DRUG INTERACTIONS
Abacavir; Dolutegravir; Lamivudine: (Moderate) Caution is warranted when dolutegravir is administered with topiramate as there is a potential for decreased dolutegravir concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Dolutegravir is partially metabolized by this isoenzyme.
Abciximab: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates or platelet inhibitors may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Concomitant use of dihydrocodeine with topiramate can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If topiramate is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Topiramate is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Acetaminophen; Caffeine; Magnesium Salicylate; Phenyltoloxamine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Acetaminophen; Caffeine; Phenyltoloxamine; Salicylamide: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Acetaminophen; Dextromethorphan; Doxylamine: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Acetaminophen; Diphenhydramine: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Acetaminophen; Hydrocodone: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Acetaminophen; Oxycodone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of oxycodone as needed. If topiramate is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Aliskiren; Amlodipine: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree. (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Alogliptin; Metformin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear.
Alogliptin; Pioglitazone: (Moderate) A decrease in the exposures of pioglitazone and its active metabolites were observed in a clinical trial during concurrent use of topiramate. The clinical significance is unknown; however, results of routine blood glucose monitoring should be carefully followed during coadministration of pioglitazone and topiramate to ensure adequate glucose control.
Alprazolam: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Aminosalicylate sodium, Aminosalicylic acid: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Amitriptyline: (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold. In addition, during concurrent use of topiramate and amitriptyline the Cmax and AUC of amitriptyline were increased by 12%. Dosage adjustments of amitriptyline may be needed based upon tolerability to the regimen during combined use of amitriptyline and topiramate.
Amlodipine: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Atorvastatin: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Benazepril: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Celecoxib: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation. (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Olmesartan: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Valsartan: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree. (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amphetamines: (Major) Concurrent use of amphetamines and urinary alkalinizers, such as topiramate, should be avoided. Urinary alkalinizers diminish the urinary excretion of amphetamines by increasing the proportion of non-ionized amphetamines, resulting in increased renal tubular reabsorption of these compounds. The half-life and therapeutic actions of amphetamines will be prolonged in the presence of these drugs. In addition, patients who are taking anticonvulsants for epilepsy/seizure control should use amphetamines with caution. Amphetamines may decrease the seizure threshold and increase the risk of seizures. If seizures occur, amphetamine discontinuation may be necessary.
Anagrelide: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates or platelet inhibitors may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Anticholinergics: (Moderate) Use caution if carbonic anhydrase inhibitors are administered with anticholinergics and monitor for excessive anticholinergic adverse effects. The use of topiramate with agents that may increase the risk for heat-related disorders, such as anticholinergics, may lead to oligohidrosis, hyperthermia and/or heat stroke.
Antithrombin III: (Moderate) Concurrent use of topiramate and anticoagulants (e.g., warfarin, enoxaparin, dabigatran) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Anxiolytics; Sedatives; and Hypnotics: (Major) Although not specifically studied, coadministration of CNS depressant drugs (e.g., anxiolytics, sedatives, and hypnotics) with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Apixaban: (Moderate) Concurrent use of topiramate and anticoagulants, such as apixaban, may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aprepitant, Fosaprepitant: (Moderate) Use caution if topiramate and aprepitant, fosaprepitant are used concurrently and monitor for a possible decrease in the efficacy of aprepitant for several days after administration of a multi-day aprepitant regimen. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer; aprepitant is a CYP3A4 substrate. When a single dose of aprepitant (375 mg, or 3 times the maximum recommended dose) was administered on day 9 of a 14-day rifampin regimen (a strong CYP3A4 inducer), the AUC of aprepitant decreased approximately 11-fold and the mean terminal half-life decreased by 3-fold. The manufacturer of aprepitant recommends avoidance of administration with strong CYP3A4 inducers, but does not provide guidance for weak-to-moderate inducers. After administration, fosaprepitant is rapidly converted to aprepitant and shares the same drug interactions.
Argatroban: (Moderate) Concurrent use of topiramate and anticoagulants (e.g., warfarin, enoxaparin, dabigatran) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aripiprazole: (Moderate) Because aripiprazole is partially metabolized by CYP3A4, concurrent use of CYP3A4 inducers such as topiramate may result in decreased plasma concentrations of aripiprazole. If these agents are used in combination, the patient should be carefully monitored for a decrease in aripiprazole efficacy. An increase in aripiprazole dosage may be clinically warranted in some patients. Avoid concurrent use of Abilify Maintena with a CYP3A4 inducer when the combined treatment period exceeds 14 days because aripiprazole blood concentrations decline and may become suboptimal. There are no dosing recommendations for Aristada or Aristada Initio during use of a mild to moderate CYP3A4 inducer.
Aspirin, ASA: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aspirin, ASA; Caffeine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aspirin, ASA; Caffeine; Dihydrocodeine: (Moderate) Concomitant use of dihydrocodeine with topiramate can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If topiramate is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Topiramate is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aspirin, ASA; Carisoprodol: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aspirin, ASA; Dipyridamole: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation. (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates or platelet inhibitors may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aspirin, ASA; Omeprazole: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Aspirin, ASA; Oxycodone: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation. (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of oxycodone as needed. If topiramate is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Aspirin, ASA; Pravastatin: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Atazanavir: (Moderate) Caution is warranted when atazanavir is administered with topiramate as there is a potential for decreased concentrations of atazanavir. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Atazanavir is a substrate of CYP3A4.
Atazanavir; Cobicistat: (Moderate) Caution is warranted when atazanavir is administered with topiramate as there is a potential for decreased concentrations of atazanavir. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Atazanavir is a substrate of CYP3A4. (Moderate) Caution is warranted when cobicistat is administered with topiramate as there is a potential for decreased concentrations of cobicistat. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Cobicistat is a substrate of CYP3A4.
Atovaquone; Proguanil: (Minor) Proguanil is metabolized to cycloguanil by CYP2C19. Potential interactions between proguanil or cycloguanil and other drugs that are CYP2C19 inhibitors are unknown. Use caution when combining atovaquone; proguanil with CYP2C19 inhibitors, such as topiramate.
Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Carbonic anhydrase inhibiting drugs, such as topiramate (a weak carbonic anhydrase inhibitor) can alkalinize the urine, thereby decreasing the effectiveness of methenamine by inhibiting the conversion of methenamine to formaldehyde. (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Barbiturates: (Moderate) Although topiramate is not extensively metabolized (70% renally eliminated), an interaction with barbiturates via hepatic isoenzyme activity is possible. In patients receiving either phenobarbital or primidone in combination with topiramate, there was a < 10% change in phenobarbital or primidone plasma concentrations; the effects on topiramate plasma concentrations were not evaluated. Barbiturates may cause additive sedation or other CNS depressive effects when used concurrently with topiramate. When topiramate is combined with phentermine for the treatment of obesity, a greater risk of CNS depression exists. Concurrent use of topiramate and drugs that cause thrombocytopenia, such as the barbiturates, may also increase the risk of bleeding; monitor patients appropriately.
Belzutifan: (Moderate) Monitor for anemia and hypoxia if concomitant use of topiramate with belzutifan is necessary due to increased plasma exposure of belzutifan which may increase the incidence and severity of adverse reactions. Reduce the dose of belzutifan as recommended if anemia or hypoxia occur. Belzutifan is a CYP2C19 substrate and topiramate is a CYP2C19 inhibitor.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Benzodiazepines: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Carbonic anhydrase inhibiting drugs, such as topiramate (a weak carbonic anhydrase inhibitor) can alkalinize the urine, thereby decreasing the effectiveness of methenamine by inhibiting the conversion of methenamine to formaldehyde. (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Bismuth Subsalicylate: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Bivalirudin: (Moderate) Concurrent use of topiramate and anticoagulants (e.g., warfarin, enoxaparin, dabigatran) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Boceprevir: (Moderate) Close clinical monitoring is advised when administering topiramate with boceprevir due to the potential for boceprevir treatment failure. Although this interaction has not been studied, predictions about the interaction can be made based on the metabolic pathways of topiramate and boceprevir. Topiramate is a weak inducer of the hepatic isoenzyme CYP3A4; boceprevir is a substrate of this isoenzyme. When used in combination, the plasma concentrations of boceprevir may decrease.
