DRUG INTERACTIONS
Abacavir; Dolutegravir; Lamivudine: (Major) Avoid concurrent use of dolutegravir with oxcarbazepine, as coadministration may result in decreased dolutegravir plasma concentrations. Currently, there are insufficient data to make dosing recommendations; however, predictions regarding this interaction can be made based on the drugs metabolic pathways. Oxcarbazepine is an inducer of CYP3A, dolutegravir is partially metabolized by this isoenzyme.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Concomitant use of dihydrocodeine with oxcarbazepine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If oxcarbazepine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Oxcarbazepine is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Acetaminophen; Hydrocodone: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Acetaminophen; Oxycodone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of oxycodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Alfentanil: (Moderate) Drugs that induce cytochrome P450 3A4, including oxcarbazepine, may decrease the effectiveness of alfentanil. Alfentanil is a substrate for the cytochrome 3A4 isoenzyme. Induction of alfentanil metabolism may take several days.
Aliskiren; Amlodipine: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as oxcarbazepine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as oxcarbazepine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Alprazolam: (Moderate) Oxcarbazepine and its active metabolite, MHD, are dose-dependent inducers of the hepatic CYP3A4/5 isoenzymes thereby having the potential to lower the plasma levels of medications metabolized through these pathways. The effectiveness of medications such as alprazolam could theoretically be decreased. In addition, concomitant administration of alprazolam with CNS-depressant drugs, including anticonvulsants, can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent.
Amitriptyline: (Moderate) Use amitriptyline with caution in patients with a history of seizures; amitriptyline may lower the seizure threshold and thus potentially interfere with the ability of antiepileptics to control seizures. In addition, concomitant use of amitriptyline and oxcarbazepine may result in additive CNS depression. Oxcarbazepine, a CYP2C19 inhibitor, can increase plasma concentrations of amitriptyline, a substrate of CYP2C19.
Amitriptyline; Chlordiazepoxide: (Moderate) Use amitriptyline with caution in patients with a history of seizures; amitriptyline may lower the seizure threshold and thus potentially interfere with the ability of antiepileptics to control seizures. In addition, concomitant use of amitriptyline and oxcarbazepine may result in additive CNS depression. Oxcarbazepine, a CYP2C19 inhibitor, can increase plasma concentrations of amitriptyline, a substrate of CYP2C19.
Amlodipine: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as oxcarbazepine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Atorvastatin: (Moderate) Monitor for potential reduced cholesterol-lowering efficacy when oxcarbazepine is coadministered with atorvastatin. Oxcarbazepine, which is a CYP3A4 inducer, may decrease the efficacy of atorvastatin, a CYP3A4 substrate. (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as oxcarbazepine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Benazepril: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as oxcarbazepine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Hydrochlorothiazide, HCTZ; Olmesartan: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as oxcarbazepine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Hydrochlorothiazide, HCTZ; Valsartan: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as oxcarbazepine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Olmesartan: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as oxcarbazepine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Telmisartan: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as oxcarbazepine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amlodipine; Valsartan: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as oxcarbazepine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Amoxicillin; Clarithromycin; Lansoprazole: (Major) Coadministration of oxcarbazepine and clarithromycin may decrease clarithromycin serum concentrations due to CYP3A4 enzyme induction. While the 14-OH-clarithromycin active metabolite concentrations are increased, this metabolite has different antimicrobial activity compared to clarithromycin. The intended therapeutic effect of clarithromycin could be decreased. It is not clear if clarithromycin activity against other organisms would be reduced, but reduced efficacy is possible. Alternatives to clarithromycin should be considered in patients who are taking CYP3A4 inducers.
Amoxicillin; Clarithromycin; Omeprazole: (Major) Coadministration of oxcarbazepine and clarithromycin may decrease clarithromycin serum concentrations due to CYP3A4 enzyme induction. While the 14-OH-clarithromycin active metabolite concentrations are increased, this metabolite has different antimicrobial activity compared to clarithromycin. The intended therapeutic effect of clarithromycin could be decreased. It is not clear if clarithromycin activity against other organisms would be reduced, but reduced efficacy is possible. Alternatives to clarithromycin should be considered in patients who are taking CYP3A4 inducers.
Aripiprazole: (Moderate) Because aripiprazole is partially metabolized by CYP3A4, caution is advisable during use of a CYP3A4 inducer such as oxcarbazepine. If these agents are used in combination, the patient should be carefully monitored for a decrease in aripiprazole efficacy. A dose adjustment of aripiprazole may be needed. Avoid concurrent use of Abilify Maintena with a CYP3A4 inducer when the combined treatment period exceeds 14 days because aripiprazole blood concentrations decline and may become suboptimal. There are no dosing recommendations for Aristada or Aristada Initio during use of a mild to moderate CYP3A4 inducer.
Artemether; Lumefantrine: (Major) Oxcarbazepine is an inducer and both components of artemether; lumefantrine are substrates of the CYP3A4 isoenzyme; therefore, coadministration may lead to decreased artemether; lumefantrine concentrations. Concomitant use warrants caution due to a possible reduction in antimalarial activity.
Aspirin, ASA; Caffeine; Dihydrocodeine: (Moderate) Concomitant use of dihydrocodeine with oxcarbazepine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If oxcarbazepine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Oxcarbazepine is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Aspirin, ASA; Carisoprodol: (Minor) Carisoprodol is extensively metabolized and is a significant substrate of CYP2C19 isoenzymes. Theoretically, CY2C19 inhibitors, such as oxcarbazepine, could increase carisoprodol plasma levels, with potential for enhanced CNS depressant effects.
Aspirin, ASA; Carisoprodol; Codeine: (Minor) Carisoprodol is extensively metabolized and is a significant substrate of CYP2C19 isoenzymes. Theoretically, CY2C19 inhibitors, such as oxcarbazepine, could increase carisoprodol plasma levels, with potential for enhanced CNS depressant effects.
Aspirin, ASA; Oxycodone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of oxycodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Atazanavir: (Major) Oxcarbazepine may increase the metabolism of atazanavir and lead to decreased antiretroviral efficacy. Treatment failures have been reported with other protease inhibitors when carbamazepine was used concomitantly. If atazanavir is added to anticonvulsant therapy, the patient should be observed for changes in the clinical efficacy of the antiretroviral regimen or seizure control. Monitor serum concentrations.
Atazanavir; Cobicistat: (Major) Coadministration of oxcarbazepine with regimens containing cobicistat and atazanavir or darunavir should be avoided. If these drugs are used together, significant decreases in the plasma concentrations of cobicistat, atazanavir and potentally darunavir may occur, resulting in reduction of antiretroviral efficacy and development of viral resistance. Consider use of an alternative anticonvulsant or antiretroviral therapy. (Major) Oxcarbazepine may increase the metabolism of atazanavir and lead to decreased antiretroviral efficacy. Treatment failures have been reported with other protease inhibitors when carbamazepine was used concomitantly. If atazanavir is added to anticonvulsant therapy, the patient should be observed for changes in the clinical efficacy of the antiretroviral regimen or seizure control. Monitor serum concentrations.
