PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Muscle Relaxants, Peripherally Acting

    BOXED WARNING

    Accidental exposure, requires a specialized care setting, requires an experienced clinician

    Vecuronium administration requires an experienced clinician who is familiar with its actions and the possible complications that may occur after its use as well as requires a specialized care setting where facilities for intubation, artificial respiration, oxygen therapy, and reversal agents are immediately available. Accidental exposure to a neuromuscular blocking agent may be fatal in a patient for whom it is not intended. Store vecuronium with cap and ferrule intact and in a manner that minimizes the possibility of selecting the wrong product. Confirm proper medication selection and clearly communicate the intended dose.[48672]

    DEA CLASS

    Rx

    DESCRIPTION

    Parenteral, intermediate-acting, nondepolarizing, neuromuscular blocking agent
    Used for an adjunct to general anesthesia to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation
    Minimal catecholamine and histamine release

    COMMON BRAND NAMES

    Norcuron

    HOW SUPPLIED

    Norcuron/Vecuronium/Vecuronium Bromide Intravenous Inj Pwd F/Sol: 10mg, 20mg

    DOSAGE & INDICATIONS

    For muscular relaxation during non-emergent endotracheal intubation.
    For defasciculation before succinylcholine administration†.
    Intravenous dosage
    Children and Adolescents 6 to 17 years

    0.01 mg/kg/dose IV given 1 to 3 minutes prior to succinylcholine.[44771] Defasciculation is not commonly used in pediatric patients. Defasciculation delays paralysis and may increase the succinylcholine dose requirement. In patients with significant hemodynamic and/or respiratory compromise, the defasciculation dose may be enough to result in respiratory compromise.[52486]

    Intravenous dosage
    Adults

    0.08 to 0.1 mg/kg/dose IV. Onset of intubating conditions is 2.5 to 3 minutes. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

    Infants, Children, and Adolescents 7 weeks to 17 years

    0.15 to 0.2 mg/kg/dose IV. Onset of intubating conditions is 2.5 to 3 minutes. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.  

    Neonates† and Infants younger than 7 weeks†

    0.1 mg/kg/dose IV. Onset of intubating conditions is 2.5 to 3 minutes. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

    For neuromuscular blockade during mechanical ventilation in intensive care patients.
    Intermittent Intravenous dosage
    Adults

    0.08 to 0.1 mg/kg IV once, followed by 0.01 to 0.015 mg/kg/dose IV every 12 to 15 minutes as needed; adjust dose and interval to patient's twitch response. Generally, the first maintenance dose is required within 25 to 40 minutes after the initial dose. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.[48672]

    Infants, Children, and Adolescents 7 weeks to 17 years

    0.08 to 0.1 mg/kg IV once, followed by 0.01 to 0.015 mg/kg/dose IV every 12 to 15 minutes as needed; adjust dose and interval to patient's twitch response. Generally, the first maintenance dose is required within 25 to 40 minutes after the initial dose. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.[48672]

    Infants younger than 7 weeks†

    0.03 to 0.15 mg/kg/dose IV every 30 to 40 minutes as needed; adjust dose and interval to patient's twitch response.[52443] [52496] Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.[48672]

    Neonates†

    0.03 to 0.15 mg/kg/dose IV every 30 to 40 minutes as needed; adjust dose and interval to patient's twitch response.[52443] [52496] Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.[48672]

    Continuous Intravenous Infusion dosage
    Adults

    0.08 to 0.1 mg/kg IV bolus, followed by 0.8 to 1.7 mcg/kg/minute continuous IV infusion; adjust to patient's twitch response.[48672] [52503] [62859] [65345] Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.[48672]

    Children and Adolescents†

    0.08 to 0.1 mg/kg IV bolus, followed by 0.8 to 2.5 mcg/kg/minute continuous IV infusion; titrate by 10% to patient's twitch response. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

    Infants†

    0.08 to 0.1 mg/kg IV bolus, followed by 0.3 to 1.6 mcg/kg/minute continuous IV infusion; titrate by 10% to patient's twitch response.[52443] [52452] [52508] Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.[48672]

    Neonates†

    Limited data; 0.1 mg/kg/dose IV bolus, followed by 0.3 to 1 mcg/kg/minute continuous IV infusion; titrate by 10% to patient's twitch response. [52508] [52509] Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.[48672]

    For neuromuscular blockade during surgery.
    Intermittent Intravenous dosage
    Adults