Bosentan: (Moderate) Bosentan is a significant inducer of CYP2C9 hepatic isoenzymes.Theoretically, bosentan can increase the hepatic clearance of topiramate, a potential CYP2C9 substrate.
Brexpiprazole: (Moderate) Because brexpiprazole is partially metabolized by CYP3A4, concurrent use of CYP3A4 inducers such as topiramate may result in decreased plasma concentrations of brexpiprazole. If these agents are used in combination, the patient should be carefully monitored for a decrease in brexpiprazole efficacy. An increase in brexpiprazole dosage may be clinically warranted in some patients. Similar precautions apply to combination products containing topiramate such as phentermine; topiramate.
Brompheniramine; Guaifenesin; Hydrocodone: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Brompheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Bumetanide: (Moderate) Topiramate is a carbonic anhydrase inhibitor. Concurrent use of topiramate with non-potassium sparing diuretics (e.g., loop diuretics) may potentiate the potassium-wasting action of these diuretics. Monitor baseline and periodic potassium concentrations during coadministration.
Bupivacaine; Lidocaine: (Moderate) Concomitant use of systemic lidocaine and topiramate may decrease lidocaine plasma concentrations. Higher lidocaine doses may be required; titrate to effect. Lidocaine is a CYP3A4 and CYP1A2 substrate; topiramate induces CYP3A4.
Bupivacaine; Meloxicam: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Bupropion: (Moderate) Bupropion should not be used by patients with a preexisting seizure disorder because it may lower the seizure threshold. Use with caution when topiramate is used for other purposes, as additive CNS reactions may be possible. Pharmacokinetic interactions have not been noted.
Bupropion; Naltrexone: (Moderate) Bupropion should not be used by patients with a preexisting seizure disorder because it may lower the seizure threshold. Use with caution when topiramate is used for other purposes, as additive CNS reactions may be possible. Pharmacokinetic interactions have not been noted.
Buspirone: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Cabotegravir; Rilpivirine: (Moderate) Close clinical monitoring is advised when administering topiramate with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Topiramate is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Canagliflozin; Metformin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Carbamazepine: (Moderate) Although topiramate is not extensively metabolized (70% renally eliminated), hepatic enzyme inducers. such as carbamazepine, have been shown to reduce topiramate serum concentrations. In patients receiving carbamazepine with topiramate, plasma concentrations of topiramate were decreased by 40% with < 10% change in carbamazepine plasma concentrations. Concurrent use of topiramate and drugs that cause thrombocytopenia, such as carbamazepine and oxcarbazepine, may also increase the risk of bleeding; monitor patients appropriately.
Carbetapentane; Diphenhydramine; Phenylephrine: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Carbinoxamine; Hydrocodone; Phenylephrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Carbinoxamine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Carbonic anhydrase inhibitors: (Major) Avoid concurrent use of acetazolamide or methazolamide with topiramate. Topiramate is a weak carbonic anhydrase inhibitor. Concomitant use of topiramate with acetazolamide or methazolamide may create a physiological environment that increases the risk of renal stone formation associated with topiramate use. Additionally, through an additive effect, the use of topiramate with agents that may increase the risk for heat-related disorders (acetazolamide and methazolamide), may lead to oligohidrosis, hyperthermia and heat stroke.
Cariprazine: (Major) Cariprazine and its active metabolites are extensively metabolized by CYP3A4. Concurrent use of cariprazine with CYP3A4 inducers, such as topiramate, has not been evaluated and is not recommended because the net effect on active drug and metabolites is unclear.
Celecoxib: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Celecoxib; Tramadol: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation. (Moderate) Topiramate may contribute to the CNS depression seen with tramadol; tramadol may also decrease the seizure threshold in some patients and thus, potentially, interfere with the ability of anticonvulsants to control seizures.
Chlordiazepoxide: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Chlordiazepoxide; Amitriptyline: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy. (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold. In addition, during concurrent use of topiramate and amitriptyline the Cmax and AUC of amitriptyline were increased by 12%. Dosage adjustments of amitriptyline may be needed based upon tolerability to the regimen during combined use of amitriptyline and topiramate.
Chlordiazepoxide; Clidinium: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Chlorothiazide: (Moderate) Topiramate is a carbonic anhydrase inhibitor. Concurrent use of topiramate with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Monitor baseline and periodic potassium concentrations during coadministration.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Concomitant use of dihydrocodeine with topiramate can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If topiramate is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Topiramate is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Chlorpheniramine; Dihydrocodeine; Pseudoephedrine: (Moderate) Concomitant use of dihydrocodeine with topiramate can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If topiramate is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Topiramate is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Chlorpheniramine; Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Chlorpheniramine; Hydrocodone: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Chlorpheniramine; Hydrocodone; Phenylephrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Chlorpheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Chlorpromazine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Choline Salicylate; Magnesium Salicylate: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Cilostazol: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as cilostazol may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation. In addition, cilostazol is metabolized by the cytochrome P450 CYP2C19 hepatic isoenzyme and may interact with medications that are inhibitors of CYP2C19, including topiramate.
Citalopram: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with topiramate, a CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors. In addition, concurrent use of topiramate and drugs that affect platelet function such as selective serotonin reuptake inhibitors (SSRIs) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Clomipramine: (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold. In addition, during concurrent use of topiramate and amitriptyline the Cmax and AUC of amitriptyline were increased by 12%. Dosage adjustments of amitriptyline may be needed based upon tolerability to the regimen during combined use of amitriptyline and topiramate.
Clonazepam: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Clorazepate: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Cobicistat: (Moderate) Caution is warranted when cobicistat is administered with topiramate as there is a potential for decreased concentrations of cobicistat. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Cobicistat is a substrate of CYP3A4.
Cobimetinib: (Moderate) If concurrent use of cobimetinib and topiramate is necessary, use caution and monitor for decreased efficacy of cobimetinib. Cobimetinib is a CYP3A substrate in vitro, and topiramate is a weak inducer of CYP3A. The manufacturer of cobimetinib recommends avoiding coadministration of cobimetinib with moderate or strong CYP3A inducers based on simulations demonstrating that cobimetinib exposure would decrease by 73% or 83% when coadministered with a moderate or strong CYP3A inducer, respectively. Guidance is not available regarding concomitant use of cobimetinib with weak CYP3A inducers.
Codeine; Phenylephrine; Promethazine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Codeine; Promethazine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Conjugated Estrogens; Medroxyprogesterone: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Dabigatran: (Moderate) Concurrent use of topiramate and anticoagulants (e.g., warfarin, enoxaparin, dabigatran) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Dapagliflozin; Metformin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear.
Dapsone: (Minor) The metabolism of dapsone may be accelerated when administered concurrently with topiramate, a known inducer of CYP3A4. Coadministration is expected to decrease the plasma concentration of dapsone and increase the formation of dapsone hydroxylamine (a metabolite associated with hemolysis). If these drugs must be administered together, closely monitor for a reduction in dapsone efficacy and signs of hemolytic anemia.
Darunavir: (Moderate) Caution is warranted when darunavir is administered with topiramate as there is a potential for decreased concentrations of darunavir. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Darunavir is a substrate of CYP3A4.
