contraindicated) Clarithromycin should not be coadministered with methylergonovine due to the risk of ergot toxicity (e.g., severe peripheral vasospasm with possible ischemia, cyanosis, and numbness of the extremities or other serious effects). Clarithromycin inhibits the metabolism of ergot alkaloids via inhibition of the CYP3A4 isoenzyme.
Amphetamine; Dextroamphetamine Salts: (Major) Amphetamines, which increase catecholamine release, can increase blood pressure; this effect may be additive with the prolonged vasoconstriction caused by ergot alkaloids. Monitoring for cardiac effects during concurrent use of ergot alkaloids with amphetamines may be advisable.
Aprepitant, Fosaprepitant: (Major) Use caution if ergot alkaloids and aprepitant, fosaprepitant are used concurrently and monitor for an increase in ergot alkaloid-related adverse effects (e.g., severe peripheral vasospasm with possible ischemia, potentially leading to gangrene, cyanosis, stroke, numbness of the extremities and/or other serious effects) for several days after administration of a multi-day aprepitant regimen. Ergot alkaloids are CYP3A4 substrates. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of ergot alkaloids. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important.
Atazanavir; Cobicistat: (Contraindicated) Coadministration of methylergonovine with cobicistat is contraindicated. Cobicistat is an inhibitor of CYP3A, and plasma concentrations of drugs extensively metabolized by this enzyme, such as ergot alkaloids, are expected to increase with concurrent use. Elevated plasma concentrations of ergot alkaloids are associated with risk of acute ergot toxicity which is characterized by peripheral vasospasm and ischemia of the extremities and other tissues.
Atenolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Atenolol; Chlorthalidone: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Theoretically, concurrent use of methylene blue and ergot alkaloids may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and ergot alkaloids increase central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Benzphetamine: (Major) Amphetamines, which increase catecholamine release, can increase blood pressure; this effect may be additive with the prolonged vasoconstriction caused by ergot alkaloids. Monitoring for cardiac effects during concurrent use of ergot alkaloids with amphetamines may be advisable.
Beta-blockers: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Betaxolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Bisoprolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Brimonidine; Timolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Bromocriptine: (Contraindicated) The concomitant use of bromocriptine, an ergot derivative, with ergot alkaloids may potentially lead to ergot toxicity; therefore the combination should be avoided. Symptoms of ergotism include angina, asthenia, chest pain (unspecified), coronary vasospasm, muscle cramps (claudication), myalgia, paresthesias, and palpitations or changes in heart rate (e.g., sinus bradycardia or sinus tachycardia). Peripheral vasoconstriction of the arteries may result in hypothermia or tissue necrosis, which may lead to gangrene. Other serious complications include hypertension (portal), mesenteric artery thrombosis, myocardial infarction, and renal tubular necrosis. Symptoms such as confusion, depression, drowsiness, and seizures rarely occur.
Brompheniramine; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Carboprost Tromethamine: (Major) Carboprost tromethamine may augment the activity of other oxytocics. Augmentation can result in uterine hypertonus with subsequent uterine rupture, particularly in the absence of adequate cervical dilation. The concurrent use of carboprost tromethamine and other oxytocic drugs is not recommended.
Carteolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Carvedilol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Cetirizine; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Chlorpheniramine; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Cimetidine: (Major) Cimetidine is a significant CYP3A4 inhibitor. Coadministration of methylergonovine with inhibitors of CYP3A4 may potentially increase the risk of ergot toxicity (e.g., vasospasm leading to cerebral ischemia, peripheral ischemia and/or other serious effects). Coadministration should be done cautiously, and avoided when possible.
Ciprofloxacin: (Moderate) Monitor for an increase in ergotamine-related adverse effects and adjust the ergot alkaloid dosage as necessary if concomitant use of ciprofloxacin is required. Concomitant use may increase the systemic exposure of ergot alkaloids and increase the risk for adverse reactions such as vasospasm which may lead to cerebral ischemia and ischemia of the extremities. Ergot alkaloids are CYP3A substrates and ciprofloxacin is a moderate CYP3A inhibitor.
Citalopram: (Moderate) Use citalopram and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Clarithromycin: (Contraindicated) Clarithromycin should not be coadministered with methylergonovine due to the risk of ergot toxicity (e.g., severe peripheral vasospasm with possible ischemia, cyanosis, and numbness of the extremities or other serious effects). Clarithromycin inhibits the metabolism of ergot alkaloids via inhibition of the CYP3A4 isoenzyme.
Cobicistat: (Contraindicated) Coadministration of methylergonovine with cobicistat is contraindicated. Cobicistat is an inhibitor of CYP3A, and plasma concentrations of drugs extensively metabolized by this enzyme, such as ergot alkaloids, are expected to increase with concurrent use. Elevated plasma concentrations of ergot alkaloids are associated with risk of acute ergot toxicity which is characterized by peripheral vasospasm and ischemia of the extremities and other tissues.
Cocaine: (Contraindicated) Ergot alkaloids should not be administered with vasoconstrictors such as cocaine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Ergoloid mesylates preparations are not expected to interact with sympathomimetics because this compound does not possess the vasoconstrictor properties of other ergot alkaoloids.