Atorvastatin: (Moderate) Monitor for potential reduced cholesterol-lowering efficacy when oxcarbazepine is coadministered with atorvastatin. Oxcarbazepine, which is a CYP3A4 inducer, may decrease the efficacy of atorvastatin, a CYP3A4 substrate.
Atorvastatin; Ezetimibe: (Moderate) Monitor for potential reduced cholesterol-lowering efficacy when oxcarbazepine is coadministered with atorvastatin. Oxcarbazepine, which is a CYP3A4 inducer, may decrease the efficacy of atorvastatin, a CYP3A4 substrate.
Atropine; Hyoscyamine; Phenobarbital; Scopolamine: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if phenobarbital and oxcarbazepine are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of phenobarbital. Additive CNS depression may also occur. Coadministration of oxcarbazepine (600 to 1,800 mg/day) with phenobarbital (100 to 150 mg/day) decreased the plasma concentration of MHD by 25% and increased the plasma concentration of phenobarbital by 14%. Strong CYP3A4 inducers and UGT inducers have been shown to decrease plasma concentrations of MHD. Phenobarbital is a strong CYP3A4 inducer and UGT inducer.
Belladonna Alkaloids; Ergotamine; Phenobarbital: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if phenobarbital and oxcarbazepine are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of phenobarbital. Additive CNS depression may also occur. Coadministration of oxcarbazepine (600 to 1,800 mg/day) with phenobarbital (100 to 150 mg/day) decreased the plasma concentration of MHD by 25% and increased the plasma concentration of phenobarbital by 14%. Strong CYP3A4 inducers and UGT inducers have been shown to decrease plasma concentrations of MHD. Phenobarbital is a strong CYP3A4 inducer and UGT inducer.
Benzhydrocodone; Acetaminophen: (Moderate) Concurrent use of benzhydrocodone with oxcarbazepine may decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. If concomitant use is necessary, consider increasing the benzhydrocodone dosage until stable drug effects are achieved. Monitor for signs of opioid withdrawal. Discontinuation of oxcarbazepine may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. If oxcarbazepine is discontinued, consider a benzhydrocodone dosage reduction and monitor patients for respiratory depression and sedation at frequent intervals. Benzhydrocodone is a prodrug of hydrocodone. Oxcarbazepine is an inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of hydrocodone.
Bictegravir; Emtricitabine; Tenofovir Alafenamide: (Major) Consider an alternative anticonvulsant during treatment with bictegravir. Concomitant use of bictegravir and oxcarbazepine may result in decreased bictegravir plasma concentrations, which may result in the loss of therapeutic efficacy and development of resistance.
Brexpiprazole: (Moderate) Because brexpiprazole is partially metabolized by CYP3A4, systemic exposure to brexpiprazole may be decreased during co-administration of a CYP3A4 inducer, such as oxcarbazepine. If these agents are used in combination, the patient should be carefully monitored for a decrease in brexpiprazole efficacy and dose adjustments made accordingly.
Brompheniramine; Guaifenesin; Hydrocodone: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Brompheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Buprenorphine: (Moderate) Close monitoring of the patient is recommended if a CYP3A4 inducer, such as oxcarbazepine, is used with a CYP3A4 substrate, such as buprenorphine. Moderate to strong CYP3A4 inducers may increase the hepatic metabolism of buprenorphine, which may lead to opiate withdrawal or inadequate pain control. This interaction is most significant if the enzyme-inducing agent is added after buprenorphine therapy has begun. Buprenorphine doses may need to be increased if a CYP3A4 inducer is added. Conversely, buprenorphine doses may need to be decreased if the CYP3A4 inducer discontinued.
Buprenorphine; Naloxone: (Moderate) Close monitoring of the patient is recommended if a CYP3A4 inducer, such as oxcarbazepine, is used with a CYP3A4 substrate, such as buprenorphine. Moderate to strong CYP3A4 inducers may increase the hepatic metabolism of buprenorphine, which may lead to opiate withdrawal or inadequate pain control. This interaction is most significant if the enzyme-inducing agent is added after buprenorphine therapy has begun. Buprenorphine doses may need to be increased if a CYP3A4 inducer is added. Conversely, buprenorphine doses may need to be decreased if the CYP3A4 inducer discontinued.
Bupropion: (Moderate) Bupropion should not be used by patients with a preexisting seizure disorder because it may lower the seizure threshold.
Bupropion; Naltrexone: (Moderate) Bupropion should not be used by patients with a preexisting seizure disorder because it may lower the seizure threshold.
Carbamazepine: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if carbamazepine and oxcarbazepine are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of carbamazepine. Coadministration of carbamazepine (400 to 2,000 mg/day) with oxcarbazepine (900 mg/day) decreased MHD concentrations by 40%. Strong CYP3A4 inducers or UGT inducers have been shown to decrease plasma concentrations of MHD. Carbamazepine is a strong CYP3A4 inducer and a UGT inducer.
Carbinoxamine; Hydrocodone; Phenylephrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Carbinoxamine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Cariprazine: (Major) Cariprazine and its active metabolites are extensively metabolized by CYP3A4. Concurrent use of cariprazine with CYP3A4 inducers, such as oxcarbazepine, has not been evaluated and is not recommended because the net effect on active drug and metabolites is unclear.
Carisoprodol: (Minor) Carisoprodol is extensively metabolized and is a significant substrate of CYP2C19 isoenzymes. Theoretically, CY2C19 inhibitors, such as oxcarbazepine, could increase carisoprodol plasma levels, with potential for enhanced CNS depressant effects.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Concomitant use of dihydrocodeine with oxcarbazepine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If oxcarbazepine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Oxcarbazepine is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Chlorpheniramine; Dihydrocodeine; Pseudoephedrine: (Moderate) Concomitant use of dihydrocodeine with oxcarbazepine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If oxcarbazepine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Oxcarbazepine is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Chlorpheniramine; Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Chlorpheniramine; Hydrocodone: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Chlorpheniramine; Hydrocodone; Phenylephrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Chlorpheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Cisapride: (Moderate) Cisapride is metabolized by the hepatic cytochrome P450 enzyme system, specifically the CYP3A4 isoenzyme. Inducers of CYP3A4, such as oxcarbazepine, may increase the clearance of cisapride.
Citalopram: (Moderate) The plasma concentration of citalopram, a CYP2C19 substrate, may be increased when administered concurrently with oxcarbazepine, a CYP2C19 inhibitor. Because citalopram causes dose-dependent QT prolongation, the maximum daily dose should not exceed 20 mg per day in patients receiving CYP2C19 inhibitors.
Clarithromycin: (Major) Coadministration of oxcarbazepine and clarithromycin may decrease clarithromycin serum concentrations due to CYP3A4 enzyme induction. While the 14-OH-clarithromycin active metabolite concentrations are increased, this metabolite has different antimicrobial activity compared to clarithromycin. The intended therapeutic effect of clarithromycin could be decreased. It is not clear if clarithromycin activity against other organisms would be reduced, but reduced efficacy is possible. Alternatives to clarithromycin should be considered in patients who are taking CYP3A4 inducers.