Darunavir; Cobicistat: (Moderate) Caution is warranted when cobicistat is administered with topiramate as there is a potential for decreased concentrations of cobicistat. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Cobicistat is a substrate of CYP3A4. (Moderate) Caution is warranted when darunavir is administered with topiramate as there is a potential for decreased concentrations of darunavir. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Darunavir is a substrate of CYP3A4.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Caution is warranted when cobicistat is administered with topiramate as there is a potential for decreased concentrations of cobicistat. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Cobicistat is a substrate of CYP3A4. (Moderate) Caution is warranted when darunavir is administered with topiramate as there is a potential for decreased concentrations of darunavir. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Darunavir is a substrate of CYP3A4.
Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Moderate) Concurrent administration of topiramate with dasabuvir; ombitasvir; paritaprevir; ritonavir may result in decreased concentrations of dasabuvir, paritaprevir, and ritonavir. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Ritonavir, paritaprevir, and dasabuvir (minor) are all metabolized by this enzyme. Caution and close monitoring are advised if these drugs are administered together. (Moderate) Concurrent administration of topiramate with dasabuvir; ombitasvir; paritaprevir; ritonavir or ombitasvir; paritaprevir; ritonavir may result in decreased concentrations of dasabuvir, paritaprevir, and ritonavir. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Ritonavir, paritaprevir, and dasabuvir (minor) are all metabolized by this enzyme. Caution and close monitoring are advised if these drugs are administered together. (Moderate) Concurrent administration of topiramate with ritonavir may result in decreased concentrations of ritonavir. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Ritonavir is metabolized by this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Delavirdine: (Moderate) Delavirdine is a potent inhibitor of cytochrome P450 2C9 and might decrease topiramate metabolism leading to increased topiramate serum concentrations and a risk of adverse reactions.
Desipramine: (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold. In addition, during concurrent use of topiramate and amitriptyline the Cmax and AUC of amitriptyline were increased by 12%. Dosage adjustments of amitriptyline may be needed based upon tolerability to the regimen during combined use of amitriptyline and topiramate.
Desirudin: (Moderate) Concurrent use of topiramate and anticoagulants (e.g., warfarin, enoxaparin, dabigatran) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Desogestrel; Ethinyl Estradiol: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Diazepam: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Dichlorphenamide: (Moderate) Use dichlorphenamide and topiramate, another carbonic anhydrase inhibitor, together with caution as both drugs can cause metabolic acidosis. Concurrent use may increase the severity of metabolic acidosis. Measure sodium bicarbonate concentrations at baseline and periodically during dichlorphenamide treatment. If metabolic acidosis occurs or persists, consider reducing the dose or discontinuing dichlorphenamide therapy.
Diclofenac: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Diclofenac; Misoprostol: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Dienogest; Estradiol valerate: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Diflunisal: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Digoxin: (Moderate) Serum digoxin AUC was decreased by 12% when coadministered with topiramate. Although the clinical relevance has not been determined, the clinician should be aware that serum digoxin concentrations may be affected when digoxin and topiramate are used concomitantly.
Dihydrocodeine; Guaifenesin; Pseudoephedrine: (Moderate) Concomitant use of dihydrocodeine with topiramate can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If topiramate is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Topiramate is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Diltiazem: (Moderate) Coadministrator topiramate with diltiazem with caution. Concomitant administration of diltiazem (240 mg) with topiramate (150 mg/day) resulted in a 10% decrease in Cmax and a 25% decrease in diltiazem AUC, a 27% decrease in Cmax and an 18% decrease in desacetyl diltiazem AUC, and no effect on N-desmethyl diltiazem. Co-administration of topiramate with diltiazem resulted in a 16% increase in Cmax and a 19% increase in AUC of topiramate. Monitor for loss of diltiazem efficacy and or increased adverse events coming from the topiramate component of phentermine;topiramate.
Diphenhydramine: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Diphenhydramine; Hydrocodone; Phenylephrine: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering. (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Diphenhydramine; Ibuprofen: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering. (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Diphenhydramine; Naproxen: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering. (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Diphenhydramine; Phenylephrine: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Dipyridamole: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates or platelet inhibitors may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Dolutegravir: (Moderate) Caution is warranted when dolutegravir is administered with topiramate as there is a potential for decreased dolutegravir concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Dolutegravir is partially metabolized by this isoenzyme.
Dolutegravir; Lamivudine: (Moderate) Caution is warranted when dolutegravir is administered with topiramate as there is a potential for decreased dolutegravir concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Dolutegravir is partially metabolized by this isoenzyme.
Dolutegravir; Rilpivirine: (Moderate) Caution is warranted when dolutegravir is administered with topiramate as there is a potential for decreased dolutegravir concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Dolutegravir is partially metabolized by this isoenzyme. (Moderate) Close clinical monitoring is advised when administering topiramate with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Topiramate is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Doravirine: (Minor) Concurrent administration of doravirine and topiramate may result in decreased doravirine exposure, resulting in potential loss of virologic control. Doravirine is a CYP3A4 substrate; topiramate is a weak CYP3A4 inducer.
Doravirine; Lamivudine; Tenofovir disoproxil fumarate: (Minor) Concurrent administration of doravirine and topiramate may result in decreased doravirine exposure, resulting in potential loss of virologic control. Doravirine is a CYP3A4 substrate; topiramate is a weak CYP3A4 inducer.
Doxepin: (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold. In addition, during concurrent use of topiramate and amitriptyline the Cmax and AUC of amitriptyline were increased by 12%. Dosage adjustments of amitriptyline may be needed based upon tolerability to the regimen during combined use of amitriptyline and topiramate.
Doxorubicin Liposomal: (Major) Topiramate is a mild CYP3A4 inducer; doxorubicin is a major substrate of CYP3A4. Inducers of CYP3A4 may decrease the concentration of doxorubicin and compromise the efficacy of chemotherapy. Avoid coadministration of topiramate and doxorubicin if possible. If not possible, monitor doxorubicin closely for efficacy.
Doxorubicin: (Major) Topiramate is a mild CYP3A4 inducer; doxorubicin is a major substrate of CYP3A4. Inducers of CYP3A4 may decrease the concentration of doxorubicin and compromise the efficacy of chemotherapy. Avoid coadministration of topiramate and doxorubicin if possible. If not possible, monitor doxorubicin closely for efficacy.
Doxylamine: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Doxylamine; Pyridoxine: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Dronabinol: (Moderate) Use caution if coadministration of dronabinol with topiramate is necessary, and monitor for a decrease in the efficacy of dronabinol. Dronabinol is a CYP2C9 and 3A4 substrate; topiramate is a weak inducer of CYP3A4. Concomitant use may result in decreased plasma concentrations of dronabinol.
Dronedarone: (Major) The concomitant use of dronedarone and CYP3A4 inducers should be avoided. Dronedarone is metabolized by CYP3A. Topiramate induces CYP3A4. Coadministration of CYP3A4 inducers, such as topiramate, with dronedarone may result in reduced plasma concentration and subsequent reduced effectiveness of dronedarone therapy.
Droperidol: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Drospirenone: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Drospirenone; Estetrol: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Drospirenone; Estradiol: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Drospirenone; Ethinyl Estradiol: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Edoxaban: (Moderate) Concurrent use of topiramate and anticoagulants (e.g., warfarin, enoxaparin, dabigatran) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Elagolix; Estradiol; Norethindrone acetate: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Elbasvir; Grazoprevir: (Moderate) Caution is advised when administering elbasvir with topiramate. Topiramate is a mild CYP3A inducer, while elbasvir is a substrate of CYP3A. Use of these drugs together may decrease the plasma concentrations of elbasvir and could result in decreased virologic response. (Moderate) Caution is advised when administering elbasvir; grazoprevir with topiramate. Topiramate is a mild CYP3A inducer, while grazoprevir is a substrate of CYP3A. Use of these drugs together may decrease the plasma concentrations of grazoprevir and could result in decreased virologic response.