Codeine; Guaifenesin; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Conivaptan: (Moderate) Monitor for an increase in ergotamine-related adverse effects and adjust the ergot alkaloid dosage as necessary if concomitant use of conivaptan is required. Concomitant use may increase the systemic exposure of ergot alkaloids and increase the risk for adverse reactions such as vasospasm which may lead to cerebral ischemia and ischemia of the extremities. Ergot alkaloids are CYP3A substrates and conivaptan is a moderate CYP3A inhibitor.
Danazol: (Major) Danazol is a CYP3A4 inhibitor and can decrease the hepatic metabolism of some drugs, such as ergot alkaloids, and lead to ergot toxicity.
Darunavir; Cobicistat: (Contraindicated) Coadministration of methylergonovine with cobicistat is contraindicated. Cobicistat is an inhibitor of CYP3A, and plasma concentrations of drugs extensively metabolized by this enzyme, such as ergot alkaloids, are expected to increase with concurrent use. Elevated plasma concentrations of ergot alkaloids are associated with risk of acute ergot toxicity which is characterized by peripheral vasospasm and ischemia of the extremities and other tissues.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Contraindicated) Coadministration of methylergonovine with cobicistat is contraindicated. Cobicistat is an inhibitor of CYP3A, and plasma concentrations of drugs extensively metabolized by this enzyme, such as ergot alkaloids, are expected to increase with concurrent use. Elevated plasma concentrations of ergot alkaloids are associated with risk of acute ergot toxicity which is characterized by peripheral vasospasm and ischemia of the extremities and other tissues.
Delavirdine: (Contraindicated) The concurrent use of delavirdine is contraindicated with ergot alkaloids. This is because delavirdine is a potent inhibitor of the CYP3A4 and increased plasma concentrations of drugs extensively metabolized by this enzyme, such as ergot alkaloids, should be expected with concurrent use of delavirdine. This could cause ergot toxicity.
Desloratadine; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Desvenlafaxine: (Moderate) Because of the potential risk and severity of serotonin syndrome, use caution when administering serotonin norepinephrine reuptake inhibitors (SNRIs) with other drugs that have serotonergic properties, such as the ergot alkaloids. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with serotonin reuptake inhibitors, which may be indicative of serotonin excess. Inform patients of the potential risk and monitor for serotonin syndrome. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Dexbrompheniramine; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Diltiazem: (Moderate) Monitor for an increase in ergotamine-related adverse effects and adjust the ergot alkaloid dosage as necessary if concomitant use of diltiazem is required. Concomitant use may increase the systemic exposure of ergot alkaloids and increase the risk for adverse reactions such as vasospasm which may lead to cerebral ischemia and ischemia of the extremities. Ergot alkaloids are CYP3A substrates and diltiazem is a moderate CYP3A inhibitor.
Dinoprostone, Prostaglandin E2: (Contraindicated) Concomitant use of dinoprostone with other oxytocics can result in uterine hypertonus with subsequent uterine rupture, particularly in the absence of adequate cervical dilation. The concurrent use of dinoprostone and other oxytocic drugs is considered contraindicated; following the removal of the dinoprostone vaginal insert, an interval of at least 30 minutes is recommended prior to the use of another oxytocic agent. These products should be used sequentially only under adequate obstetric supervision and the patient should be monitored closely for adverse effects.
Dobutamine: (Major) The concomitant administration of ergot alkaloids and sympathomimetics has resulted in dangerous hypertension.
Dorzolamide; Timolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Duloxetine: (Moderate) Because of the potential risk and severity of serotonin syndrome, use caution when administering serotonin norepinephrine reuptake inhibitors (SNRIs) with other drugs that have serotonergic properties, such as the ergot alkaloids. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with serotonin reuptake inhibitors, which may be indicative of serotonin excess. Inform patients of the potential risk and monitor for serotonin syndrome. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Eletriptan: (Contraindicated) Serotonin-receptor agonists (triptans) are contraindicated for use within 24 hours of treatment with ergot alkaloids (e.g., dihydroergotamine, methysergide) or ergot-type medications to avoid the potential for serious coronary ischemia. Ergot alkaloids have been reported to cause prolonged vasospastic reactions which may be additive with the effects of triptans. Additionally, ergot alkaloids are serotonergic agents whose effects on serotonin may be additive to those of the serotonin-receptor agonists.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Contraindicated) Coadministration of methylergonovine with cobicistat is contraindicated. Cobicistat is an inhibitor of CYP3A, and plasma concentrations of drugs extensively metabolized by this enzyme, such as ergot alkaloids, are expected to increase with concurrent use. Elevated plasma concentrations of ergot alkaloids are associated with risk of acute ergot toxicity which is characterized by peripheral vasospasm and ischemia of the extremities and other tissues.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Contraindicated) Coadministration of methylergonovine with cobicistat is contraindicated. Cobicistat is an inhibitor of CYP3A, and plasma concentrations of drugs extensively metabolized by this enzyme, such as ergot alkaloids, are expected to increase with concurrent use. Elevated plasma concentrations of ergot alkaloids are associated with risk of acute ergot toxicity which is characterized by peripheral vasospasm and ischemia of the extremities and other tissues.