Clomipramine: (Moderate) Use clomipramine with caution in patients with a history of seizures; clomipramine may lower the seizure threshold and thus potentially interfere with the ability of antiepileptics to control seizures. In addition, concomitant use of clomipramine and oxcarbazepine may result in additive CNS depression. Oxcarbazepine, a CYP2C19 inhibitor, can increase plasma concentrations of clomipramine, a substrate of CYP2C19.
Clopidogrel: (Major) Oxcarbazepine may reduce the antiplatelet activity of clopidogrel by inhibiting clopidogrel's metabolism to its active metabolite. Use oxcarbazepine and clopidogrel together with caution and monitor for reduced efficacy of clopidogrel. Clopidogrel requires hepatic biotransformation via 2 cytochrome dependent oxidative steps; the CYP2C19 isoenzyme is involved in both steps. Oxcarbazepine is an inhibitor of CYP2C19.
Clozapine: (Major) Clozapine has an established risk of seizures, which may compromise the effectiveness of oxcarbazepine in the treatment of seizure disorders. In addition, concurrent use of clozapine and oxcarbazepine may decrease the therapeutic effects of clozapine since oxcarbazepine is an inducer of CYP3A4 and clozapine is a substrate for this isoenzyme. According to the manufacturer of clozapine, patients receiving clozapine in combination with a weak to moderate CYP3A4 inducer should be monitored for loss of effectiveness. Consideration should be given to increasing the clozapine dose if necessary. If the inducer is discontinued, monitor for adverse reactions, and consider reducing the clozapine dose if necessary. Monitor for additive CNS effects.
Cobicistat: (Major) Coadministration of oxcarbazepine with regimens containing cobicistat and atazanavir or darunavir should be avoided. If these drugs are used together, significant decreases in the plasma concentrations of cobicistat, atazanavir and potentally darunavir may occur, resulting in reduction of antiretroviral efficacy and development of viral resistance. Consider use of an alternative anticonvulsant or antiretroviral therapy.
Colesevelam: (Moderate) Colesevelam may decrease the bioavailability of oxcarbazepine. To minimize potential for interactions, consider administering oral anticonvulsants such as oxcarbazepine at least 1 hour before or at least 4 hours after colesevelam.
Conjugated Estrogens: (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Conjugated Estrogens; Bazedoxifene: (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Conjugated Estrogens; Medroxyprogesterone: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Cyclosporine: (Moderate) Oxcarbazepine and its active metabolite, MHD, are dose-dependent inducers of the hepatic CYP3A4/5 isoenzymes thereby having the potential to lower the plasma levels of medications metabolized through these pathways, including cyclosporine.
Darunavir: (Major) Oxcarbazepine may increase the metabolism of darunavir and lead to decreased antiretroviral efficacy. Treatment failures have been reported with other protease inhibitors when carbamazepine was used concomitantly. If darunavir is added to anticonvulsant therapy, the patient should be observed for changes in the clinical efficacy of the antiretroviral regimen or seizure control. Monitor serum concentrations.
Darunavir; Cobicistat: (Major) Coadministration of oxcarbazepine with regimens containing cobicistat and atazanavir or darunavir should be avoided. If these drugs are used together, significant decreases in the plasma concentrations of cobicistat, atazanavir and potentally darunavir may occur, resulting in reduction of antiretroviral efficacy and development of viral resistance. Consider use of an alternative anticonvulsant or antiretroviral therapy. (Major) Oxcarbazepine may increase the metabolism of darunavir and lead to decreased antiretroviral efficacy. Treatment failures have been reported with other protease inhibitors when carbamazepine was used concomitantly. If darunavir is added to anticonvulsant therapy, the patient should be observed for changes in the clinical efficacy of the antiretroviral regimen or seizure control. Monitor serum concentrations.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Major) Coadministration of oxcarbazepine with regimens containing cobicistat and atazanavir or darunavir should be avoided. If these drugs are used together, significant decreases in the plasma concentrations of cobicistat, atazanavir and potentally darunavir may occur, resulting in reduction of antiretroviral efficacy and development of viral resistance. Consider use of an alternative anticonvulsant or antiretroviral therapy. (Major) Oxcarbazepine may increase the metabolism of darunavir and lead to decreased antiretroviral efficacy. Treatment failures have been reported with other protease inhibitors when carbamazepine was used concomitantly. If darunavir is added to anticonvulsant therapy, the patient should be observed for changes in the clinical efficacy of the antiretroviral regimen or seizure control. Monitor serum concentrations.
Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Severe) Concurrent administration of oxcarbazepine with dasabuvir; ombitasvir; paritaprevir; ritonavir is contraindicated. Taking these drugs together could result in decreased plasma concentrations of paritaprevir, ritonavir, and dasabuvir, which may affect antiviral efficacy. Oxcarbazepine is a moderate inducer of the hepatic isoenzyme CYP3A4, and ritonavir, paritaprevir, and dasabuvir (minor) are CYP3A4 substrates. (Major) Concurrent administration of oxcarbazepine with ritonavir should be undertaken with caution and careful monitoring of antiviral efficacy. Oxcarbazepine is a moderate inducer of the hepatic isoenzyme CYP3A4, and ritonavir is a CYP3A4 substrate.
Desipramine: (Moderate) Use desipramine with caution in patients with a history of seizures; desipramine may lower the seizure threshold and thus potentially interfere with the ability of antiepileptics to control seizures. In addition, concomitant use of desipramine and oxcarbazepine may result in additive CNS depression.
Dienogest; Estradiol valerate: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Diethylstilbestrol, DES: (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Dihydrocodeine; Guaifenesin; Pseudoephedrine: (Moderate) Concomitant use of dihydrocodeine with oxcarbazepine can decrease dihydrocodeine levels, resulting in less metabolism by CYP2D6 and decreased dihydromorphine concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. If coadministration is necessary, monitor for reduced efficacy of dihydrocodeine and signs of opioid withdrawal; consider increasing the dose of dihydrocodeine as needed. If oxcarbazepine is discontinued, consider a dose reduction of dihydrocodeine and frequently monitor for signs or respiratory depression and sedation. Oxcarbazepine is a weak inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine.
Diphenhydramine; Hydrocodone; Phenylephrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Dolutegravir: (Major) Avoid concurrent use of dolutegravir with oxcarbazepine, as coadministration may result in decreased dolutegravir plasma concentrations. Currently, there are insufficient data to make dosing recommendations; however, predictions regarding this interaction can be made based on the drugs metabolic pathways. Oxcarbazepine is an inducer of CYP3A, dolutegravir is partially metabolized by this isoenzyme.