Elvitegravir: (Moderate) Caution is warranted when elvitegravir is administered with topiramate as there is a potential for decreased elvitegravir concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Elvitegravir is a CYP3A4 substrate.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Caution is warranted when cobicistat is administered with topiramate as there is a potential for decreased concentrations of cobicistat. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Cobicistat is a substrate of CYP3A4. (Moderate) Caution is warranted when elvitegravir is administered with topiramate as there is a potential for decreased elvitegravir concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Elvitegravir is a CYP3A4 substrate.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Caution is warranted when cobicistat is administered with topiramate as there is a potential for decreased concentrations of cobicistat. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Cobicistat is a substrate of CYP3A4. (Moderate) Caution is warranted when elvitegravir is administered with topiramate as there is a potential for decreased elvitegravir concentrations. Decreased antiretroviral concentrations may lead to a reduction of antiretroviral efficacy and the potential development of viral resistance. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Elvitegravir is a CYP3A4 substrate.
Empagliflozin; Linagliptin: (Major) Inducers of CYP3A4 (e.g., topiramate) can decrease exposure to linagliptin to subtherapeutic and likely ineffective concentrations. For patients requiring use of such drugs, an alternative to linagliptin is strongly recommended.
Empagliflozin; Linagliptin; Metformin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear. (Major) Inducers of CYP3A4 (e.g., topiramate) can decrease exposure to linagliptin to subtherapeutic and likely ineffective concentrations. For patients requiring use of such drugs, an alternative to linagliptin is strongly recommended.
Empagliflozin; Metformin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear.
Emtricitabine; Rilpivirine; Tenofovir alafenamide: (Moderate) Close clinical monitoring is advised when administering topiramate with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Topiramate is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Emtricitabine; Rilpivirine; Tenofovir disoproxil fumarate: (Moderate) Close clinical monitoring is advised when administering topiramate with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Topiramate is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Eptifibatide: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates or platelet inhibitors may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Ertugliflozin; Metformin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear.
Estazolam: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Estradiol Cypionate; Medroxyprogesterone: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Estradiol; Levonorgestrel: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Estradiol; Norethindrone: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Estradiol; Norgestimate: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Estradiol; Progesterone: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Estrogens affected by CYP3A inducers: (Major) Women taking both estrogens and topiramate should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed topiramate, especially for patients receiving topiramate doses greater than 200 mg per day. Higher-dose hormonal regimens may be indicated where acceptable or applicable. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of topiramate. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on topiramate, with dose adjustments made based on clinical efficacy. Concurrent administration may increase estrogen elimination.
Ethacrynic Acid: (Moderate) Topiramate is a carbonic anhydrase inhibitor. Concurrent use of topiramate with non-potassium sparing diuretics (e.g., loop diuretics) may potentiate the potassium-wasting action of these diuretics. Monitor baseline and periodic potassium concentrations during coadministration.
Ethanol: (Major) Avoid alcohol with topiramate. Topiramate is a CNS depressant. Concomitant administration of topiramate with alcohol can result in significant CNS depression. Trokendi XR is contraindicated with recent alcohol use (i.e., within 6 hours before and 6 hours after use). In the presence of alcohol, the pattern of topiramate release from Trokendi XR is significantly altered. As a result, plasma concentrations of topiramate may be markedly higher soon after dosing and subtherapeutic later in the day.
Ethinyl Estradiol; Levonorgestrel; Folic Acid; Levomefolate: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Ethinyl Estradiol; Norelgestromin: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Ethinyl Estradiol; Norethindrone Acetate: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Ethinyl Estradiol; Norgestrel: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Ethynodiol Diacetate; Ethinyl Estradiol: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Etodolac: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Etonogestrel: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Etonogestrel; Ethinyl Estradiol: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Ezogabine: (Moderate) Concurrent use of topiramate and drugs that cause thrombocytopenia such as the anticonvulsant ezogabine, may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (23%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Famotidine; Ibuprofen: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Felbamate: (Moderate) Concurrent use of topiramate and drugs that cause thrombocytopenia such as the anticonvulsant felbamate may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Fenoprofen: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Fentanyl: (Moderate) Consider an increased dose of fentanyl and monitor for evidence of opioid withdrawal if concurrent use of topiramate is necessary. If topiramate is discontinued, consider reducing the fentanyl dosage and monitor for evidence of respiratory depression. Coadministration of a CYP3A4 inducer like topiramate with fentanyl, a CYP3A4 substrate, may decrease exposure to fentanyl resulting in decreased efficacy or onset of withdrawal symptoms in a patient who has developed physical dependence to fentanyl. Fentanyl plasma concentrations will increase once the inducer is stopped, which may increase or prolong the therapeutic and adverse effects, including serious respiratory depression.
Flibanserin: (Major) The concomitant use of flibanserin with CYP3A4 inducers significantly decreases flibanserin exposure compared to the use of flibanserin alone. Therefore, concurrent use of flibanserin and CYP3A4 inducers, such as topiramate is not recommended.
Fluoxetine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as selective serotonin reuptake inhibitors (SSRIs) like fluoxetine may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Fluphenazine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Flurazepam: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Flurbiprofen: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Fluvoxamine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as selective serotonin reuptake inhibitors (SSRIs) like fluvoxamine may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Fondaparinux: (Moderate) Concurrent use of topiramate and anticoagulants (e.g., warfarin, enoxaparin, dabigatran) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Food: (Moderate) Topiramate may influence the pharmacokinetic profile of cannabinoids in Marijuana and may also influence the pharmacodynamic profile. This may result in an altered adverse event profile of one or both drugs. Topiramate is an inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of marijuana's most psychoactive compound, delta-9-tetrahydrocannabinol (THC). More study is needed to determine the magnitude and clinical significance of any pharmacokinetic or pharmacodynamic interactions. Additive drowsiness and CNS depression is possible. Monitor for changes in moods or behaviors, or for other CNS effects.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Furosemide: (Moderate) Topiramate is a carbonic anhydrase inhibitor. Concurrent use of topiramate with non-potassium sparing diuretics (e.g., loop diuretics) may potentiate the potassium-wasting action of these diuretics. Monitor baseline and periodic potassium concentrations during coadministration.
Gefitinib: (Moderate) Monitor for clinical response of gefitinib if used concomitantly with topiramate. Gefitinib is metabolized significantly by CYP3A4 and topiramate is a weak CYP3A4 inducer; coadministration may increase gefitinib metabolism and decrease gefitinib concentrations. This also applies to combination products containing topiramate, such as phentermine; topiramate. While the manufacturer has provided no guidance regarding the use of gefitinib with mild or moderate CYP3A4 inducers, administration of a single 500 mg gefitinib dose with a concurrent strong CYP3A4 inducer (rifampin) resulted in reduced mean AUC of gefitinib by 83%.
Glipizide; Metformin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear.
Glyburide: (Minor) Coadministration of glyburide with topiramate may decrease systemic exposure to glyburide. A pharmacokinetic drug interaction study evaluated the combination of topiramate and glyburide. Reductions in AUC and Cmax were noted for glyburide and the active metabolites.
Glyburide; Metformin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear. (Minor) Coadministration of glyburide with topiramate may decrease systemic exposure to glyburide. A pharmacokinetic drug interaction study evaluated the combination of topiramate and glyburide. Reductions in AUC and Cmax were noted for glyburide and the active metabolites.