Erythromycin: (Contraindicated) Coadministration of ergot alkaloids and erythromycin is contraindicated due to the potential for increased ergot exposure. Increased plasma concentrations of ergot alkaloids are associated with risk of acute ergot toxicity which is characterized by peripheral vasospasm and ischemia of the extremities and other tissues. Ergot alkaloids are CYP3A substrates and erythromycin is a CYP3A inhibitor.
Escitalopram: (Moderate) Use escitalopram and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Esmolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Fexofenadine; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Fluconazole: (Moderate) Monitor for an increase in ergotamine-related adverse effects and adjust the ergot alkaloid dosage as necessary if concomitant use of fluconazole is required. Concomitant use may increase the systemic exposure of ergot alkaloids and increase the risk for adverse reactions such as vasospasm which may lead to cerebral ischemia and ischemia of the extremities. Ergot alkaloids are CYP3A substrates and fluconazole is a moderate CYP3A inhibitor.
Fluoxetine: (Moderate) Use fluoxetine and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Fluvoxamine: (Moderate) Use fluvoxamine and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Frovatriptan: (Contraindicated) Serotonin-receptor agonists (triptans) are contraindicated for use within 24 hours of treatment with ergot alkaloids (e.g., dihydroergotamine, methysergide) or ergot-type medications to avoid the potential for serious coronary ischemia. Ergot alkaloids have been reported to cause prolonged vasospastic reactions which may be additive with the effects of triptans. Additionally, ergot alkaloids are serotonergic agents whose effects on serotonin may be additive to those of the serotonin-receptor agonists.
Grapefruit juice: (Major) Methylergonovine should not interact with most food. However, the risk of ergot toxicity (e.g., vasospasm leading to cerebral ischemia, peripheral ischemia and/or other serious effects) is potentially increased by the use of CYP3A4 inhibitors. Grapefruit juice inhibits the cytochrome P-450 3A4 isozyme in the gut wall. Grapefruit juice contains furanocoumarins that are metabolized by CYP3A4 to reactive intermediates. These intermediates form a covalent bond to the active site of the CYP3A4 enzyme, causing irreversible inactivation (mechanism-based inhibition). Consequently, CYP3A4 activity in the gut wall is inhibited until de novo synthesis returns the enzyme to its previous level. Therefore, grapefruit juice may decrease ergot alkaloid metabolism via CYP3A4.According to the manufacturer of methylergonovine, caution should be used when coadministering with grapefruit juice. Elderly patients have the greatest possibility of ingesting grapefruit and interacting medications and are the most vulnerable to the adverse clinical consequences.
Guaifenesin; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Hydrocodone; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Theoretically, concurrent use of methylene blue and ergot alkaloids may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and ergot alkaloids increase central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Ibuprofen; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Imatinib: (Contraindicated) Imatinib, STI-571 is a potent inhibitor of cytochrome P450 3A4 and may increase concentrations of other drugs metabolized by this enzyme Coadministration of ergotamine with potent inhibitors of CYP3A4 is considered contraindicated due to the risk of acute ergot toxicity.
Isoproterenol: (Contraindicated) The concomitant administration of ergot alkaloids and sympathomimetics has resulted in dangerous hypertension. Ergot alkaloids exacerbate the effect of isoproterenol on increased cardiac output while producing peripheral vasoconstriction, resulting in increased blood pressure.
Itraconazole: (Contraindicated) Coadministration of ergot alkaloids with inhibitors of CYP3A4, such as itraconazole, or administration for 2 weeks after discontinuation of itraconazole treatment is contraindicated due to the risk of acute ergot toxicity (e.g., vasospasm leading to cerebral ischemia, peripheral ischemia and other serious effects). Cabergoline may be minimally eliminated by the CYP isoenzyme system; therefore, interactions may be less than that of other ergot alkaloids.
Ketoconazole: (Contraindicated) Coadministration of ergot alkaloids and ketoconazole is contraindicated due to the potential for increased ergot exposure. Increased plasma concentrations of ergot alkaloids are associated with risk of acute ergot toxicity which is characterized by peripheral vasospasm and ischemia of the extremities and other tissues. Ergot alkaloids are CYP3A substrates and ketoconazole is a strong CYP3A inhibitor.
Labetalol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Lansoprazole; Amoxicillin; Clarithromycin: (Contraindicated) Clarithromycin should not be coadministered with methylergonovine due to the risk of ergot toxicity (e.g., severe peripheral vasospasm with possible ischemia, cyanosis, and numbness of the extremities or other serious effects). Clarithromycin inhibits the metabolism of ergot alkaloids via inhibition of the CYP3A4 isoenzyme.
Lenacapavir: (Major) Avoid concomitant use of ergot alkaloids and lenacapavir and consider alternative therapy. Concomitant use may increase the systemic exposure of ergot alkaloids and increase the risk for adverse reactions such as vasospasm which may lead to cerebral ischemia and ischemia of the extremities.
Letermovir: (Contraindicated) Concurrent administration of ergot alkaloids and letermovir is contraindicated due to the risk of ergotism. Taking these drugs together may result in increased concentrations of ergot alkaloids due to inhibition of CYP3A4 by letermovir.