Dolutegravir; Lamivudine: (Major) Avoid concurrent use of dolutegravir with oxcarbazepine, as coadministration may result in decreased dolutegravir plasma concentrations. Currently, there are insufficient data to make dosing recommendations; however, predictions regarding this interaction can be made based on the drugs metabolic pathways. Oxcarbazepine is an inducer of CYP3A, dolutegravir is partially metabolized by this isoenzyme.
Dolutegravir; Rilpivirine: (Severe) Concurrent use of oxcarbazepine and rilpivirine is contraindicated. When these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Oxcarbazepine is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine. (Major) Avoid concurrent use of dolutegravir with oxcarbazepine, as coadministration may result in decreased dolutegravir plasma concentrations. Currently, there are insufficient data to make dosing recommendations; however, predictions regarding this interaction can be made based on the drugs metabolic pathways. Oxcarbazepine is an inducer of CYP3A, dolutegravir is partially metabolized by this isoenzyme.
Doravirine: (Severe) Concurrent administration of doravirine and oxcarbazepine is contraindicated due to decreased doravirine exposure, resulting in potential loss of virologic control. At least a 4-week cessation period is recommended before initiating treatment with doravirine. Doravirine is a CYP3A4 substrate; oxcarbazepine is a CYP3A4 inducer.
Doravirine; Lamivudine; Tenofovir disoproxil fumarate: (Severe) Concurrent administration of doravirine and oxcarbazepine is contraindicated due to decreased doravirine exposure, resulting in potential loss of virologic control. At least a 4-week cessation period is recommended before initiating treatment with doravirine. Doravirine is a CYP3A4 substrate; oxcarbazepine is a CYP3A4 inducer.
Doxepin: (Moderate) Use doxepin with caution in patients with a history of seizures; doxepin may lower the seizure threshold and thus potentially interfere with the ability of antiepileptics to control seizures. In addition, concomitant use of doxepin and oxcarbazepine may result in additive CNS depression. Oxcarbazepine, a CYP2C19 inhibitor, can increase plasma concentrations of doxepin, a substrate of CYP2C19.
Doxorubicin: (Major) Oxcarbazepine is a CYP3A4 inducer and doxorubicin is a major substrate of CYP3A4. Inducers of CYP3A4 may decrease the concentration of doxorubicin and compromise the efficacy of chemotherapy. Avoid coadministration of oxcarbazepine and doxorubicin if possible. If not possible, monitor doxorubicin closely for efficacy.
Dronabinol: (Moderate) Use caution if coadministration of dronabinol with oxcarbazepine is necessary, and monitor for a decrease in the efficacy of dronabinol. Additive dizziness, confusion, somnolence, and other CNS effects may also occur. Dronabinol is a CYP2C9 and 3A4 substrate; oxcarbazepine is a moderate inducer of CYP3A4. Concomitant use may result in decreased plasma concentrations of dronabinol.
Dronedarone: (Major) The concomitant use of dronedarone and CYP3A4 inducers should be avoided. Dronedarone is metabolized by CYP3A. Oxcarbazepine induces CYP3A4. Coadministration of CYP3A4 inducers, such as oxcarbazepine, with dronedarone may result in reduced plasma concentration and subsequent reduced effectiveness of dronedarone therapy.
Drospirenone: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Drospirenone; Estradiol: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Drospirenone; Ethinyl Estradiol: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Elvitegravir: (Major) Coadministration may result in significant decreases in the plasma concentrations of elvitegravir, leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. Oxcarbazepine induces the CYP3A4 metabolism of elvitegravir. Consider an alternative anticonvulsant when using elvitegravir. The combination product cobicistat; elvitegravir; emtricitabine; tenofovir is contraindicated in combination with oxcarbazepine as the concentrations of both elvitegravir and cobicistat may be significantly decreased.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Major) Coadministration may result in significant decreases in the plasma concentrations of elvitegravir, leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. Oxcarbazepine induces the CYP3A4 metabolism of elvitegravir. Consider an alternative anticonvulsant when using elvitegravir. The combination product cobicistat; elvitegravir; emtricitabine; tenofovir is contraindicated in combination with oxcarbazepine as the concentrations of both elvitegravir and cobicistat may be significantly decreased. (Major) Coadministration of oxcarbazepine with regimens containing cobicistat and atazanavir or darunavir should be avoided. If these drugs are used together, significant decreases in the plasma concentrations of cobicistat, atazanavir and potentally darunavir may occur, resulting in reduction of antiretroviral efficacy and development of viral resistance. Consider use of an alternative anticonvulsant or antiretroviral therapy.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Coadministration may result in significant decreases in the plasma concentrations of elvitegravir, leading to a reduction of antiretroviral efficacy and the potential development of viral resistance. Oxcarbazepine induces the CYP3A4 metabolism of elvitegravir. Consider an alternative anticonvulsant when using elvitegravir. The combination product cobicistat; elvitegravir; emtricitabine; tenofovir is contraindicated in combination with oxcarbazepine as the concentrations of both elvitegravir and cobicistat may be significantly decreased. (Major) Coadministration of oxcarbazepine with regimens containing cobicistat and atazanavir or darunavir should be avoided. If these drugs are used together, significant decreases in the plasma concentrations of cobicistat, atazanavir and potentally darunavir may occur, resulting in reduction of antiretroviral efficacy and development of viral resistance. Consider use of an alternative anticonvulsant or antiretroviral therapy.
Emtricitabine; Rilpivirine; Tenofovir alafenamide: (Severe) Concurrent use of oxcarbazepine and rilpivirine is contraindicated. When these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Oxcarbazepine is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine.
Emtricitabine; Rilpivirine; Tenofovir disoproxil fumarate: (Severe) Concurrent use of oxcarbazepine and rilpivirine is contraindicated. When these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Oxcarbazepine is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine.
Enalapril; Felodipine: (Moderate) The AUC of felodipine was decreased by 28% during repeated administration with oxcarbazepine. This interaction can be anticipated because felodipine is metabolized through the CYP3A4 isoenzyme which is induced by oxcarbazepine and its active metabolite, MHD.
Enzalutamide: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if enzalutamide and oxcarbazepine are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of enzalutamide. Enzalutamide is a strong CYP3A4 inducer. Coadministration with other strong CYP3A4 inducers decreased plasma concentrations of MHD by 25% to 40%.
Erlotinib: (Moderate) There may be a risk of reduced erlotinib efficacy when coadministered with oxcarbazepine; however, the risk has not been clearly defined. If coadministration is necessary, consider increasing the erlotinib dose by 50 mg increments at 2-week intervals as tolerated, to a maximum of 450 mg. Erlotinib is a CYP3A4 substrate, and oxcarbazepine is a moderate CYP3A4 inducer.
Eslicarbazepine: (Severe) Eslicarbazepine is a prodrug for the active metabolite of oxcarbazepine and should therefore not be used as adjunctive therapy with oxcarbazepine.
