CONTRAINDICATIONS / PRECAUTIONS
General Information
For any smoker, with or without concomitant disease, the risk of nicotine replacement therapy in a smoking cessation program should be weighed against the hazard of continued smoking, and the likelihood of achieving cessation of smoking without nicotine replacement.
Soya lecithin hypersensitivity, tobacco smoking
Nicotine products are contraindicated in patients with known hypersensitivity to nicotine or any components of the specific product. For example, Nicorette brand mint-flavor nicotine lozenges should be avoided in patients with soya lecithin hypersensitivity. Patients should be aware that nicotine from drug products can be additive to the nicotine from tobacco. The manufacturer of nicotine oral inhaler and nicotine nasal spray warns that patients should discontinue tobacco smoking and the use of any other tobacco product while using nicotine replacement products. However, after 30 years of non-prescription use, the FDA has reviewed the data and determined that there are no significant safety concerns with using over the counter (OTC) nicotine replacement therapy (NRT) products like nicotine gum, lozenges, and transdermal patches at the same time as another nicotine-containing product like a cigarette. The patient can smoke a cigarette, continue using their OTC nicotine replacement therapy, then attempt to quit again. If a patient has been tobacco smoking, healthcare professionals should warn patients receiving these products that tobacco smoke contains hydrocarbons that induce hepatic CYP450 microsomal enzymes and thus tobacco smoking can increase the metabolism of many therapeutic drugs. Conversely, sudden smoking cessation may cause increased serum levels or effects of concomitant drug therapies (despite the use of a nicotine replacement product). Examples of drugs that may be affected include: caffeine, clozapine, oxazepam, olanzapine, pentazocine, phenothiazines, propoxyphene, propranolol (and possibly other beta-adrenergic blockers), theophylline, tricyclic antidepressants (e.g., imipramine), and warfarin. A decreased dosage of these drugs may be required at the cessation of smoking.
Acute bronchospasm, asthma
Acute bronchospasm has been reported in patients with pre-existing asthma who used nicotine nasal spray; the use of the nasal spray is not recommended in patients with severe reactive airway disease. The nicotine oral inhaler has not been specifically studied in patients with asthma, but the manufacturer states that other forms of nicotine replacement might be preferable in patients with bronchospastic airway disease because nicotine is a direct airway irritant and could cause bronchospasm. In addition, tobacco smoke contains hydrocarbons that induce hepatic CYP450 microsomal enzymes and thus tobacco smoke can increase the metabolism of many therapeutic drugs. Because the process of smoking cessation may result in decreased clearance of medications used to treat asthma, patients with this condition are encouraged to check with their health care provider before pursuing nicotine therapy for smoking cessation.
Angina, cardiac arrhythmias, diabetes mellitus, hypertension, hyperthyroidism, myocardial infarction, pheochromocytoma, sodium restriction, thyroid disease, thyrotoxicosis
Cardiovascular effects of nicotine typically include peripheral vasoconstriction, tachycardia, and blood pressure elevation. The risks of nicotine replacement therapy in patients with certain cardiovascular and peripheral vascular diseases should be weighed against the benefits of including nicotine replacement in a smoking cessation program. The use of patches in a subject with preexisting cardiovascular disease does not appear to pose a greater risk than smoking itself, as long as the subject refrains from smoking while wearing the patch. Transdermal nicotine has been used safely as an aid to smoking cessation in patients with cardiac disease; however, those with a recent history (within the past 2 weeks) of unstable angina, myocardial infarction, CABG surgery, or cardiac arrhythmia were excluded. In general, nicotine replacement therapy should not be used in patients with serious cardiac arrhythmias, during the immediate post-myocardial infarction period, or in patients with severe or worsening angina pectoris. Nicotine therapy should be used with caution in patients with hypertension, pheochromocytoma, insulin-dependent diabetes mellitus, vasospastic diseases (e.g., Buerger's disease, Prinzmetal's angina), or thyroid disease resulting in hyperthyroidism or thyrotoxicosis, because increases in blood pressure, heart rate, and plasma glucose can follow the effects of nicotine-induced catecholamine release. Nicotine should also be used cautiously in patients on sodium restriction to help control high blood pressure and/or fluid retention. In a comparative trial, the combination of nicotine (Habitrol) and bupropion (Zyban) for smoking cessation resulted in a higher incidence of treatment-emergent hypertension compared to either agent alone or to placebo. Most patients in the trial had evidence of preexisting hypertension. Monitoring for treatment-emergent hypertension is recommended in patients receiving the combination of nicotine and bupropion as well as for those receiving nicotine alone.