Levamlodipine: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Levobunolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Levoketoconazole: (Contraindicated) Coadministration of ergot alkaloids and ketoconazole is contraindicated due to the potential for increased ergot exposure. Increased plasma concentrations of ergot alkaloids are associated with risk of acute ergot toxicity which is characterized by peripheral vasospasm and ischemia of the extremities and other tissues. Ergot alkaloids are CYP3A substrates and ketoconazole is a strong CYP3A inhibitor.
Levomilnacipran: (Moderate) Because of the potential risk and severity of serotonin syndrome, use caution when administering serotonin norepinephrine reuptake inhibitors (SNRIs) with other drugs that have serotonergic properties, such as the ergot alkaloids. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with serotonin reuptake inhibitors, which may be indicative of serotonin excess. Inform patients of the potential risk and monitor for serotonin syndrome. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Linezolid: (Moderate) Serious CNS reactions, such as serotonin syndrome, have been reported during the concurrent use of linezolid and psychiatric medications that enhance central serotonergic activity; therefore, caution is warranted with concomitant use of other agents with serotonergic activity, including ergot alkaloids.
Lisdexamfetamine: (Major) Amphetamines, which increase catecholamine release, can increase blood pressure; this effect may be additive with the prolonged vasoconstriction caused by ergot alkaloids. Monitoring for cardiac effects during concurrent use of ergot alkaloids with amphetamines may be advisable.
Loratadine; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Mepivacaine: (Major) If epinephrine is added to mepivacaine, do not use the mixture in a patient taking ergot alkaloids. Severe hypertension that may be persistent or a cerebrovascular accident can result from concomitant use of a vasopressor and an ergot type oxytocic drug.
Methamphetamine: (Major) Amphetamines, which increase catecholamine release, can increase blood pressure; this effect may be additive with the prolonged vasoconstriction caused by ergot alkaloids. Monitoring for cardiac effects during concurrent use of ergot alkaloids with amphetamines may be advisable.
Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Moderate) Theoretically, concurrent use of methylene blue and ergot alkaloids may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and ergot alkaloids increase central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Methylene Blue: (Moderate) Theoretically, concurrent use of methylene blue and ergot alkaloids may increase the risk of serotonin syndrome. Methylene blue is a thiazine dye that is also a potent, reversible inhibitor of the enzyme responsible for the catabolism of serotonin in the brain (MAO-A) and ergot alkaloids increase central serotonin effects. Cases of serotonin syndrome have been reported, primarily following administration of standard infusions of methylene blue (1 to 8 mg/kg) as a visualizing agent in parathyroid surgery, in patients receiving selective serotonin reuptake inhibitors, serotonin/norepinephrine reuptake inhibitors, or clomipramine. It is not known if patients receiving other serotonergic psychiatric agents with intravenous methylene blue are at a comparable risk or if methylene blue administered by other routes (e.g., orally, local injection) or in doses less than 1 mg/kg IV can produce a similar outcome. Published interaction reports between intravenously administered methylene blue and serotonergic psychiatric agents have documented symptoms including lethargy, confusion, delirium, agitation, aggression, obtundation, myoclonus, expressive aphasia, hypertonia, pyrexia, elevated blood pressure, seizures, and/or coma. Serotonin syndrome is characterized by rapid development of various symptoms such as hyperthermia, hypertension, myoclonus, rigidity, hyperhidrosis, incoordination, diarrhea, mental status changes (e.g., confusion, delirium, or coma), and in rare cases, death.
Metoprolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Mifepristone: (Contraindicated) Coadministration of ergot alkaloids and mifepristone is contraindicated due to the potential for increased ergot exposure. Increased plasma concentrations of ergot alkaloids are associated with risk of acute ergot toxicity which is characterized by peripheral vasospasm and ischemia of the extremities and other tissues. Ergot alkaloids are CYP3A substrates and mifepristone is a strong CYP3A inhibitor.
Milnacipran: (Moderate) Because of the potential risk and severity of serotonin syndrome, use caution when administering serotonin norepinephrine reuptake inhibitors (SNRIs) with other drugs that have serotonergic properties, such as the ergot alkaloids. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with serotonin reuptake inhibitors, which may be indicative of serotonin excess. Inform patients of the potential risk and monitor for serotonin syndrome. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Mirtazapine: (Moderate) The use of ergot alkaloids with mirtazapine might increase the risk for serotonin syndrome. Patients receiving ergot alkaloids with mirtazapine should be monitored for the emergence of serotonin syndrome. If serotonin syndrome occurs, discontinue serotonergic agents and institute appropriate medical treatment.
Nadolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Naproxen; Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Naratriptan: (Contraindicated) Serotonin-receptor agonists (triptans) are contraindicated for use within 24 hours of treatment with ergot alkaloids (e.g., dihydroergotamine, methysergide) or ergot-type medications to avoid the potential for serious coronary ischemia. Ergot alkaloids have been reported to cause prolonged vasospastic reactions which may be additive with the effects of triptans. Additionally, ergot alkaloids are serotonergic agents whose effects on serotonin may be additive to those of the serotonin-receptor agonists.
Nebivolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, th