Guaifenesin; Hydrocodone: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Heparin: (Moderate) Concurrent use of topiramate and anticoagulants (e.g., warfarin, enoxaparin, dabigatran) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Homatropine; Hydrocodone: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydantoins: (Moderate) Although topiramate is not extensively metabolized (70% renally eliminated), hepatic enzyme inducers, such as hydantoins, have been shown to reduce topiramate serum concentrations.Topiramate may increase phenytoin concentrations through its inhibitory effects on CYP2C19. In some patients receiving phenytoin concurrently with topiramate, plasma concentrations of phenytoin were increased by 25% and topiramate plasma concentrations were decreased by 48%. These patients were generally receiving dosage regimens of phenytoin twice-daily. Other patients experienced a change of < 10% in phenytoin plasma concentrations. A similar reaction would be expected with fosphenytoin or ethotoin. Concurrent use of topiramate and drugs that cause thrombocytopenia, such as the hydantoins, may also increase the risk of bleeding; monitor patients appropriately.
Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Hydrochlorothiazide, HCTZ; Methyldopa: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Hydrocodone: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydrocodone; Ibuprofen: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation. (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydrocodone; Phenylephrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydrocodone; Potassium Guaiacolsulfonate: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydrocodone; Potassium Guaiacolsulfonate; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydrocodone; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of hydrocodone as needed. If topiramate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydroxychloroquine: (Moderate) Caution is warranted with the coadministration of hydroxychloroquine and antiepileptic drugs, such as topiramate. Hydroxychloroquine can lower the seizure threshold; therefore, the activity of antiepileptic drugs may be impaired with concomitant use.
Hydroxyzine: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Moderate) Carbonic anhydrase inhibiting drugs, such as topiramate (a weak carbonic anhydrase inhibitor) can alkalinize the urine, thereby decreasing the effectiveness of methenamine by inhibiting the conversion of methenamine to formaldehyde. (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Ibuprofen: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Ibuprofen; Oxycodone: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation. (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of oxycodone as needed. If topiramate is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Ibuprofen; Pseudoephedrine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Imatinib: (Moderate) Imatinib is a potent inhibitors of cytochrome P450 2C9 and might decrease topiramate metabolism leading to increased topiramate serum concentrations and a risk of adverse reactions.
Imipramine: (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold. In addition, during concurrent use of topiramate and amitriptyline the Cmax and AUC of amitriptyline were increased by 12%. Dosage adjustments of amitriptyline may be needed based upon tolerability to the regimen during combined use of amitriptyline and topiramate.
Indomethacin: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Isavuconazonium: (Moderate) Caution and close monitoring are warranted when isavuconazonium is administered with topiramate as there is a potential for decreased concentrations of isavuconazonium. Decreased isavuconazonium concentrations may lead to a reduction of antifungal efficacy and the potential for treatment failure. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Isavuconazole, the active moiety of isavuconazonium, is a sensitive substrate of this enzyme.
Ivabradine: (Major) Avoid coadministration of ivabradine and topiramate. Ivabradine is primarily metabolized by CYP3A4; topiramte is a weak inducer of CYP3A4. Coadministration may decrease the plasma concentrations of ivabradine resulting in the potential for treatment failure.
Ketoprofen: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Ketorolac: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Lacosamide: (Moderate) Use lacosamide with caution in patients taking concomitant medications that affect cardiac conduction including those that prolong PR interval, such as sodium channel blocking anticonvulsants (e.g., topiramate), because of the risk of AV block, bradycardia, or ventricular tachyarrhythmia. If use together is necessary, obtain an ECG prior to lacosamide initiation and after treatment has been titrated to steady-state. In addition, monitor patients receiving lacosamide via the intravenous route closely.
Lamotrigine: (Moderate) Use caution when coadministering lamotrigine and topiramate. Concurrent use of topiramate and drugs that cause thrombocytopenia, such as lamotrigine, may increase the risk of bleeding. In pediatric patients who underwent craniotomy for epilepsy surgery (n = 84), treatment for confirmed or suspected coagulopathy was required in 5 of 7 patients taking a regimen of topiramate and lamotrigine, approximately one-third of the overall study population requiring blood products. Concurrent use may also result in significant CNS depression. Further, co-administration of topiramate and lamotrigine resulted in a 13% decrease in topiramate concentration; however, the clinical significance of this finding is unknown. Plasma concentrations of lamotrigine do not appear to be affected by the combined use of the drugs.
Lansoprazole; Naproxen: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Lepirudin: (Moderate) Concurrent use of topiramate and anticoagulants (e.g., warfarin, enoxaparin, dabigatran) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Leuprolide; Norethindrone: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Levamlodipine: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Levetiracetam: (Moderate) Concurrent use of topiramate and drugs that cause thrombocytopenia such as the anticonvulsant levetiracetam, may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Levonorgestrel: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Levonorgestrel; Ethinyl Estradiol: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Levonorgestrel; Ethinyl Estradiol; Ferrous Bisglycinate: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Lidocaine: (Moderate) Concomitant use of systemic lidocaine and topiramate may decrease lidocaine plasma concentrations. Higher lidocaine doses may be required; titrate to effect. Lidocaine is a CYP3A4 and CYP1A2 substrate; topiramate induces CYP3A4.
Lidocaine; Epinephrine: (Moderate) Concomitant use of systemic lidocaine and topiramate may decrease lidocaine plasma concentrations. Higher lidocaine doses may be required; titrate to effect. Lidocaine is a CYP3A4 and CYP1A2 substrate; topiramate induces CYP3A4.
Lidocaine; Prilocaine: (Moderate) Concomitant use of systemic lidocaine and topiramate may decrease lidocaine plasma concentrations. Higher lidocaine doses may be required; titrate to effect. Lidocaine is a CYP3A4 and CYP1A2 substrate; topiramate induces CYP3A4.
Linagliptin: (Major) Inducers of CYP3A4 (e.g., topiramate) can decrease exposure to linagliptin to subtherapeutic and likely ineffective concentrations. For patients requiring use of such drugs, an alternative to linagliptin is strongly recommended.
Linagliptin; Metformin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear. (Major) Inducers of CYP3A4 (e.g., topiramate) can decrease exposure to linagliptin to subtherapeutic and likely ineffective concentrations. For patients requiring use of such drugs, an alternative to linagliptin is strongly recommended.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Lithium: (Moderate) In patients, the pharmacokinetics of lithium were unaffected during treatment with topiramate at doses of 200 mg/day; however, there was an observed increase in systemic exposure of lithium (27% for Cmax and 26% for AUC) following topiramate doses up to 600 mg/day. Lithium levels should be monitored; monitor patients for adequate control of symptoms when phentermine; topiramate is added to lithium therapy.
Loop diuretics: (Moderate) Topiramate is a carbonic anhydrase inhibitor. Concurrent use of topiramate with non-potassium sparing diuretics (e.g., loop diuretics) may potentiate the potassium-wasting action of these diuretics. Monitor baseline and periodic potassium concentrations during coadministration.
Loperamide: (Moderate) The plasma concentration and efficacy of loperamide may be reduced when administered concurrently with topiramate. Loperamide is metabolized by the hepatic enzyme CYP3A4; topiramate is a mild inducer of this enzyme.
Loperamide; Simethicone: (Moderate) The plasma concentration and efficacy of loperamide may be reduced when administered concurrently with topiramate. Loperamide is metabolized by the hepatic enzyme CYP3A4; topiramate is a mild inducer of this enzyme.