Nasal polyps
The use of nicotine nasal spray is not recommended in patients with chronic nasal conditions such as allergies, rhinitis, nasal polyps, and sinusitis. Topical application of nicotine is irritating to the nasal mucosa, even in patients without pre-existing nasal conditions; use for longer than 6 months is not recommended.
Geriatric
Clinical studies of nicotine dosage forms in geriatric patients have not included sufficient numbers of patients > 65 years of age to determine if they respond differently to treatment than younger adults. However, clinical experience has not identified differences between older and younger patients. In general, dosage selection for elderly patients should be cautious, starting at the lower end of the dosage range, reflecting the greater frequency of decreased hepatic, renal or cardiac function and concomitant disease.
Hepatic disease, renal failure, renal impairment
The pharmacokinetics of nicotine in patients with hepatic or renal impairment have not been formally evaluated. Nicotine is extensively metabolized by the liver and total body clearance is dependent on hepatic blood flow; therefore, some effect of significant hepatic disease on nicotine metabolism should be expected. The manufacturer states that only severe renal impairment (e.g. renal failure) would be expected to affect nicotine clearance.
Pregnancy
The harmful effects of cigarette/tobacco smoking on maternal and fetal health are clearly established; effects include low birth weight, an increased risk of spontaneous abortion, and increased perinatal mortality. Smoking cessation interventions in pregnancy, including the use of medications when necessary, reduce the proportion of women who continue to smoke in late pregnancy, and reduce low birthweight and preterm birth. Pregnant smokers should be encouraged to stop smoking through educational and behavioral interventions before using pharmacological agents like nicotine. Pregnant patients should seek qualified healthcare professional advice prior to use of non-prescription smoking cessation products. Pregnant smokers should be encouraged to stop smoking through educational and behavioral interventions before using pharmacological agents. Nicotine replacement therapy should be used during pregnancy only if the likelihood of smoking cessation justifies the potential risk of nicotine replacement by the patient or the risk that the patient will continue to smoke. Conflicting information exists in many resources in regard to pregnancy safety of nicotine replacement therapy products. The specific effects of nicotine replacement therapy on fetal development are unknown; nicotine may increase fetal heart rate. Spontaneous abortion has been reported in pregnant women during nicotine replacement therapy; although a causal relationship has not been established, nicotine may have been a contributing factor. Studies of pregnant rhesus monkeys have shown that intravenous nicotine can decrease uterine blood flow and may produce acidosis, hypercarbia, and hypotension in the fetus. Teratogenicity has been noted in mice.
Breast-feeding
Nicotine replacement therapy should be used with caution in women who are breast-feeding because safety in the nursing infant has not been systematically examined. Nicotine does pass to the breast milk. Although some clearance of orally absorbed nicotine in the infant will occur through first-pass metabolism in the liver, the efficiency of nicotine removal is probably lowest at birth. In general, it is thought that the proper use of nicotine gum, transdermal patches, or intranasal nicotine would be expected to produce lower concentrations of nicotine in milk than would cigarette smoking. Second-hand smoke from cigarettes clearly has potential adverse effects to the exposed infant. The decision of whether to use nicotine replacement therapy in a woman who is breast-feeding should be evaluated in comparison to the risks associated with exposure of the infant to nicotine and other tobacco contaminants in the breast milk as well as those of passive exposure to tobacco smoke. In one small study (n = 15), the extent of infant exposure to nicotine and its metabolite cotinine during breast-feeding was assessed during maternal smoking and subsequent use of nicotine transdermal patches for smoking cessation. Nicotine and cotinine concentrations in milk were not significantly different between smoking (mean of 17 cigarettes/day) and use of the 21 mg/day patch. However, there were significant reductions in nicotine and cotinine concentrations in the milk during use of the 14 mg/day and 7 mg/day patch than while smoking. The absolute infant dose of nicotine and cotinine decreased by about 70% from smoking or using the 21 mg patch to use of the 7 mg patch. The patch treatment had no significant effect on infant milk intake. The authors concluded that nicotine replacement patches for smoking cessation are a safer option than continuing to smoke while breast-feeding.