ese ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Nebivolol; Valsartan: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Nefazodone: (Contraindicated) Nefazodone should be used cautiously, if at all, in patients taking certain ergot alkaloids. Nefazodone may reduce the metabolism of ergot alkaloids via inhibition of the hepatic CYP3A4 isoenzyme, potentially increasing the risk of ergot-related side effects. In addition, serotonin syndrome has been reported or may be possible with the use of ergot alkaloids like ergotamine or dihydroergotamine, particularly in combination with other serotonin-augmenting drugs. Avoid coadministration of methylergonovine with nefazodone when possible; be alert for excessive serotonergic effects or ergotism when co-use is not avoidable.
Nicardipine: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and nicardipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of nicardipine, a CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Nicotine: (Major) Advise patients to avoid nicotine while taking ergot alkaloids. Concurrent use of vasoconstrictors, such as nicotine, with ergot alkaloids may result in enhanced vasoconstriction.
Nilotinib: (Moderate) Concomitant use of nilotinib, a moderate CYP3A4 inhibitor, and ergot alkaloids (e.g., ergotamine, dihydroergotamine), CYP3A4 substrates with a narrow therapeutic range, may result in increased ergot alkaloid levels. Avoid co-use when possible; consider alternative therapy to the ergot medication. Be alert for symptoms of ergot toxicity if these drugs together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together.
Nirmatrelvir; Ritonavir: (Contraindicated) Concomitant use of ritonavir-boosted nirmatrelvir and ergot alkaloids is contraindicated; consider an alternative COVID-19 therapy. Coadministration may increase ergot alkaloids' exposure resulting in increased toxicity. Ergot alkaloids are CYP3A substrates and nirmatrelvir is a CYP3A inhibitor.
Nitrates: (Major) Avoid concomitant use of oral nitrates and ergot alkaloids. If concomitant use is unavoidable, monitor for ergot toxicity. Oral administration of nitrates markedly decreases the first-pass metabolism of dihydroergotamine and subsequently increases its oral bioavailability. Ergotamine is also known to precipitate angina pectoris and may cause vasoconstriction that reduces the efficacy of nitrates.
Olanzapine; Fluoxetine: (Moderate) Use fluoxetine and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Oxytocin: (Major) Methylergonovine and oxytocin both control uterine atony, and if used in combination there may be a risk of severe uterine hypertony, with possible uterine rupture or cervical laceration.
Paroxetine: (Moderate) Use paroxetine and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Perindopril; Amlodipine: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Phentermine: (Major) Phentermine, which increases catecholamine release, can increase blood pressure; this effect may be additive with the prolonged vasoconstriction caused by ergot alkaloids. Monitoring for cardiac effects during concurrent use of ergot alkaloids with phentermine may be advisable.
Phentermine; Topiramate: (Major) Phentermine, which increases catecholamine release, can increase blood pressure; this effect may be additive with the prolonged vasoconstriction caused by ergot alkaloids. Monitoring for cardiac effects during concurrent use of ergot alkaloids with phentermine may be advisable.
Pindolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Posaconazole: (Contraindicated) Coadministration of ergot alkaloids with inhibitors of CYP3A4, such as posaconazole, is considered contraindicated due to the risk of acute ergot toxicity (e.g., vasospasm leading to cerebral ischemia, peripheral ischemia and/or other serious effects). Cabergoline may be minimally eliminated by the CYP isoenzyme system; therefore, interactions may be less than that of other ergot alkaloids.
Propranolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Protease inhibitors: (Contraindicated) Coadministration of ergot alkaloids with potent inhibitors of CYP3A4, like anti-retroviral protease inhibitors is considered contraindicated due to the risk of acute ergot toxicity (e.g., vasospasm leading to cerebral ischemia, peripheral ischemia and/or other serious effects). Several case reports have established the clinical significance of this interaction in the medical literature. In some cases, fatal interactions have occurred.
Pseudoephedrine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Pseudoephedrine; Triprolidine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Ranolazine: (Major) In vitro studies indicate that ranolazine and its metabolite are inhibitors of CYP3A isoenzymes. The impact of coadministering ranolazine with other CYP3A4 substrates has not been studied. Ranolazine may theoretically increase plasma concentrations of CYP3A4 substrates, such as ergot alkaloids, potentially leading to adverse reactions.