Esterified Estrogens: (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Esterified Estrogens; Methyltestosterone: (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Estradiol Cypionate; Medroxyprogesterone: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Estradiol: (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Estradiol; Levonorgestrel: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Estradiol; Norethindrone: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Estradiol; Norgestimate: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Estradiol; Progesterone: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Estrogens: (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Estropipate: (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethanol: (Moderate) Use of alcohol should be avoided in patients receiving oxcarbazepine. An additive CNS depressant effect can be expected during the concurrent use of ethanol and oxcarbazepine.
Ethinyl Estradiol: (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Desogestrel: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Ethynodiol Diacetate: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Etonogestrel: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Levonorgestrel: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Levonorgestrel; Ferrous bisglycinate: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Levonorgestrel; Folic Acid; Levomefolate: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Norelgestromin: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Norethindrone Acetate: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Norethindrone Acetate; Ferrous fumarate: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Norethindrone: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Norethindrone; Ferrous fumarate: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Norgestimate: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ethinyl Estradiol; Norgestrel: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Etonogestrel: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Etoposide, VP-16: (Major) Monitor for clinical efficacy of etoposide if used concomitantly with oxcarbazepine. Oxcarbazepine is an inducer of CYP3A4; etoposide, VP-16 is a CYP3A4 substrate. Coadministration of etoposide with a strong CYP3A4 inducer (phenytoin) resulted in increased etoposide clearance and reduced efficacy, as did coadministration with a weak inducer of CYP3A4 and P-glycoprotein (P-gp) (valproic acid).
Ezetimibe; Simvastatin: (Minor) Oxcarbazepine which is a CYP3A4 inducer, may decrease the efficacy of HMG-Co-A reductase inhibitors which are CYP3A4 substrates including simvastatin. Monitor for potential reduced cholesterol-lowering efficacy when these drugs are coadministered with HMG-CoA reductase inhibitors which are metabolized by CYP3A4.
Felodipine: (Moderate) The AUC of felodipine was decreased by 28% during repeated administration with oxcarbazepine. This interaction can be anticipated because felodipine is metabolized through the CYP3A4 isoenzyme which is induced by oxcarbazepine and its active metabolite, MHD.
Flibanserin: (Major) The concomitant use of flibanserin with CYP3A4 inducers significantly decreases flibanserin exposure compared to the use of flibanserin alone. Therefore, concurrent use of flibanserin and CYP3A4 inducers, such as oxcarbazepine, is not recommended.
Food: (Moderate) The incidence of marijuana associated adverse effects may change following coadministration with oxcarbazepine. Oxcarbazepine is an inducer of CYP3A4, an isoenzyme partially responsible for the metabolism of marijuana's most psychoactive compound, delta-9-tetrahydrocannabinol (Delta-9-THC). When given concurrently with oxcarbazepine, the amount of Delta-9-THC converted to the active metabolite 11-hydroxy-delta-9-tetrahydrocannabinol (11-OH-THC) may be increased. These changes in Delta-9-THC and 11-OH-THC plasma concentrations may result in an altered marijuana adverse event profile.
Fosphenytoin: (Moderate) Monitor phenytoin concentrations during oxcarbazepine dosage titration or modification, and monitor plasma concentrations of MHD, the active metabolite of oxcarbazepine, during oxcarbazepine titration if oxcarbazepine and fosphenytoin are used concurrently. A dose adjustment of fosphenytoin or oxcarbazepine may be required. Phenytoin concentrations increased up to 40% with concomitant use of phenytoin (250 to 500 mg/day) and oxcarbazepine (1,200 to 2,400 mg/day). Coadministration of phenytoin (250 to 500 mg/day) with oxcarbazepine (600 to 2,400 mg/day) decreased MHD concentrations by 30%.
Guaifenesin; Hydrocodone: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Haloperidol: (Moderate) Careful monitoring of clinical status is warranted when oxcarbazepine, an enzyme-inducing drug, is administered or discontinued in haloperidol-treated patients. Adjust the haloperidol dose as clinically necessary. After discontinuation of oxcarbazepine, it may be necessary to reduce the haloperidol dosage. Significant reductions in haloperidol plasma concentrations have been reported during concurrent use of CYP3A4 enzyme-inducing drugs. Because antipsychotics such as haloperidol may lower the seizure threshold, a reduction in anticonvulsant efficacy may also occur if oxcarbazepine is used for seizures. Additive CNS effects, such as sedation, may also occur in some patients.
Homatropine; Hydrocodone: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydrocodone: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydrocodone; Ibuprofen: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydrocodone; Phenylephrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydrocodone; Potassium Guaiacolsulfonate: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydrocodone; Potassium Guaiacolsulfonate; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydrocodone; Pseudoephedrine: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of hydrocodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Hydroxyprogesterone: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Ibuprofen; Oxycodone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of oxycodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Imipramine: (Moderate) Use imipramine with caution in patients with a history of seizures; imipramine may lower the seizure threshold and thus potentially interfere with the ability of antiepileptics to control seizures. In addition, concomitant use of imipramine and oxcarbazepine may result in additive CNS depression. Oxcarbazepine, a CYP2C19 inhibitor, can increase plasma concentrations of imipramine, a substrate of CYP2C19.
Isavuconazonium: (Major) Caution and close monitoring are warranted when isavuconazonium is administered with oxcarbazepine as there is a potential for decreased concentrations of isavuconazonium. Isavuconazole, the active moiety of isavuconazonium, is a sensitive substrate of hepatic isoenzyme CYP3A4; oxcarbazepine is an inducer of this enzyme.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if oxcarbazepine and rifampin are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of rifampin. Rifampin is a strong CYP3A4 inducer and a UGT inducer. Coadministration with other strong CYP3A4 inducers and/or UGT inducers decreased MHD concentrations by 25% to 40%.
Isoniazid, INH; Rifampin: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if oxcarbazepine and rifampin are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of rifampin. Rifampin is a strong CYP3A4 inducer and a UGT inducer. Coadministration with other strong CYP3A4 inducers and/or UGT inducers decreased MHD concentrations by 25% to 40%.
Ivabradine: (Major) Avoid coadministration of ivabradine and oxcarbazepine. Ivabradine is primarily metabolized by CYP3A4; oxcarbazepine is an inducer of CYP3A4. Coadministration may decrease the plasma concentrations of ivabradine resulting in the potential for treatment failure.
Kava Kava, Piper methysticum: (Major) Kava kava should be avoided when possible in patients taking oxcarbazepine. Additive sedation or other CNS-related side effects are possible. Kava may inhibit CYP enzymes, increasing oxcarbazepine exposure or exposure to the active metabolite (MHC). Liver injury may occur with Kava, which may be an additive side effect with some anticonvulsant treatments. If this herb is consumed by a patient taking oxcarbazepine, monitor the patient closely. While drug concentrations are not routinely monitored, if drug toxicity is suspected, oxcarbazepine concentration monitoring may be useful.
Lacosamide: (Moderate) Use lacosamide with caution in patients taking concomitant medications that affect cardiac conduction including those that prolong PR interval, such as sodium channel blocking anticonvulsants (e.g., oxcarbazepine), because of the risk of AV block, bradycardia, or ventricular tachyarrhythmia. If use together is necessary, obtain an ECG prior to lacosamide initiation and after treatment has been titrated to steady-state. In addition, monitor patients receiving lacosamide via the intravenous route closely.