Peptic ulcer disease
Nicotine may delay healing in peptic ulcer disease. Therefore, nicotine should be used with caution in patients with active peptic ulcers. Nicotine replacement in a smoking cessation program should only be used when the benefits outweigh the potential risks.
Accidental exposure, children, infants, potential for overdose or poisoning
The safety and effectiveness of nicotine replacement therapy (NRT) in children and adolescents who smoke has not been established. However, no specific medical risk is known or expected in nicotine dependent older adolescents; carefully consider the benefits and risks in the older adolescent patient. Several studies have used nicotine gum or transdermal patches in adolescents as adjuncts to smoking cessation strategies; it is unclear at this time how effective NRT is at promoting abstinence, as it is often noted that the smoking patterns of adolescents vary from those of adult smokers, and adolescents may have different adherence patterns to NRT, etc. All nicotine replacement products must be stored and discarded carefully in a manner that is not accessible to infants, children, or pets to help avoid potential for overdose or poisoning, or accidental exposure. The amount of nicotine tolerated by adults could produce toxic nicotine symptoms in children or pets and could be fatal in some situations. Products may still have nicotine remnant in them when discarded; both used and unused containers or patches must be kept out of reach of children or pets. Suspected nicotine poisoning in a child or infant should be considered a medical emergency and treated immediately.
Dental disease
Nicotine chewing gum is relatively contraindicated in patients with dental disease and in patients with temporomandibular joint (TMJ) disorder because injury to teeth or aggravation of TMJ can result from chewing.
Esophagitis, gastroesophageal reflux disease (GERD), hiatal hernia
Nicotine is relatively contraindicated in patients with a history of esophagitis, hiatal hernia, or gastroesophageal reflux disease (GERD) because these conditions can be exacerbated by nicotine's pharmacologic effects. Mouth or throat inflammation may be irritated by the nicotine chewing gum formulation.
Eczema
Nicotine transdermal systems may cause skin irritation in patients with topic dermatitis or eczema. Patients with an allergy to adhesive tape or who have allergic-type skin disorders are more likely to develop rashes from the use of nicotine transdermal systems.
Magnetic resonance imaging (MRI)
Because some nicotine transdermal systems (i.e. patches) contain aluminum or other metal components, patients should be instructed to remove the patch before undergoing magnetic resonance imaging (MRI). Metal components contained in the backing of some transdermal systems can overheat during an MRI scan and cause skin burns in the area where the patch is adhered.
Depression
Tobacco smoke contains hydrocarbons that induce hepatic CYP450 microsomal enzymes and thus tobacco smoke can increase the metabolism of many therapeutic drugs. Because the process of smoking cessation may result in decreased clearance of medications used to treat depression, patients with this condition are encouraged to check with their health care provider before pursuing nicotine therapy for smoking cessation.
Seizure disorder, seizures
Nicotine products should be used cautiously in patients with seizures or a seizure disorder. There have been reports of seizures induced by smoking cessation agents including nicotine replacement therapy. In the setting of overdose, nicotine has been associated with seizures in humans.
DRUG INTERACTIONS
Acarbose: (Minor) Nicotine activates neuroendocrine pathways and may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Acetaminophen; Chlorpheniramine; Phenylephrine; Phenyltoloxamine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Acetaminophen; Dextromethorphan; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Acetaminophen; Guaifenesin; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Acetaminophen; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Acetohexamide: (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Acrivastine; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Adenosine: (Major) Nicotine has been reported to enhance the cardiovascular effects of adenosine; an increase in angina-like chest pains, heart rate or a decrease in blood pressure may be noted. While no special cautions are recommended when adenosine is used therapeutically to treat supraventricular tachycardia, it may be advisable for patients to avoid nicotine products or tobacco prior to electrophysiologic studies or stress testing where adenosine will be administered.