Lopinavir; Ritonavir: (Moderate) Concurrent administration of topiramate with ritonavir may result in decreased concentrations of ritonavir. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Ritonavir is metabolized by this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Lorazepam: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Low Molecular Weight Heparins: (Moderate) Concurrent use of topiramate and anticoagulants (e.g., warfarin, enoxaparin, dabigatran) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Lumateperone: (Major) Avoid coadministration of lumateperone and topiramate as concurrent use may decrease lumateperone exposure which may reduce efficacy. Lumateperone is a CYP3A4 substrate; topiramate is a weak CYP3A4 inducer.
Lurasidone: (Moderate) Because lurasidone is primarily metabolized by CYP3A4, decreased plasma concentrations of lurasidone may theoretically occur when the drug is co-administered with inducers of CYP3A4 such as topiramate.
Magnesium Salicylate: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Maprotiline: (Moderate) Maprotiline, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold, leading to pharmacodynamic interactions. Monitor patients on anticonvulsants carefully when maprotiline is used concurrently. Because of the lowering of seizure threshold, an alternative antidepressant may be a more optimal choice for patients taking drugs for epilepsy.
Maraviroc: (Minor) Use caution if coadministration of maraviroc with topiramate is necessary, due to a possible decrease in maraviroc exposure. Maraviroc is a CYP3A substrate and topiramate is a CYP3A4 inducer. Monitor for a decrease in maraviroc efficacy with concomitant use.
Meclofenamate Sodium: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Medroxyprogesterone: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Mefenamic Acid: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Mefloquine: (Moderate) Topiramate induces CYP3A4 and may increase the metabolism of mefloquine if coadministered. Use may reduce the clinical efficacy of mefloquine, increasing the risk of Plasmodium falciparum resistance during treatment of malaria. Coadministration of mefloquine and anticonvulsants may also result in lower than expected anticonvulsant concentrations and loss of seizure control. Monitoring of drug concentrations (if therapeutic monitoring is advised for the anticonvulsant) is recommended. When topiramate is used for other conditions, monitor for clinical efficacy. Mefloquine may additionally cause CNS side effects that may cause seizures or alter moods or behaviors.
Meloxicam: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Meperidine; Promethazine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Mesoridazine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Mestranol; Norethindrone: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Metformin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear.
Metformin; Repaglinide: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear.
Metformin; Rosiglitazone: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear.
Metformin; Saxagliptin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear.
Metformin; Sitagliptin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear.
Methenamine: (Moderate) Carbonic anhydrase inhibiting drugs, such as topiramate (a weak carbonic anhydrase inhibitor) can alkalinize the urine, thereby decreasing the effectiveness of methenamine by inhibiting the conversion of methenamine to formaldehyde.
Methenamine; Sodium Acid Phosphate: (Moderate) Carbonic anhydrase inhibiting drugs, such as topiramate (a weak carbonic anhydrase inhibitor) can alkalinize the urine, thereby decreasing the effectiveness of methenamine by inhibiting the conversion of methenamine to formaldehyde.
Methenamine; Sodium Acid Phosphate; Methylene Blue; Hyoscyamine: (Moderate) Carbonic anhydrase inhibiting drugs, such as topiramate (a weak carbonic anhydrase inhibitor) can alkalinize the urine, thereby decreasing the effectiveness of methenamine by inhibiting the conversion of methenamine to formaldehyde.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Midazolam: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Molindone: (Moderate) Consistent with the pharmacology of molindone, additive effects may occur with other CNS active drugs such as anticonvulsants. In addition, seizures have been reported during the use of molindone, which is of particular significance in patients with a seizure disorder receiving anticonvulsants. Adequate dosages of anticonvulsants should be continued when molindone is added; patients should be monitored for clinical evidence of loss of seizure control or the need for dosage adjustments of either molindone or the anticonvulsant.
Nabumetone: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Nanoparticle Albumin-Bound Sirolimus: (Moderate) Monitor for loss of efficacy of sirolimus during coadministration of topiramate; a sirolimus dose adjustment may be necessary. Monitor sirolimus serum concentrations as appropriate. Sirolimus is a sensitive CYP3A substrate with a narrow therapeutic range; topiramate is a weak CYP3A inducer.
Naproxen: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Naproxen; Esomeprazole: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Naproxen; Pseudoephedrine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Nirmatrelvir; Ritonavir: (Moderate) Concurrent administration of topiramate with ritonavir may result in decreased concentrations of ritonavir. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Ritonavir is metabolized by this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Nisoldipine: (Major) Avoid coadministration of nisoldipine with topiramate due to decreased plasma concentrations of nisoldipine. Alternative antihypertensive therapy should be considered. Nisoldipine is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Coadministration with a strong CYP3A4 inducer lowered nisoldipine plasma concentrations to undetectable levels.
Nonsteroidal antiinflammatory drugs: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Norethindrone Acetate; Ethinyl Estradiol; Ferrous fumarate: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Norethindrone: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Norethindrone; Ethinyl Estradiol: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Norethindrone; Ethinyl Estradiol; Ferrous fumarate: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Norgestimate; Ethinyl Estradiol: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Norgestrel: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Nortriptyline: (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold. In addition, during concurrent use of topiramate and amitriptyline the Cmax and AUC of amitriptyline were increased by 12%. Dosage adjustments of amitriptyline may be needed based upon tolerability to the regimen during combined use of amitriptyline and topiramate.
Olanzapine; Fluoxetine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as selective serotonin reuptake inhibitors (SSRIs) like fluoxetine may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree. (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Ombitasvir; Paritaprevir; Ritonavir: (Moderate) Concurrent administration of topiramate with dasabuvir; ombitasvir; paritaprevir; ritonavir or ombitasvir; paritaprevir; ritonavir may result in decreased concentrations of dasabuvir, paritaprevir, and ritonavir. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Ritonavir, paritaprevir, and dasabuvir (minor) are all metabolized by this enzyme. Caution and close monitoring are advised if these drugs are administered together. (Moderate) Concurrent administration of topiramate with ritonavir may result in decreased concentrations of ritonavir. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Ritonavir is metabolized by this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Oxaprozin: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Oxazepam: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Oxycodone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of oxycodone as needed. If topiramate is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Paroxetine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as selective serotonin reuptake inhibitors (SSRIs) like paroxetine may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Pazopanib: (Moderate) Coadministration of pazopanib and topiramate may cause a decrease in systemic concentrations of pazopanib. Use caution when administering these drugs concomitantly. Pazopanib is a substrate for CYP3A4. Topiramate in a weak CYP3A4 inducer.
Pemoline: (Moderate) A reduction in seizure threshold has been reported following concomitant administration of pemoline with anticonvulsant agents.
Pentosan: (Moderate) Concurrent use of topiramate and anticoagulants (e.g., warfarin, enoxaparin, dabigatran) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Perampanel: (Moderate) During clinical trials, co-administration of topiramate and perampanel to patients led to a 20% decrease in the AUC of perampanel compared to patients not taking enzyme-inducing antiepileptic drugs. Topiramate is an inducer of CYP3A4, while perampanel is a substrate of this enzyme. Patients taking topiramate who begin treatment with perampanel should be closely monitored for adverse effects and receive a higher initial dose of perampanel. Addition or withdrawal of enzyme-inducing antiepileptic drugs may require a perampanel dose adjustment.
Perindopril; Amlodipine: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Perphenazine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Perphenazine; Amitriptyline: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added. (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold. In addition, during concurrent use of topiramate and amitriptyline the Cmax and AUC of amitriptyline were increased by 12%. Dosage adjustments of amitriptyline may be needed based upon tolerability to the regimen during combined use of amitriptyline and topiramate.