Ritlecitinib: (Moderate) Monitor for an increase in ergotamine-related adverse effects and adjust the ergot alkaloid dosage as necessary if concomitant use of ritlecitinib is required. Concomitant use may increase the systemic exposure of ergot alkaloids and increase the risk for adverse reactions such as vasospasm which may lead to cerebral ischemia and ischemia of the extremities. Ergot alkaloids are CYP3A substrates and ritlecitinib is a moderate CYP3A inhibitor.
Rizatriptan: (Contraindicated) Serotonin-receptor agonists (triptans) are contraindicated for use within 24 hours of treatment with ergot alkaloids (e.g., dihydroergotamine, methysergide) or ergot-type medications to avoid the potential for serious coronary ischemia. Ergot alkaloids have been reported to cause prolonged vasospastic reactions which may be additive with the effects of triptans. Additionally, ergot alkaloids are serotonergic agents whose effects on serotonin may be additive to those of the serotonin-receptor agonists.
Serotonin norepinephrine reuptake inhibitors: (Moderate) Because of the potential risk and severity of serotonin syndrome, use caution when administering serotonin norepinephrine reuptake inhibitors (SNRIs) with other drugs that have serotonergic properties, such as the ergot alkaloids. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with serotonin reuptake inhibitors, which may be indicative of serotonin excess. Inform patients of the potential risk and monitor for serotonin syndrome. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Serotonin-Receptor Agonists: (Contraindicated) Serotonin-receptor agonists (triptans) are contraindicated for use within 24 hours of treatment with ergot alkaloids (e.g., dihydroergotamine, methysergide) or ergot-type medications to avoid the potential for serious coronary ischemia. Ergot alkaloids have been reported to cause prolonged vasospastic reactions which may be additive with the effects of triptans. Additionally, ergot alkaloids are serotonergic agents whose effects on serotonin may be additive to those of the serotonin-receptor agonists.
Sertraline: (Moderate) Use sertraline and ergot alkaloids together with caution due to a potential for serotonin syndrome. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with SSRIs, which may be indicative of serotonin excess. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Sotalol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Streptogramins: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and dalfopristin; quinupristin together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of dalfopristin; quinupristin, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Sumatriptan: (Contraindicated) Serotonin-receptor agonists (triptans) are contraindicated for use within 24 hours of treatment with ergot alkaloids (e.g., dihydroergotamine, methysergide) or ergot-type medications to avoid the potential for serious coronary ischemia. Ergot alkaloids have been reported to cause prolonged vasospastic reactions which may be additive with the effects of triptans. Additionally, ergot alkaloids are serotonergic agents whose effects on serotonin may be additive to those of the serotonin-receptor agonists.
Sumatriptan; Naproxen: (Contraindicated) Serotonin-receptor agonists (triptans) are contraindicated for use within 24 hours of treatment with ergot alkaloids (e.g., dihydroergotamine, methysergide) or ergot-type medications to avoid the potential for serious coronary ischemia. Ergot alkaloids have been reported to cause prolonged vasospastic reactions which may be additive with the effects of triptans. Additionally, ergot alkaloids are serotonergic agents whose effects on serotonin may be additive to those of the serotonin-receptor agonists.
Telmisartan; Amlodipine: (Moderate) Be alert for symptoms of ergot toxicity if using methylergonovine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and methylergonovine, a CYP3A4 substrate, may result in increased ergot alkaloid levels.
Timolol: (Moderate) Concurrent use of beta-blockers and ergot alkaloids should be approached with caution. Concomitant administration with beta-blockers may enhance the vasoconstrictive action of certain ergot alkaloids including dihydroergotamine, ergotamine, methylergonovine, and methysergide. The risk of peripheral ischemia, resulting in cold extremities or gangrene, has been reported to be increased when ergotamine or dihydroergotamine is coadministered with selected beta-blockers, including propranolol, a beta-blocker commonly used for migraine prophylaxis. However, the precise mechanism of these interactions remains elusive. Additionally, because of the potential to cause coronary vasospasm, these ergot alkaloids could antagonize the therapeutic effects of anti-anginal agents including beta-blockers; clinicians should keep in mind that ergot alkaloids are contraindicated for use in patients with coronary heart disease or hypertension.