Leuprolide; Norethindrone: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Levonorgestrel: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Loperamide: (Moderate) The plasma concentration and efficacy of loperamide may be reduced when administered concurrently with oxcarbazepine. Loperamide is metabolized by the hepatic enzyme CYP3A4; oxcarbazepine is an inducer of this enzyme.
Loperamide; Simethicone: (Moderate) The plasma concentration and efficacy of loperamide may be reduced when administered concurrently with oxcarbazepine. Loperamide is metabolized by the hepatic enzyme CYP3A4; oxcarbazepine is an inducer of this enzyme.
Lopinavir; Ritonavir: (Major) Concurrent administration of oxcarbazepine with ritonavir should be undertaken with caution and careful monitoring of antiviral efficacy. Oxcarbazepine is a moderate inducer of the hepatic isoenzyme CYP3A4, and ritonavir is a CYP3A4 substrate.
Lovastatin: (Minor) Oxcarbazepine, which is a CYP3A4 inducer, may decrease the efficacy of HMG-Co-A reductase inhibitors which are CYP3A4 substrates including lovastatin. Monitor for potential reduced cholesterol-lowering efficacy when these drugs are co-administered with HMG-CoA reductase inhibitors which are metabolized by CYP3A4.
Lovastatin; Niacin: (Minor) Oxcarbazepine, which is a CYP3A4 inducer, may decrease the efficacy of HMG-Co-A reductase inhibitors which are CYP3A4 substrates including lovastatin. Monitor for potential reduced cholesterol-lowering efficacy when these drugs are co-administered with HMG-CoA reductase inhibitors which are metabolized by CYP3A4.
Lumacaftor; Ivacaftor: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if oxcarbazepine and lumacaftor are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of lumacaftor. Lumacaftor is a strong CYP3A4 inducer. Coadministration with other strong CYP3A4 inducers decreased plasma concentrations of MHD by 25% to 40%.
Lumacaftor; Ivacaftor: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if oxcarbazepine and lumacaftor are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of lumacaftor. Lumacaftor is a strong CYP3A4 inducer. Coadministration with other strong CYP3A4 inducers decreased plasma concentrations of MHD by 25% to 40%.
Maraviroc: (Moderate) Use caution if coadministration of maraviroc with oxcarbazepine is necessary, due to a possible decrease in maraviroc exposure. Maraviroc is a CYP3A substrate and oxcarbazepine is a CYP3A4 inducer. Monitor for a decrease in maraviroc efficacy with concomitant use.
Medroxyprogesterone: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Mefloquine: (Moderate) Oxcarbazepine induces CYP3A4 and may increase the metabolism of mefloquine if coadministered. Concomitant administration can reduce the clinical efficacy of mefloquine, increasing the risk of Plasmodium falciparum resistance during treatment of malaria. Coadministration of mefloquine and anticonvulsants may also result in lower than expected oxcarbazepine anticonvulsant concentrations and loss of seizure control. Monitoring of the oxcarbazepine serum concentration is recommended. Mefloquine may cause CNS side effects that may cause seizures or alter moods or behaviors.
Mephobarbital: (Moderate) An interaction is possible when oxcarbazepine is coadministered with phenobarbital, the major metabolite of mephobarbital. The mean concentration of MHD, the active metabolite of oxcarbazepine, was decreased in one study, whereas the mean phenobarbital concentration was increased. This interaction likely involves the effects of phenobarbital as an inducer of the CYP3A4 isoenzyme and MHD as an inhibitor of CYP2C19.
Mestranol; Norethindrone: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Mitotane: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if mitotane and oxcarbazepine are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of mitotane. Mitotane is a strong CYP3A4 inducer. Coadministration with other strong CYP3A4 inducers decreased concentrations of MHD by 25% to 40%.
Molindone: (Moderate) Consistent with the pharmacology of molindone, additive effects may occur with other CNS active drugs such as anticonvulsants. In addition, seizures have been reported during the use of molindone, which is of particular significance in patients with a seizure disorder receiving anticonvulsants. Adequate dosages of anticonvulsants should be continued when molindone is added; patients should be monitored for clinical evidence of loss of seizure control or the need for dosage adjustments of either molindone or the anticonvulsant.
Monoamine oxidase inhibitors: (Severe) MAOIs should not be coadministered at the same time with oxcarbazepine, a dibenzazepine-related drug. Hypertensive crises, seizures, coma, or circulatory collapse may occur in patients receiving this combination. At least 7 days should elapse between discontinuation of oxcarbazepine and initiation of an MAOI. MAOIs should be discontinued for a minimum of 14 days or longer if the clinical situation permits, before administering oxcarbazepine. When starting MAOI therapy after discontinuing oxcarbazepine, it is advised to begin the MAOI at one-half the normal starting dosage for at least the first week of therapy. Carefully monitor the patient. Watch carefully for other effects besides effects on blood pressure, such as sedation, confusion, and increased CNS depression. If oxcarbazepine is used for the treatment of epilepsy, be aware that MAOI effects can include lowering of seizure threshold in some patients.
Niacin; Simvastatin: (Minor) Oxcarbazepine which is a CYP3A4 inducer, may decrease the efficacy of HMG-Co-A reductase inhibitors which are CYP3A4 substrates including simvastatin. Monitor for potential reduced cholesterol-lowering efficacy when these drugs are coadministered with HMG-CoA reductase inhibitors which are metabolized by CYP3A4.
Nisoldipine: (Major) Avoid coadministration of nisoldipine with oxcarbazepine due to decreased plasma concentrations of nisoldipine. Alternative antihypertensive therapy should be considered. Nisoldipine is a CYP3A4 substrate and oxcarbazepine is a CYP3A4 inducer. Coadministration with a strong CYP3A4 inducer lowered nisoldipine plasma concentrations to undetectable levels.
Norethindrone: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Norgestrel: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Nortriptyline: (Moderate) Use nortriptyline with caution in patients with a history of seizures; nortriptyline may lower the seizure threshold and thus potentially interfere with the ability of antiepileptics to control seizures. In addition, concomitant use of nortriptyline and oxcarbazepine may result in additive CNS depression.
Ombitasvir; Paritaprevir; Ritonavir: (Severe) Concurrent administration of oxcarbazepine with dasabuvir; ombitasvir; paritaprevir; ritonavir is contraindicated. Taking these drugs together could result in decreased plasma concentrations of paritaprevir, ritonavir, and dasabuvir, which may affect antiviral efficacy. Oxcarbazepine is a moderate inducer of the hepatic isoenzyme CYP3A4, and ritonavir, paritaprevir, and dasabuvir (minor) are CYP3A4 substrates. (Major) Concurrent administration of oxcarbazepine with ritonavir should be undertaken with caution and careful monitoring of antiviral efficacy. Oxcarbazepine is a moderate inducer of the hepatic isoenzyme CYP3A4, and ritonavir is a CYP3A4 substrate.