Phenothiazines: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Pioglitazone: (Moderate) A decrease in the exposures of pioglitazone and its active metabolites were observed in a clinical trial during concurrent use of topiramate. The clinical significance is unknown; however, results of routine blood glucose monitoring should be carefully followed during coadministration of pioglitazone and topiramate to ensure adequate glucose control.
Pioglitazone; Glimepiride: (Moderate) A decrease in the exposures of pioglitazone and its active metabolites were observed in a clinical trial during concurrent use of topiramate. The clinical significance is unknown; however, results of routine blood glucose monitoring should be carefully followed during coadministration of pioglitazone and topiramate to ensure adequate glucose control.
Pioglitazone; Metformin: (Major) Extended-release topiramate is contraindicated in patients with metabolic acidosis who are taking concomitant metformin because topiramate can frequently cause metabolic acidosis, a condition for which metformin use is contraindicated. Consider more frequent monitoring of patients taking immediate-release topiramate with metformin. In healthy volunteers, metformin Cmax and AUC increased by 17% and 25%, respectively, when topiramate was added, and oral plasma clearance of topiramate appears to be reduced when administered with metformin. However, the clinical significance of these pharmacokinetic effects is unclear. (Moderate) A decrease in the exposures of pioglitazone and its active metabolites were observed in a clinical trial during concurrent use of topiramate. The clinical significance is unknown; however, results of routine blood glucose monitoring should be carefully followed during coadministration of pioglitazone and topiramate to ensure adequate glucose control.
Piroxicam: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Prasugrel: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates or platelet inhibitors may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Pregabalin: (Moderate) Concurrent use of topiramate and drugs that cause thrombocytopenia such as the anticonvulsant pregabalin, may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Probenecid: (Minor) Probenecid may increase the renal clearance of topiramate resulting in lower topiramate concentrations. Although not evaluated in humans, animal studies using probenecid along with topiramate showed a significant increase in renal clearance of topiramate. This suggests that topiramate may undergo renal tubular reabsorption. Probenecid may block renal tubular reabsorption of topiramate, thus increasing the renal clearance of the drug.
Probenecid; Colchicine: (Minor) Probenecid may increase the renal clearance of topiramate resulting in lower topiramate concentrations. Although not evaluated in humans, animal studies using probenecid along with topiramate showed a significant increase in renal clearance of topiramate. This suggests that topiramate may undergo renal tubular reabsorption. Probenecid may block renal tubular reabsorption of topiramate, thus increasing the renal clearance of the drug.
Prochlorperazine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Progesterone: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Progestins: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Promethazine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Promethazine; Dextromethorphan: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Promethazine; Phenylephrine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Protriptyline: (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold. In addition, during concurrent use of topiramate and amitriptyline the Cmax and AUC of amitriptyline were increased by 12%. Dosage adjustments of amitriptyline may be needed based upon tolerability to the regimen during combined use of amitriptyline and topiramate.
Quazepam: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Ramelteon: (Major) Although not specifically studied, coadministration of CNS depressant drugs with topiramate may potentiate CNS depression such as dizziness or cognitive adverse reactions, or other centrally mediated effects of these agents. Monitor for increased CNS effects if coadministering.
Relugolix; Estradiol; Norethindrone acetate: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Remimazolam: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Rilpivirine: (Moderate) Close clinical monitoring is advised when administering topiramate with rilpivirine due to the potential for rilpivirine treatment failure. Although this interaction has not been studied, predictions can be made based on metabolic pathways. Topiramate is an inducer of the hepatic isoenzyme CYP3A4; rilpivirine is metabolized by this isoenzyme. Coadministration may result in decreased rilpivirine serum concentrations and impaired virologic response.
Ritonavir: (Moderate) Concurrent administration of topiramate with ritonavir may result in decreased concentrations of ritonavir. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Ritonavir is metabolized by this enzyme. Caution and close monitoring are advised if these drugs are administered together.
Rivaroxaban: (Moderate) Concurrent use of topiramate and anticoagulants may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation. If these drugs are administered concurrently, monitor the patient for signs of bleeding.
Rofecoxib: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Romidepsin: (Moderate) Romidepsin is a substrate for CYP3A4. Coadministration of a CYP3A4 inducer, like topiramate, may decrease systemic concentrations of romidepsin. Use caution when concomitant administration of these agents is necessary.
Rufinamide: (Moderate) Concurrent use of topiramate and drugs that cause thrombocytopenia such as the anticonvulsant rufinamide, may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Salicylates: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Salsalate: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Segesterone Acetate; Ethinyl Estradiol: (Moderate) Topiramate may reduce the efficacy of progestins used in contraception or hormone replacement therapies. Reduced contraceptive efficacy can occur even in the absence of breakthrough bleeding. Dosages of hormone replacement products may need adjustment. Different or additional forms of contraception (e.g., non-hormonal contraceptives) may also be needed. In a pharmacokinetic interaction study, a combination oral contraceptive (containing norethindrone and ethinyl estradiol) administered with only topiramate at doses of 50 to 200 mg/day did not result in clinically significant alterations of AUC for either component of the oral contraceptive. Norethindrone pharmacokinetics were not significantly affected. Pregnancy has been reported in patients who are using hormonal-containing contraceptives and hepatic enzyme inducers.
Sertraline: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as selective serotonin reuptake inhibitors (SSRIs) like topiramate may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Simeprevir: (Major) Avoid concurrent use of simeprevir and topiramate. Induction of CYP3A4 by topiramate may significantly reduce the plasma concentrations of simeprevir, resulting in treatment failure.
Sirolimus: (Moderate) Monitor for loss of efficacy of sirolimus during coadministration of topiramate; a sirolimus dose adjustment may be necessary. Monitor sirolimus serum concentrations as appropriate. Sirolimus is a sensitive CYP3A substrate with a narrow therapeutic range; topiramate is a weak CYP3A inducer.
Sofosbuvir; Velpatasvir: (Major) Use caution when administering velpatasvir with topiramate. Taking these drugs together may decrease velpatasvir plasma concentrations, potentially resulting in loss of antiviral efficacy. Velpatasvir is a CYP3A4 substrate; topiramate is a weak inducer of CYP3A4.
Sofosbuvir; Velpatasvir; Voxilaprevir: (Major) Use caution when administering velpatasvir with topiramate. Taking these drugs together may decrease velpatasvir plasma concentrations, potentially resulting in loss of antiviral efficacy. Velpatasvir is a CYP3A4 substrate; topiramate is a weak inducer of CYP3A4.
Solifenacin: (Moderate) Through an additive effect, the use of topiramate with agents that may increase the risk for heat related disorders, such as solifenacin, may lead to oligohidrosis, hyperthermia, and/or heat stroke.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Sufentanil: (Moderate) Because the dose of the sufentanil sublingual tablets cannot be titrated, consider an alternate opiate if topiramate must be administered. Monitor for reduced efficacy of sufentanil injection and signs of opioid withdrawal if coadministration with topiramate is necessary; consider increasing the dose of sufentanil injection as needed. If topiramate is discontinued, consider a dose reduction of sufentanil injection and frequently monitor for signs or respiratory depression and sedation. Sufentanil is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease sufentanil concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Sulindac: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Sumatriptan; Naproxen: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Telithromycin: (Moderate) Caution is warranted when topiramate is administered with telithromycin as there is a potential for decreased telithromycin concentrations and loss of efficacy. Topiramate is not extensively metabolized, but is a mild CYP3A4 inducer. Telithromycin is a substrate of CYP3A4.