Tobacco: (Major) Advise patients to avoid smoking tobacco while taking ergot alkaloids. Concurrent use of vasoconstrictors, such as nicotine, with ergot alkaloids may result in enhanced vasoconstriction. Nicotine acts indirectly as a sympathomimetic agent by releasing catecholamines, potentially resulting in effects such as hypertension, coronary spasm, coronary ischemia, or cardiac arrhythmias, which may be additive with ergot alkaloids.
Trandolapril; Verapamil: (Moderate) Monitor for an increase in ergotamine-related adverse effects and adjust the ergot alkaloid dosage as necessary if concomitant use of verapamil is required. Concomitant use may increase the systemic exposure of ergot alkaloids and increase the risk for adverse reactions such as vasospasm which may lead to cerebral ischemia and ischemia of the extremities. Ergot alkaloids are CYP3A substrates and verapamil is a moderate CYP3A inhibitor.
Vasopressors: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension.
Venlafaxine: (Moderate) Because of the potential risk and severity of serotonin syndrome, use caution when administering serotonin norepinephrine reuptake inhibitors (SNRIs) with other drugs that have serotonergic properties, such as the ergot alkaloids. Weakness, hyperreflexia, and incoordination have been reported rarely when ergot alkaloids or other serotonin agonists have been coadministered with serotonin reuptake inhibitors, which may be indicative of serotonin excess. Inform patients of the potential risk and monitor for serotonin syndrome. If serotonin syndrome occurs, discontinue the offending agents and institute appropriate treatment.
Verapamil: (Moderate) Monitor for an increase in ergotamine-related adverse effects and adjust the ergot alkaloid dosage as necessary if concomitant use of verapamil is required. Concomitant use may increase the systemic exposure of ergot alkaloids and increase the risk for adverse reactions such as vasospasm which may lead to cerebral ischemia and ischemia of the extremities. Ergot alkaloids are CYP3A substrates and verapamil is a moderate CYP3A inhibitor.
Vilazodone: (Major) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering vilazodone with other drugs that have serotonergic properties such as ergot alkaloids (e.g., ergotamine or dihydroergotamine). Serotonin syndrome is characterized by the rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Patients receiving vilazodone and an ergot alkaloid should be monitored for the emergence of serotonin syndrome, particularly during treatment initiation and during dosage increases. Vilazodone and the ergot alkaloid should be discontinued if serotonin syndrome occurs and supportive symptomatic treatment should be initiated.
Vonoprazan; Amoxicillin; Clarithromycin: (Contraindicated) Clarithromycin should not be coadministered with methylergonovine due to the risk of ergot toxicity (e.g., severe peripheral vasospasm with possible ischemia, cyanosis, and numbness of the extremities or other serious effects). Clarithromycin inhibits the metabolism of ergot alkaloids via inhibition of the CYP3A4 isoenzyme.
Voriconazole: (Contraindicated) Concurrent administration of voriconazole with ergot alkaloids is contraindicated. Voriconazole may reduce the metabolism of the ergot alkaloids via inhibition of the hepatic CYP3A4 isoenzyme, potentially increasing the risk of ergotism (e.g., vasospasm leading to cerebral ischemia, peripheral ischemia, or other serious effects).
Vortioxetine: (Major) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering vortioxetine with other drugs that have serotonergic properties such as ergot alkaloids (e.g., ergotamine or dihydroergotamine). Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. If serotonin syndrome is suspected, vortioxetine and concurrent serotonergic agents should be discontinued.
Voxelotor: (Moderate) Monitor for an increase in ergotamine-related adverse effects and adjust the ergot alkaloid dosage as necessary if concomitant use of voxelotor is required. Concomitant use may increase the systemic exposure of ergot alkaloids and increase the risk for adverse reactions such as vasospasm which may lead to cerebral ischemia and ischemia of the extremities. Ergot alkaloids are CYP3A substrates and voxelotor is a moderate CYP3A inhibitor.
Zafirlukast: (Major) Zafirlukast is a significant CYP3A4 inhibitor. Coadministration of ergotamine with inhibitors of CYP3A4 may potentially increase the risk of ergot toxicity (e.g., vasospasm leading to cerebral ischemia, peripheral ischemia and/or other serious effects). Coadministration should be done cautiously, and avoided when possible.
Zolmitriptan: (Contraindicated) Serotonin-receptor agonists (triptans) are contraindicated for use within 24 hours of treatment with ergot alkaloids (e.g., dihydroergotamine, methysergide) or ergot-type medications to avoid the potential for serious coronary ischemia. Ergot alkaloids have been reported to cause prolonged vasospastic reactions which may be additive with the effects of triptans. Additionally, ergot alkaloids are serotonergic agents whose effects on serotonin may be additive to those of the serotonin-receptor agonists.