    0.08 to 0.1 mg/kg IV once, followed by 0.01 to 0.015 mg/kg/dose IV every 12 to 15 minutes as needed; adjust dose and interval to patient's twitch response. Generally, the first maintenance dose is required within 25 to 40 minutes after the initial dose. Higher doses up to 0.28 mg/kg/dose have been used. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.[48672]

    Infants, Children, and Adolescents 7 weeks to 17 years

    0.08 to 0.1 mg/kg IV once, followed by 0.01 to 0.015 mg/kg/dose IV every 12 to 15 minutes as needed; adjust dose and interval to patient's twitch response. Generally, the first maintenance dose is required within 25 to 40 minutes after the initial dose. Higher doses up to 0.28 mg/kg/dose have been used. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

    Continuous Intravenous Infusion dosage
    Adults

    0.08 to 0.1 mg/kg IV bolus, followed by 1 mcg/kg/minute continuous IV infusion started 20 to 40 minutes later; titrate to patient's twitch response. Usual dosage range: 0.8 to 1.2 mcg/kg/minute. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.[48672]

    For muscular relaxation during rapid-sequence intubation (RSI)†.
    Intravenous dosage
    Adults

    0.1 to 0.2 mg/kg/dose IV. Onset of intubating conditions is 2 to 4 minutes. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.[44868]  [65330]

    Infants, Children, and Adolescents 7 weeks to 17 years

    0.15 to 0.2 mg/kg/dose IV. Onset of intubating conditions is 2.5 to 3 minutes. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.[44771] [48672]

    Neonates† and Infants younger than 7 weeks†

    0.1 mg/kg/dose IV. Onset of intubating conditions is 2.5 to 3 minutes. Coadministration of certain drugs may need to be avoided or dosage adjustments may be necessary; review drug interactions.

    For the prevention of shaking chills† induced by therapeutic hypothermia after cardiac arrest.
    Intermittent Intravenous dosage
    Adults

    Limited data; 0.05 mg/kg/dose (weight-based) IV every 1 to 2 hours as needed, 0.15 mg/kg/dose (weight-based) IV as needed, or 8 to 12 mg (flat-dose) IV as needed.[36215] [56934] [65370] Guidelines suggest that neuromuscular blocking agents may be used to manage overt shivering in therapeutic hypothermia.

    Continuous Intravenous Infusion dosage
    Adults

    Limited data; 0.1 mg/kg IV bolus, followed by 0.8 to 1 mcg/kg/minute continuous IV infusion. Guidelines suggest that neuromuscular blocking agents may be used to manage overt shivering in therapeutic hypothermia.

    †Indicates off-label use

    MAXIMUM DOSAGE

    Specific maximum dosage information is not available. Dosage must be individualized based on clinical response.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    Specific guidelines for dosage adjustments in hepatic impairment are not available. Experience with vecuronium in patients with hepatic disease has revealed prolonged recovery time.

    Renal Impairment

    Specific guidelines for dosage adjustments in renal impairment are not available. Prolonged recovery due to accumulation of the active metabolite and parent compound may occur in patients with uremia. Prolonged recovery may also occur in anephric patients when preoperative dialysis is not possible. Consider a lower dosage in such situations. Vecuronium is well tolerated in patients with renal failure who have been optimally prepared for surgery by dialysis.[48672] [52503] [52510]

    ADMINISTRATION

    Injectable Administration

    Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit.
    Accidental administration of neuromuscular blocking agents can be fatal. Store vecuronium with the cap and ferrule intact, in a manner that minimizes the possibility of selecting the wrong product.

    Intravenous Administration

    Only experienced clinicians, familiar with the use of neuromuscular blocking drugs, should administer or supervise the use of vecuronium. Adequacy of respiration must be assured through assisted or controlled ventilation.
    To avoid distress to the patient, administer vecuronium only after unconsciousness has been induced. Adequate amnesia, sedation, and analgesia should accompany neuromuscular blockade.
    Do not mix vecuronium with alkaline solutions (e.g., barbiturate solutions such as thiopental) in the same syringe or administer simultaneously during IV infusion through the same needle or through the same IV line; vecuronium has an acidic pH.[48672]
     
    Reconstitution
    Reconstitute by adding 10 or 20 mL of Bacteriostatic Water for Injection to 10 or 20 mg, respectively, to give a parenteral solution containing 1 mg/mL. For neonates, use Sterile Water for Injection to avoid the administration of benzyl alcohol.
    Storage: When reconstituted with Bacteriostatic Water for Injection, store at room temperature or refrigerated for up to 5 days. When reconstituted with Sterile Water for Injection, the vial is single-use; store in the refrigerator for up to 24 hours. Discard any unused solution.[48672]
     