Albiglutide: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Alogliptin: (Minor) Monitor blood glucose concentrations for needed alogliptin dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Alogliptin; Metformin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Monitor blood glucose concentrations for needed alogliptin dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Alogliptin; Pioglitazone: (Minor) Monitor blood glucose concentrations for needed alogliptin dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Nicotine may increase plasma glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Alpha-blockers: (Moderate) Nicotine use may reduce the clinical effects of the alpha-blockers. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Alpha-glucosidase Inhibitors: (Minor) Nicotine activates neuroendocrine pathways and may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Amitriptyline: (Moderate) Physiological changes resulting from tobacco smoking cessation, with or without nicotine replacement, may alter the pharmacokinetics of certain concomitant medications, such as tricyclic antidepressants (TCAs). Doses of TCAs may need to be adjusted in patients who successfully quit smoking. Tobacco smoking has been shown to increase the clearance of TCAs by inducing hepatic microsomal enzymes, likely due to the hydrocarbons of tobacco smoke. Sudden smoking cessation may result in a reduced clearance of TCAs, despite the initiation of nicotine replacement products.
Amphetamine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Amphetamine; Dextroamphetamine Salts: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Amphetamine; Dextroamphetamine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Articaine; Epinephrine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Atazanavir; Cobicistat: (Minor) Caution is warranted when cobicistat is administered with nicotine as there is a potential for decreased cobicistat concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Nicotine is an inducer of CYP2D6; cobicistat is a CYP2D6 substrate.
Benzphetamine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Bromocriptine: (Minor) Use caution during use of tobacco or other nicotine-containing products while taking bromocriptine. Concurrent use of vasoconstrictors, such as nicotine, may result in enhanced vasoconstriction from ergot-based medications. Published reports of interactions between bromocriptine, an ergot derivative, and tobacco smoking or nicotine are not available. Safety and efficacy of bromocriptine for helping patients with smoking cessation is under investigation, but safety of use with nicotine products concurrently or if the patient continues to smoke is not established.
Brompheniramine; Carbetapentane; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Brompheniramine; Dextromethorphan; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Brompheniramine; Hydrocodone; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Brompheniramine; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Brompheniramine; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Bupivacaine; Epinephrine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Bupropion: (Moderate) Combination of nicotine and bupropion may induce clinically significant blood pressure elevations in some patients. Close monitoring of blood pressure is recommended if this combination is prescribed.
Bupropion; Naltrexone: (Moderate) Combination of nicotine and bupropion may induce clinically significant blood pressure elevations in some patients. Close monitoring of blood pressure is recommended if this combination is prescribed.
Canagliflozin: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Canagliflozin; Metformin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Carbetapentane; Chlorpheniramine; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Carbetapentane; Diphenhydramine; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Carbetapentane; Guaifenesin; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Carbetapentane; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Carbetapentane; Phenylephrine; Pyrilamine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Carbetapentane; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Carbinoxamine; Dextromethorphan; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Carbinoxamine; Hydrocodone; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Carbinoxamine; Hydrocodone; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Carbinoxamine; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Carbinoxamine; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Cetirizine; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlophedianol; Guaifenesin; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlordiazepoxide; Amitriptyline: (Moderate) Physiological changes resulting from tobacco smoking cessation, with or without nicotine replacement, may alter the pharmacokinetics of certain concomitant medications, such as tricyclic antidepressants (TCAs). Doses of TCAs may need to be adjusted in patients who successfully quit smoking. Tobacco smoking has been shown to increase the clearance of TCAs by inducing hepatic microsomal enzymes, likely due to the hydrocarbons of tobacco smoke. Sudden smoking cessation may result in a reduced clearance of TCAs, despite the initiation of nicotine replacement products.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlorpheniramine; Dihydrocodeine; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlorpheniramine; Guaifenesin; Hydrocodone; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlorpheniramine; Hydrocodone; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlorpheniramine; Hydrocodone; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlorpheniramine; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlorpheniramine; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Chlorpropamide: (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Clomipramine: (Moderate) Physiological changes resulting from tobacco smoking cessation, with or without nicotine replacement, may alter the pharmacokinetics of certain concomitant medications, such as tricyclic antidepressants (TCAs). Doses of TCAs may need to be adjusted in patients who successfully quit smoking. Tobacco smoking has been shown to increase the clearance of TCAs by inducing hepatic microsomal enzymes, likely due to the hydrocarbons of tobacco smoke. Sudden smoking cessation may result in a reduced clearance of TCAs, despite the initiation of nicotine replacement products.