How Supplied

Methergine/Methylergonovine Maleate Intramuscular Inj Sol: 0.2mg, 1mL
Methergine/Methylergonovine Maleate Intravenous Inj Sol: 0.2mg, 1mL
Methergine/Methylergonovine Maleate Oral Tab: 0.2mg

Maximum Dosage
Adults

0.8 mg/day PO for up to 7 days.

Geriatric

0.8 mg/day PO for up to 7 days.

Adolescents

Safety and efficacy have not been established.

Children

Safety and efficacy have not been established.

Infants

Not indicated.

Mechanism Of Action

Clinically, methylergonovine increases the strength, duration, and frequency of uterine contractions and decreases uterine bleeding. The drug acts directly on the smooth muscle of the uterus and increases the tone, rate, and amplitude of rhythmic contractions. Thus, it induces a rapid and sustained tetanic uterotonic effect which shortens the third stage of labor and reduces blood loss. The onset of action after intravenous administration is immediate; after intramuscular administration, 2 to 5 minutes, and after oral administration, 5 to 10 minutes.
The pharmacologic properties of the ergot alkaloids are complex. Methylergonovine is a selective and potent antagonist of serotonin receptors in various smooth muscles, a partial agonist of serotonin receptors in human umbilical and placental blood vessels, and a partial agonist and antagonist in some areas of the CNS. Although all ergot alkaloids exhibit the ability to produce uterine contractions, methylergonovine and its parent compound, ergonovine, are the most active of the ergot alkaloids on uterine smooth muscle. Methylergonovine and ergonovine are additionally partial agonists of alpha-adrenergic receptors in blood vessels, but are less potent agonists than ergotamine. The normal response of the coronary arteries in response to the ergot alkaloids is coronary vasospasm and a resultant decrease in luminal diameter. The vasoconstrictive response is most evident after parenteral administration of methylergonovine but rarely occurs with appropriate oral prescription use. Methylergonovine is a weak antagonist of dopamine in certain blood vessels, and a partial agonist and antagonist of dopamine receptors in the CNS. Methylergonovine is less potent than bromocriptine in its ability to produce emesis or inhibit the secretion of prolactin.

Pharmacokinetics

Methylergonovine is administered orally, or parenterally by intramuscular or intravenous injection. Bioavailability is highly dependent on the storage conditions of the pharmaceutical preparations. All formulations are highly unstable if exposed to tropical conditions of heat, light, and moisture prior to use. Although methylergonovine exhibits good penetration into the breast milk in canines, average human maternal breast-milk concentrations are clinically nonsignificant. It has a short elimination half-life (normal 0.5—3.5 hours), low volume of distribution and the high total plasma clearance in healthy adults, factors that indicate rapid elimination of the drug. It is metabolized extensively by the liver; biliary excretion and limited enterohepatic recirculation may also occur.
 
Affected cytochrome P450 isoenzymes and drug transporters: CYP3A4
The risk of ergot toxicity (e.g., severe peripheral vasospasm with possible ischemia, potentially leading to gangrene, cyanosis, stroke, numbness of the extremities and/or other serious effects) is potentially increased by the use of CYP3A4 inhibitors.

Oral Route

The bioavailability of methylergonovine after oral administration is roughly 60%. The rate of oral absorption is slower in females during puerperium (Tmax 3 h) in comparison with healthy adult males (Tmax 0.5 h). The duration of action following oral dosing is roughly 3 hours. 
 
Less than 5% of an oral dose is excreted into the urine. No accumulation of methylergonovine occurs after repeated oral administration.

Intravenous Route

Usually a single parenteral dose of methylergonovine is needed to initiate therapy in a timely manner. When given intravenously, a distribution half-life of only a few minutes results in an immediate, strong oxytocic and cardio- and cerebrovascular response. The duration of action following parenteral dosing is roughly 3 hours.

Intramuscular Route

Usually a single parenteral dose of methylergonovine is needed to initiate therapy in a timely manner. Intramuscular administration causes uterine contractions within 2—5 minutes and is the preferred parenteral route due to a lower incidence of side effects. The duration of action following parenteral dosing is roughly 3 hours.

Pregnancy And Lactation
Pregnancy

Methylergonovine may be administered orally for a maximum of 1 week postpartum to control uterine bleeding. Methylergonovine may produce adverse effects in the breast-feeding infant and may also reduce the yield of breast milk. Mothers should avoid breast-feeding during treatment with methylergonovine and for at least 12 hours after administration of the last dose. Milk secreted during this period should be discarded.