Oxycodone: (Moderate) Monitor for reduced efficacy of oxycodone and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of oxycodone as needed. If oxcarbazepine is discontinued, consider a dose reduction of oxycodone and frequently monitor for signs of respiratory depression and sedation. Oxycodone is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease oxycodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Pazopanib: (Moderate) Pazopanib is a substrate for CYP3A4. Plasma pazopanib concentrations may be decreased by concurrent administration with a CYP3A4 inducer such as oxcarbazepine. Use caution if chronic use of CYP3A4 inducers and pazopanib can not be avoided.
Pemoline: (Moderate) A reduction in seizure threshold has been reported following concomitant administration of pemoline with anticonvulsant agents.
Perampanel: (Major) Start perampanel at a higher initial dose of 4 mg once daily at bedtime when using concurrently with oxcarbazepine due to a potential reduction in perampanel plasma concentration. If introduction or withdrawal of oxcarbazepine occurs during perampanel therapy, closely monitor patient response; a dosage adjustment may be necessary. Oxcarbazepine is a moderate CYP3A4 inducer, and perampanel is a CYP3A4 substrate. Oxcarbazepine reduced the AUC of perampanel by approximately 48% during concomitant use. Additionally, oxcarbazepine clearance decreased by 26%.
Perindopril; Amlodipine: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as oxcarbazepine, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
Perphenazine; Amitriptyline: (Moderate) Use amitriptyline with caution in patients with a history of seizures; amitriptyline may lower the seizure threshold and thus potentially interfere with the ability of antiepileptics to control seizures. In addition, concomitant use of amitriptyline and oxcarbazepine may result in additive CNS depression. Oxcarbazepine, a CYP2C19 inhibitor, can increase plasma concentrations of amitriptyline, a substrate of CYP2C19.
Phenobarbital: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if phenobarbital and oxcarbazepine are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of phenobarbital. Additive CNS depression may also occur. Coadministration of oxcarbazepine (600 to 1,800 mg/day) with phenobarbital (100 to 150 mg/day) decreased the plasma concentration of MHD by 25% and increased the plasma concentration of phenobarbital by 14%. Strong CYP3A4 inducers and UGT inducers have been shown to decrease plasma concentrations of MHD. Phenobarbital is a strong CYP3A4 inducer and UGT inducer.
Phenytoin: (Moderate) Monitor phenytoin concentrations during oxcarbazepine dosage titration or modification, and monitor plasma concentrations of MHD, the active metabolite of oxcarbazepine, during oxcarbazepine titration if oxcarbazepine and phenytoin are used concurrently. A dose adjustment of phenytoin or oxcarbazepine may be required. Phenytoin concentrations increased up to 40% with concomitant use of phenytoin (250 to 500 mg/day) and oxcarbazepine (1,200 to 2,400 mg/day). Coadministration of phenytoin (250 to 500 mg/day) with oxcarbazepine (600 to 2,400 mg/day) decreased MHD concentrations by 30%.
Praziquantel: (Major) In vitro and drug interactions studies suggest that the CYP3A4 isoenzyme is the major enzyme involved in praziquantel metabolism. Therefore, use of praziquantel with oxcarbazepine, a CYP3A4 inducer, should be done with caution as concomitant use may produce therapeutically ineffective concentrations of praziquantel.
Primidone: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if primidone and oxcarbazepine are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of primidone. Additive CNS depression may also occur. Coadministration of oxcarbazepine (600 to 1,800 mg/day) with phenobarbital (100 to 150 mg/day), the active metabolite of primidone, decreased the plasma concentration of MHD by 25% and increased the plasma concentration of phenobarbital by 14%. Strong CYP3A4 inducers and UGT inducers have been shown to decrease plasma concentrations of MHD. Primidone is a strong CYP3A4 inducer, and phenobarbital is a strong CYP3A4 inducer and UGT inducer.
Progesterone: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Progestins: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Protriptyline: (Moderate) Use protriptyline with caution in patients with a history of seizures; protriptyline may lower the seizure threshold and thus potentially interfere with the ability of antiepileptics to control seizures. In addition, concomitant use of protriptyline and oxcarbazepine may result in additive CNS depression.
Red Yeast Rice: (Moderate) Since certain red yeast rice products (i.e., pre-2005 Cholestin formulations) contain lovastatin, clinicians should use red yeast rice cautiously in combination with drugs known to interact with lovastatin. CYP3A4 inducers can theoretically reduce the effectiveness of HMG-CoA reductase activity via induction of CYP3A4 metabolism. Examples of CYP3A4 inducers include oxcarbazepine.
Rifampin: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if oxcarbazepine and rifampin are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of rifampin. Rifampin is a strong CYP3A4 inducer and a UGT inducer. Coadministration with other strong CYP3A4 inducers and/or UGT inducers decreased MHD concentrations by 25% to 40%.
Rilpivirine: (Severe) Concurrent use of oxcarbazepine and rilpivirine is contraindicated. When these drugs are coadministered, there is a potential for treatment failure and/or the development of rilpivirine or NNRTI resistance. Oxcarbazepine is a potent inducer of CYP3A4, which is primarily responsible for the metabolism of rilpivirine. Coadministration may result in decreased rilpivirine serum concentrations, which could cause impaired virologic response to rilpivirine.
Ritonavir: (Major) Concurrent administration of oxcarbazepine with ritonavir should be undertaken with caution and careful monitoring of antiviral efficacy. Oxcarbazepine is a moderate inducer of the hepatic isoenzyme CYP3A4, and ritonavir is a CYP3A4 substrate.
Segesterone Acetate; Ethinyl Estradiol: (Major) Progestins are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine progestins may increase the hormone's elimination. A high percentage of breakthrough bleeding has been reported in the literature from the combined use of oxcarbazepine and oral contraceptives; the results of one study demonstrated that the mean AUC of ethinyl estradiol/levonorgestrel was decreased by 52% when coadministered with oxcarbazepine. Women taking both hormones and hepatic enzyme-inducing drugs should report breakthrough bleeding to their prescribers. If used for contraception, an alternate or additional form of contraception should be considered in patients prescribed hepatic enzyme inducing drugs, or higher-dose hormonal regimens may be indicated where acceptable or applicable as pregnancy has been reported in patients taking the hepatic enzyme inducing drug phenytoin concurrently with hormonal contraceptives. The alternative or additional contraceptive agent may need to be continued for 1 month after discontinuation of the interacting medication. Additionally, epileptic women taking both anticonvulsants and OCs may be at higher risk of folate deficiency secondary to additive effects on folate metabolism; if oral contraceptive failure occurs, the additive effects could potentially heighten the risk of neural tube defects in pregnancy. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy. (Moderate) Estrogens are susceptible to drug interactions with hepatic enzyme inducing drugs such as oxcarbazepine. Concurrent administration of oxcarbazepine with estrogens, oral contraceptives, or non-oral combination contraceptives, progestins may increase the hormone's elimination. If used for contraception, an alternate or additional form of contraception should be considered. Patients taking these hormones for other indications may need to be monitored for reduced clinical effect while on oxcarbazepine, with dose adjustments made based on clinical efficacy.