Cobicistat: (Minor) Caution is warranted when cobicistat is administered with nicotine as there is a potential for decreased cobicistat concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Nicotine is an inducer of CYP2D6; cobicistat is a CYP2D6 substrate.
Codeine; Guaifenesin; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Codeine; Phenylephrine; Promethazine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Dapagliflozin: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Dapagliflozin; Metformin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Dapagliflozin; Saxagliptin: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Darunavir; Cobicistat: (Minor) Caution is warranted when cobicistat is administered with nicotine as there is a potential for decreased cobicistat concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Nicotine is an inducer of CYP2D6; cobicistat is a CYP2D6 substrate.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Minor) Caution is warranted when cobicistat is administered with nicotine as there is a potential for decreased cobicistat concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Nicotine is an inducer of CYP2D6; cobicistat is a CYP2D6 substrate.
Desipramine: (Moderate) Physiological changes resulting from tobacco smoking cessation, with or without nicotine replacement, may alter the pharmacokinetics of certain concomitant medications, such as tricyclic antidepressants (TCAs). Doses of TCAs may need to be adjusted in patients who successfully quit smoking. Tobacco smoking has been shown to increase the clearance of TCAs by inducing hepatic microsomal enzymes, likely due to the hydrocarbons of tobacco smoke. Sudden smoking cessation may result in a reduced clearance of TCAs, despite the initiation of nicotine replacement products.
Desloratadine; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Dexbrompheniramine; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Dextroamphetamine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Dextromethorphan; Guaifenesin; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Dihydrocodeine; Guaifenesin; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Diphenhydramine; Hydrocodone; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Diphenhydramine; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Dobutamine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Donepezil; Memantine: (Minor) Memantine is excreted in part by renal tubular secretion. Competition of memantine for excretion with other drugs that are also eliminated by tubular secretion, like nicotine, could result in elevated serum concentrations of one or both drugs.
Dopamine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Doxazosin: (Moderate) Nicotine use may reduce the clinical effects of the alpha-blockers. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Doxepin: (Moderate) Physiological changes resulting from tobacco smoking cessation, with or without nicotine replacement, may alter the pharmacokinetics of certain concomitant medications, such as tricyclic antidepressants (TCAs). Doses of TCAs may need to be adjusted in patients who successfully quit smoking. Tobacco smoking has been shown to increase the clearance of TCAs by inducing hepatic microsomal enzymes, likely due to the hydrocarbons of tobacco smoke. Sudden smoking cessation may result in a reduced clearance of TCAs, despite the initiation of nicotine replacement products.
Doxorubicin Liposomal: (Major) Nicotine is a mild CYP2D6 inducer and doxorubicin is a major substrate of CYP2D6. Inducers of CYP2D6 may decrease the concentration of doxorubicin and compromise the efficacy of chemotherapy. Avoid coadministration of nicotine and doxorubicin if possible. If not possible, monitor doxorubicin closely for efficacy.
Doxorubicin: (Major) Nicotine is a mild CYP2D6 inducer and doxorubicin is a major substrate of CYP2D6. Inducers of CYP2D6 may decrease the concentration of doxorubicin and compromise the efficacy of chemotherapy. Avoid coadministration of nicotine and doxorubicin if possible. If not possible, monitor doxorubicin closely for efficacy.
Dulaglutide: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Minor) Caution is warranted when cobicistat is administered with nicotine as there is a potential for decreased cobicistat concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Nicotine is an inducer of CYP2D6; cobicistat is a CYP2D6 substrate.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Minor) Caution is warranted when cobicistat is administered with nicotine as there is a potential for decreased cobicistat concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Nicotine is an inducer of CYP2D6; cobicistat is a CYP2D6 substrate.