Telmisartan; Amlodipine: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as topiramate, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Temazepam: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Terbinafine: (Moderate) Caution is advised when administering terbinafine with topiramate. Although this interaction has not been studied by the manufacturer, and published literature suggests the potential for interactions to be low, taking these drugs together may alter the systemic exposure of terbinafine. Predictions about the interaction can be made based on the metabolic pathways of both drugs. Terbinafine is metabolized by at least 7 CYP isoenyzmes, with major contributions coming from CYP2C19 and CYP3A4; topiramate is an inducer of CYP3A4 and an inhibitor of CYP2C19. Monitor patients for adverse reactions and breakthrough fungal infections if these drugs are coadministered.
Thiethylperazine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Thioridazine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Thrombin Inhibitors: (Moderate) Concurrent use of topiramate and anticoagulants (e.g., warfarin, enoxaparin, dabigatran) may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Tiagabine: (Moderate) Concurrent use of topiramate and drugs that cause thrombocytopenia such as the anticonvulsant tiagabine, may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Ticagrelor: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates or platelet inhibitors may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Ticlopidine: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates or platelet inhibitors may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Tirofiban: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as aspirin, ASA and other salicylates or platelet inhibitors may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2-3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Tolmetin: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Tolterodine: (Moderate) Through an additive effect, the use of topiramate (a weak carbonic anhydrase inhibitor) with agents that may increase the risk for heat-related disorders, such as antimuscarinics, may lead to oligohidrosis, hyperthermia and/or heat stroke.
Torsemide: (Moderate) Topiramate is a carbonic anhydrase inhibitor. Concurrent use of topiramate with non-potassium sparing diuretics (e.g., loop diuretics) may potentiate the potassium-wasting action of these diuretics. Monitor baseline and periodic potassium concentrations during coadministration.
Tramadol: (Moderate) Topiramate may contribute to the CNS depression seen with tramadol; tramadol may also decrease the seizure threshold in some patients and thus, potentially, interfere with the ability of anticonvulsants to control seizures.
Tramadol; Acetaminophen: (Moderate) Topiramate may contribute to the CNS depression seen with tramadol; tramadol may also decrease the seizure threshold in some patients and thus, potentially, interfere with the ability of anticonvulsants to control seizures.
Tretinoin, ATRA: (Moderate) Topiramate may increase the CYP450 metabolism of tretinoin, ATRA, potentially resulting in decreased plasma concentrations of tretinoin, ATRA. Monitor for decreased clinical effects of tretinoin, ATRA while receiving concomitant therapy.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Triazolam: (Moderate) Topiramate has the potential to cause CNS depression as well as other cognitive and/or neuropsychiatric adverse reactions. The CNS depressant effects of topiramate can be potentiated pharmacodynamically by concurrent use of CNS depressant agents such as the benzodiazepines. Concurrent use of topiramate and benzodiazepines associated with thrombocytopenia (e.g., clonazepam, lorazepam, and clobazam), may also increase the risk of bleeding; monitor patients appropriately during benzodiazepine therapy.
Tricyclic antidepressants: (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold. In addition, during concurrent use of topiramate and amitriptyline the Cmax and AUC of amitriptyline were increased by 12%. Dosage adjustments of amitriptyline may be needed based upon tolerability to the regimen during combined use of amitriptyline and topiramate.
Trifluoperazine: (Moderate) The phenothiazines, when used concomitantly with anticonvulsants, can lower the seizure threshold. Adequate dosages of anticonvulsants should be continued when a phenothiazine is added.
Trimipramine: (Moderate) Tricyclic antidepressants, when used concomitantly with anticonvulsants, can increase CNS depression and may also lower the seizure threshold. In addition, during concurrent use of topiramate and amitriptyline the Cmax and AUC of amitriptyline were increased by 12%. Dosage adjustments of amitriptyline may be needed based upon tolerability to the regimen during combined use of amitriptyline and topiramate.
Trospium: (Moderate) Oligohidrosis and hyperthermia have been reported in post-marketing experience with topiramate. Use caution when topiramate is prescribed with agents known to predispose patients to similar heat-related disorders such as trospium.
Ulipristal: (Major) Avoid administration of ulipristal with drugs that induce CYP3A4. Ulipristal is a substrate of CYP3A4 and topiramate is a mild CYP3A4 inducer. Concomitant use may decrease the plasma concentration and effectiveness of ulipristal.
Valdecoxib: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Valproic Acid, Divalproex Sodium: (Moderate) Concomitant administration of topiramate and valproic acid has been associated with hyperammonemia with or without encephalopathy in patients who have tolerated either drug alone. In addition, concomitant administration of topiramate and valproic acid has been associated with hypothermia with or without hyperammonemia in patients who have tolerated either drug alone. Assessment of blood ammonia levels may be advisable in patients presenting with symptoms of hypothermia. Concurrent use of topiramate and drugs that cause thrombocytopenia, such as valproic acid, may also increase the risk of bleeding; monitor patients appropriately. In several case reports, children with localized epilepsy have presented with somnolence, seizure exacerbation, behavioral alteration, decline in speech and cognitive abilities, and ataxia while being treated with a combination of valproate and topiramate. Previously, the children tolerated valproic acid with other antiepileptic drugs. Children presented with elevated serum ammonia, normal or elevated LFTs, and generalized slowing of EEG background activity during encephalopathy, which promptly reverted to normal along with clinical improvement following withdrawal of valproate. The possible mechanism is topiramate-induced aggravation of all the known complications of valproic acid monotherapy; it is not due to a pharmacokinetic interaction. This condition is reversible with cessation of either valproic acid or topiramate.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Concurrent use or topiramate, a carbonic anhydrase inhibitor, with non-potassium sparing diuretics (e.g., thiazide diuretics) may potentiate the potassium-wasting action of these diuretics. Additionally, the addition of HCTZ to topiramate therapy may require a reduction in the topiramate dose. Alternatively, the discontinuation of HCTZ therapy may require a dose increase in topiramate. In a pharmacokinetic drug interaction study, the topiramate Cmax and AUC increased by 27% and 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The steady-state pharmacokinetics of HCTZ were not altered to any significant degree.
Vemurafenib: (Major) Concomitant use of vemurafenib and topiramate may result in decreased concentrations of vemurafenib. Vemurafenib is a CYP3A4 substrate and topiramate is a weak CYP3A4 inducer. Use caution and monitor patients for therapeutic effects.
Vorapaxar: (Moderate) Use caution during concurrent use of vorapaxar and topiramate. Decreased serum concentrations of vorapaxar and thus decreased efficacy are possible when vorapaxar, a CYP3A4 substrate, is coadministered with topiramate, a mild inducer of CYP3A4 in vitro. In addition, concurrent use of topiramate and drugs that affect platelet function such as platelet inhibitors may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (23%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Warfarin: (Moderate) Closely monitor the INR if coadministration of warfarin with topiramate is necessary as concurrent use may decrease the exposure of warfarin leading to reduced efficacy; increased bleeding is also possible with the combination. Topiramate is a weak CYP3A4 inducer and the R-enantiomer of warfarin is a CYP3A4 substrate. The S-enantiomer of warfarin exhibits 2 to 5 times more anticoagulant activity than the R-enantiomer, but the R-enantiomer generally has a slower clearance. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate compared to placebo. In patients with serious bleeding events, conditions that increased the risk for bleeding, including concurrent use of drugs that affect coagulation, were often present.
Zonisamide: (Moderate) Monitor for the appearance or worsening of metabolic acidosis if zonisamide is given concomitantly with topiramate. Concomitant use of zonisamide with another carbonic anhydrase inhibitor, like topiramate, may increase the severity of metabolic acidosis and may also increase the risks of hyperammonemia, encephalopathy, and kidney stone formation. Monitor serum ammonia concentrations if signs or symptoms of encephalopathy occur. Hyperammonemia resulting from zonisamide resolves when zonisamide is discontinued and may resolve or decrease in severity with a decrease of the daily dose.