Simeprevir: (Major) Avoid concurrent use of simeprevir and oxcarbazepine. Induction of CYP3A4 by oxcarbazepine may significantly reduce the plasma concentrations of simeprevir, resulting in treatment failure.
Simvastatin: (Minor) Oxcarbazepine which is a CYP3A4 inducer, may decrease the efficacy of HMG-Co-A reductase inhibitors which are CYP3A4 substrates including simvastatin. Monitor for potential reduced cholesterol-lowering efficacy when these drugs are coadministered with HMG-CoA reductase inhibitors which are metabolized by CYP3A4.
Simvastatin; Sitagliptin: (Minor) Oxcarbazepine which is a CYP3A4 inducer, may decrease the efficacy of HMG-Co-A reductase inhibitors which are CYP3A4 substrates including simvastatin. Monitor for potential reduced cholesterol-lowering efficacy when these drugs are coadministered with HMG-CoA reductase inhibitors which are metabolized by CYP3A4.
Sofosbuvir; Velpatasvir; Voxilaprevir: (Major) Avoid coadministration of voxilaprevir with moderate to potent inducers of CYP3A4, such as oxcarbazepine. Taking these drugs together may significantly decrease voxilaprevir plasma concentrations, potentially resulting in loss of antiviral efficacy. Voxilaprevir is metabolized by CYP3A4.
St. John's Wort, Hypericum perforatum: (Moderate) Monitor MHD, the active metabolite of oxcarbazepine, concentrations during oxcarbazepine dosage titration if St. John's Wort and oxcarbazepine are used concurrently. A dose adjustment of oxcarbazepine may be required after initiation, dosage modification, or discontinuation of St. John's Wort. St. John's Wort is a strong CYP3A4 inducer. Coadministration with other strong CYP3A4 inducers decreased plasma concentrations of MHD by 25% to 40%.
Sufentanil: (Moderate) Because the dose of the sufentanil sublingual tablets cannot be titrated, consider an alternate opiate if oxcarbazepine must be administered. Monitor for reduced efficacy of sufentanil injection and signs of opioid withdrawal if coadministration with oxcarbazepine is necessary; consider increasing the dose of sufentanil injection as needed. If oxcarbazepine is discontinued, consider a dose reduction of sufentanil injection and frequently monitor for signs or respiratory depression and sedation. Sufentanil is a CYP3A4 substrate and oxcarbazepine is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease sufentanil concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
Sunitinib: (Major) Avoid coadministration of oxcarbazepine with sunitinib if possible due to decreased exposure to sunitinib which could decrease efficacy. If concomitant use is unavoidable, consider increasing the dose of sunitinib in 12.5 mg increments based on individual safety and tolerability to a maximum of 87.5 mg (GIST and RCC) or 62.5 mg (pNET) daily; monitor carefully for toxicity. The maximum daily dose administered in the pNET study was 50 mg. Sunitinib is a CYP3A4 substrate and oxcarbazepine is a moderate CYP3A4 inducer.
Tacrolimus: (Moderate) The effectiveness of immunosuppressive medications such as tacrolimus could be decreased by the co-administration of oxcarbazepine. Monitoring of tacrolimus whole blood concentrations is recommended if oxcarbazepine is used concurrently with tacrolimus.
Telaprevir: (Moderate) Close clinical monitoring is advised when administering oxcarbazepine with telaprevir due to the potential for telaprevir treatment failure. If oxcarbazepine dose adjustments are made, re-adjust the dose upon completion of telaprevir treatment. Although this interaction has not been studied, predictions about the interaction can be made based on the metabolic pathways of oxcarbazepine and telaprevir. Oxcarbazepine is an inducer of the hepatic isoenzyme CYP3A4; telaprevir is metabolized by this isoenzyme. When used in combination, the plasma concentrations of telaprevir may decrease, resulting in decreased telaprevir efficacy.
Telithromycin: (Major) Oxcarbazepine and its active metabolite, MHD, are dose-dependent inducers of the hepatic CYP3A4 isoenzyme thereby having the potential to lower the plasma levels of medications metabolized through these pathways, such a telithromycin.
Tenofovir Alafenamide: (Major) Administering tenofovir alafenamide with oxcarbazepine is not recommended. Consider use of an alternative anticonvulsant. Taking these drugs together is expected to decrease tenofovir plasma concentrations, which may increase the potential for resistance and HIV treatment failure.
Tolvaptan: (Major) Tolvaptan is metabolized by CYP3A4. Oxcarbazepine is an inducer of CYP3A4. Coadministration may result in reduced plasma concentration and subsequent reduced effectiveness of tolvaptan therapy and should be avoided. If coadministration is unavoidable, an increase in the tolvaptan dose may be necessary and patients should be monitored for decreased effectiveness of tolvaptan.
Trandolapril; Verapamil: (Minor) Verapamil may decrease the plasma levels of MHD, the active metabolite of oxcarbazepine. The mechanism is not clear since it is contrary to the typical interactions seen with verapamil which are the result of its hepatic CYP3A4 inhibition.
Trimipramine: (Moderate) Use trimipramine with caution in patients with a history of seizures; trimipramine may lower the seizure threshold and thus potentially interfere with the ability of antiepileptics to control seizures. In addition, concomitant use of trimipramine and oxcarbazepine may result in additive CNS depression.
Ulipristal: (Major) Avoid administration of ulipristal with drugs that induce CYP3A4. Ulipristal is a substrate of CYP3A4 and oxcarbazepine is a CYP3A4 inducer. Concomitant use may decrease the plasma concentration and effectiveness of ulipristal.
Verapamil: (Minor) Verapamil may decrease the plasma levels of MHD, the active metabolite of oxcarbazepine. The mechanism is not clear since it is contrary to the typical interactions seen with verapamil which are the result of its hepatic CYP3A4 inhibition.
Vinblastine: (Minor) Use caution when administering vinblastine concurrently with a CYP3A4 inducer such as oxcarbazepine. Vinblastine is metabolized by CYP3A4 and oxcarbazepine may decrease vinblastine plasma concentrations.
Vincristine Liposomal: (Moderate) Vincristine is a substrate for cytochrome P450 (CYP) 3A4. Agents that induce CYP3A4 may increase the metabolism of vincristine and decrease the efficacy of the drug, include oxcarbazepine. Patients receiving these drugs concurrently with vincristine should be monitored for possible loss of vincristine efficacy.
Vincristine: (Moderate) Vincristine is a substrate for cytochrome P450 (CYP) 3A4. Agents that induce CYP3A4 may increase the metabolism of vincristine and decrease the efficacy of the drug, include oxcarbazepine. Patients receiving these drugs concurrently with vincristine should be monitored for possible loss of vincristine efficacy.