Empagliflozin: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Empagliflozin; Linagliptin: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent (e.g., linagliptin) dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Empagliflozin; Linagliptin; Metformin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Monitor blood glucose concentrations for needed antidiabetic agent (e.g., linagliptin) dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Empagliflozin; Metformin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Epinephrine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Ergot alkaloids: (Major) Concurrent use of vasoconstrictors, such as nicotine, with ergot alkaloids may result in enhanced vasoconstriction. Nicotine acts indirectly as a sympathomimetic agent by releasing catecholamines, potentially resulting in effects such as hypertension, coronary spasm, coronary ischemia, or cardiac arrhythmias, which may be additive with ergot alkaloids. Patients should avoid smoking tobacco or using other nicotine-containing products while taking ergot compounds if possible.
Ertugliflozin; Metformin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Ertugliflozin; Sitagliptin: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Exenatide: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Fexofenadine; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Food: (Moderate) It is advisable not to ingest acidic foods or beverages during or immediately before the use of nicotine gum, as the absorption of nicotine from nicotine polacrilex relies on mildly alkaline saliva.
Glimepiride: (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Glimepiride; Rosiglitazone: (Minor) Nicotine may increase plasma glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed. (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Glipizide: (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Glipizide; Metformin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Glyburide: (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Glyburide; Metformin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Guaifenesin; Hydrocodone; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Guaifenesin; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Guaifenesin; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Heparin: (Minor) Nicotine may partially counteract the anticoagulant actions of heparin, according to the product labels. However, this interaction is not likely of clinical significance in most patients since heparin therapy is adjusted to the partial thromboplastin time (aPTT) and other clinical parameters of the patient.
Hydrocodone; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Hydrocodone; Potassium Guaiacolsulfonate; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Hydrocodone; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Ibuprofen; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Imipramine: (Moderate) Physiological changes resulting from tobacco smoking cessation, with or without nicotine replacement, may alter the pharmacokinetics of certain concomitant medications, such as tricyclic antidepressants (TCAs). Doses of TCAs may need to be adjusted in patients who successfully quit smoking. Tobacco smoking has been shown to increase the clearance of TCAs by inducing hepatic microsomal enzymes, likely due to the hydrocarbons of tobacco smoke. Sudden smoking cessation may result in a reduced clearance of TCAs, despite the initiation of nicotine replacement products.
Incretin Mimetics: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Insulin Degludec; Liraglutide: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Insulin Glargine; Lixisenatide: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Insulins: (Minor) Nicotine may increase plasma glucose. Monitor blood sugar for needed insulin dosage adjustments in insulin-dependent diabetic patients whenever a change in either nicotine intake or smoking status occurs. In addition, the use of inhaled insulin is not recommended in patients who smoke. Smoking tobacco can alter the effect of inhaled insulin in several ways. First, nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Second, tobacco smoking is known to aggravate insulin resistance. Finally, compared with non-smokers, insulin exposure after inhalation may be greater in patients who smoke. If inhaled insulin is used in this population, patients should be instructed to monitor blood glucose concentrations closely. If a change in smoking status or nicotine intake occur, patients should continue to monitor their blood glucose concentrations closely and clinicians should adjust the dose of insulin when indicated.
Isoproterenol: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Lidocaine; Epinephrine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Linagliptin: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent (e.g., linagliptin) dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Linagliptin; Metformin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Monitor blood glucose concentrations for needed antidiabetic agent (e.g., linagliptin) dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine concentrations) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Liraglutide: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Lixisenatide: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Loperamide: (Moderate) The plasma concentration and efficacy of loperamide may be reduced when administered concurrently with nicotine. Loperamide is metabolized by the hepatic enzyme CYP2D6; nicotine is a mild inducer of this enzyme.
Loperamide; Simethicone: (Moderate) The plasma concentration and efficacy of loperamide may be reduced when administered concurrently with nicotine. Loperamide is metabolized by the hepatic enzyme CYP2D6; nicotine is a mild inducer of this enzyme.
Loratadine; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Meglitinides: (Minor) Nicotine activates neuroendocrine pathways and may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Memantine: (Minor) Memantine is excreted in part by renal tubular secretion. Competition of memantine for excretion with other drugs that are also eliminated by tubular secretion, like nicotine, could result in elevated serum concentrations of one or both drugs.
Metformin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Metformin; Repaglinide: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Nicotine activates neuroendocrine pathways and may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Metformin; Rosiglitazone: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Nicotine may increase plasma glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Metformin; Saxagliptin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Metformin; Sitagliptin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Methamphetamine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Midodrine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Miglitol: (Minor) Nicotine activates neuroendocrine pathways and may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Naproxen; Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Nateglinide: (Minor) Nicotine activates neuroendocrine pathways and may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Norepinephrine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Nortriptyline: (Moderate) Physiological changes resulting from tobacco smoking cessation, with or without nicotine replacement, may alter the pharmacokinetics of certain concomitant medications, such as tricyclic antidepressants (TCAs). Doses of TCAs may need to be adjusted in patients who successfully quit smoking. Tobacco smoking has been shown to increase the clearance of TCAs by inducing hepatic microsomal enzymes, likely due to the hydrocarbons of tobacco smoke. Sudden smoking cessation may result in a reduced clearance of TCAs, despite the initiation of nicotine replacement products.
Oxymetazoline: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Perphenazine; Amitriptyline: (Moderate) Physiological changes resulting from tobacco smoking cessation, with or without nicotine replacement, may alter the pharmacokinetics of certain concomitant medications, such as tricyclic antidepressants (TCAs). Doses of TCAs may need to be adjusted in patients who successfully quit smoking. Tobacco smoking has been shown to increase the clearance of TCAs by inducing hepatic microsomal enzymes, likely due to the hydrocarbons of tobacco smoke. Sudden smoking cessation may result in a reduced clearance of TCAs, despite the initiation of nicotine replacement products.
Phenoxybenzamine: (Moderate) Nicotine use may reduce the clinical effects of the alpha-blockers. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Phentolamine: (Moderate) Nicotine use may reduce the clinical effects of the alpha-blockers. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Pioglitazone: (Minor) Nicotine may increase plasma glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Pioglitazone; Glimepiride: (Minor) Nicotine may increase plasma glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed. (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Pioglitazone; Metformin: (Minor) Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments of metformin may be needed. Nicotine may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. (Minor) Nicotine may increase plasma glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Pramlintide: (Minor) Monitor blood glucose concentrations for needed dosage adjustments in patients receiving antidiabetic agents whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways and may increase plasma glucose.
Prazosin: (Moderate) Nicotine use may reduce the clinical effects of the alpha-blockers. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Prilocaine; Epinephrine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Promethazine; Phenylephrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Protriptyline: (Moderate) Physiological changes resulting from tobacco smoking cessation, with or without nicotine replacement, may alter the pharmacokinetics of certain concomitant medications, such as tricyclic antidepressants (TCAs). Doses of TCAs may need to be adjusted in patients who successfully quit smoking. Tobacco smoking has been shown to increase the clearance of TCAs by inducing hepatic microsomal enzymes, likely due to the hydrocarbons of tobacco smoke. Sudden smoking cessation may result in a reduced clearance of TCAs, despite the initiation of nicotine replacement products.
Pseudoephedrine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Pseudoephedrine; Triprolidine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Regadenoson: (Major) Nicotine has been reported to enhance the cardiovascular effects of adenosine receptor agonists; an increase in angina-like chest pain, heart rate, or a decrease in blood pressure may be noted. While no special cautions are recommended for regadenoson, it may be advisable for patients to avoid nicotine products or tobacco prior to electrophysiologic studies or stress testing where adenosine receptor agonists will be administered.
Repaglinide: (Minor) Nicotine activates neuroendocrine pathways and may increase plasma glucose; tobacco smoking is known to aggravate insulin resistance. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Ritodrine: (Moderate) Nicotine use may potentiate the effects of the adrenergic agonists and the ergot alkaloids. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Rosiglitazone: (Minor) Nicotine may increase plasma glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Saxagliptin: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Semaglutide: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. Tobacco smoking is known to aggravate insulin resistance. Cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Simvastatin; Sitagliptin: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Sitagliptin: (Minor) Monitor blood glucose concentrations for needed antidiabetic agent dosage adjustments in diabetic patients whenever a change in either nicotine intake or smoking status occurs. Nicotine activates neuroendocrine pathways (e.g., increases in circulating cortisol and catecholamine levels) and may increase plasma glucose. The cessation of nicotine therapy or tobacco smoking may result in a decrease in blood glucose.
Sulfonylureas: (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Terazosin: (Moderate) Nicotine use may reduce the clinical effects of the alpha-blockers. If significant changes in nicotine intake occur, the dosages of these drugs may need adjustment.
Tetrahydrozoline: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Thiazolidinediones: (Minor) Nicotine may increase plasma glucose. Blood glucose concentrations should be monitored more closely whenever a change in either nicotine intake or smoking status occurs; dosage adjustments in antidiabetic agents may be needed.
Thiotepa: (Moderate) The concomitant use of thiotepa and nicotine may increase the exposure of nicotine; however, the clinical relevance of this interaction is unknown. Thiotepa is a CYP2B6 inhibitor in vitro; nicotine is a CYP2B6 substrate.
Tobacco: (Major) Nicotine from smoking cessation products can be additive to the nicotine from tobacco; patients should be warned against continued tobacco use while using nicotine replacement products. Pharmacologically, the effects of nicotine on the cardiovascular system mimic those of sympathetic stimulation; agonism of nicotinic receptors on adrenal medullary cells causes the release of epinephrine and norepinephrine. Nicotine raises systolic and diastolic blood pressure and can increase the inotropic and chronotropic actions of the heart. The degree to which these reactions occur is a function of the nicotine blood concentration. Symptoms of excessive nicotine can include nausea/vomiting, abdominal pain, diarrhea, headache, and hypertension.
Tolazamide: (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Tolbutamide: (Minor) Nicotine may increase plasma glucose. The cessation of nicotine therapy may result in a decrease in blood glucose. Blood glucose concentrations should be monitored more closely whenever a change in nicotine intake occurs; dosage adjustments in antidiabetic agents may be needed.
Tricyclic antidepressants: (Moderate) Physiological changes resulting from tobacco smoking cessation, with or without nicotine replacement, may alter the pharmacokinetics of certain concomitant medications, such as tricyclic antidepressants (TCAs). Doses of TCAs may need to be adjusted in patients who successfully quit smoking. Tobacco smoking has been shown to increase the clearance of TCAs by inducing hepatic microsomal enzymes, likely due to the hydrocarbons of tobacco smoke. Sudden smoking cessation may result in a reduced clearance of TCAs, despite the initiation of nicotine replacement products.
Trimipramine: (Moderate) Physiological changes resulting from tobacco smoking cessation, with or without nicotine replacement, may alter the pharmacokinetics of certain concomitant medications, such as tricyclic antidepressants (TCAs). Doses of TCAs may need to be adjusted in patients who successfully quit smoking. Tobacco smoking has been shown to increase the clearance of TCAs by inducing hepatic microsomal enzymes, likely due to the hydrocarbons of tobacco smoke. Sudden smoking cessation may result in a reduced clearance of TCAs, despite the initiation of nicotine replacement products.
Vemurafenib: (Moderate) Concomitant use of vemurafenib and nicotine may result in increased nicotine concentrations. Vemurafenib is a CYP2A6 inhibitor and nicotine is a CYP2A6 substrate. Pharmacologically, the effects of nicotine on the cardiovascular system mimic those of sympathetic stimulation; agonism of nicotinic receptors on adrenal medullary cells causes the release of epinephrine and norepinephrine. Nicotine raises systolic and diastolic blood pressure and can increase the inotropic and chronotropic actions of the heart. The degree to which these reactions occur is a function of the nicotine blood concentration. Symptoms of excessive nicotine can include nausea/vomiting, abdominal pain, diarrhea, headache, and hypertension.