    Intermittent IV Injection
    No further dilution necessary.
    Administer by direct IV injection.[48672]
     
    Continuous IV Infusion
    Dilute the reconstituted solution with 0.9% Sodium Chloride Injection, 5% Dextrose Injection, 5% Dextrose and 0.9% Sodium Chloride Injection, Lactated Ringer's Injection, or Sterile Water for Injection to a concentration of 0.1 to 0.2 mg/mL.[48672] Concentrations up to 1 mg/mL are commonly used in adult and pediatric patients.[52507]
    ASHP Recommended Standard Concentrations for Adult Continuous Infusions: 1 mg/mL.
    Infuse at a rate based on patient response and requirements.
    A peripheral nerve stimulator is recommended to monitor vecuronium's effects. Target response is typically 1 to 2 twitches. Incorrect electrode placement, direct stimulation of muscle due to large electrode size, acute illness, capillary leak, and edema may affect an appropriate assessment. Monitor visual and tactile stimulation on muscle movement as well as heart rate, blood pressure, and mechanical ventilator status during administration.

    STORAGE

    Generic:
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Protect from light
    - Store in carton until time of use
    - Store reconstituted product in accordance with package insert instructions
    - Store unreconstituted product at 68 to 77 degrees F
    Norcuron:
    - Discard product if it contains particulate matter, is cloudy, or discolored
    - Discard unused portion. Do not store for later use.
    - Protect from light
    - Store at controlled room temperature (between 68 and 77 degrees F)
    - Store in carton until time of use

    CONTRAINDICATIONS / PRECAUTIONS

    General Information

    Administer vecuronium only after unconsciousness has been induced; maintain adequate amnesia and analgesia throughout paralyzation. Neuromuscular blocking agents do not cause sedation or analgesia. Individualize vecuronium doses. Use of a peripheral nerve stimulator will permit the most advantageous use of vecuronium, minimize the possibility of overdosage or underdosage, and assist in the evaluation of recovery.[48672]

    Accidental exposure, requires a specialized care setting, requires an experienced clinician

    Vecuronium administration requires an experienced clinician who is familiar with its actions and the possible complications that may occur after its use as well as requires a specialized care setting where facilities for intubation, artificial respiration, oxygen therapy, and reversal agents are immediately available. Accidental exposure to a neuromuscular blocking agent may be fatal in a patient for whom it is not intended. Store vecuronium with cap and ferrule intact and in a manner that minimizes the possibility of selecting the wrong product. Confirm proper medication selection and clearly communicate the intended dose.[48672]

    Bromide hypersensitivity, neuromuscular blocking agent hypersensitivity

    Vecuronium is contraindicated in patients known to have a vecuronium bromide hypersensitivity. Use vecuronium with caution in patients with neuromuscular blocking agent hypersensitivity since cross-reactivity between neuromuscular blocking agents, both depolarizing and non-depolarizing, has been reported. Severe anaphylactic reactions to neuromuscular blocking agents, including vecuronium, have been reported. These reactions have been life-threatening and fatal in some cases. Due to the potential severity of these reactions, ensure the necessary precautions, such as the immediate availability of appropriate emergency treatment.[48672]

    Burns

    Patients with burns have a decreased sensitivity to vecuronium's ability to produce neuromuscular blockade. Resistance to blockade usually develops in patients with burns more than 10% total body surface area approximately 1 week after thermal injury. Increased doses may be required in burn patients; alteration in drug effect may be seen for up to 1 year. In patients with more than 40% total body surface area burns, significant increases in dosage requirements (i.e., 2.5 to 5 times the usual dose) have been reported.

    Acid/base imbalance, adrenal insufficiency, dehydration, electrolyte imbalance, hypercalcemia, hypermagnesemia, hypocalcemia, hypokalemia, hypothermia, metabolic acidosis, metabolic alkalosis, respiratory acidosis, respiratory alkalosis

    Various physiologic states can alter the expected effects of vecuronium; carefully consider each patient's clinical condition when dosing vecuronium and monitoring the patient. Cachectic and debilitated patients are more sensitive to neuromuscular blocking agents (NMBAs). Electrolyte imbalance can alter a patient's sensitivity to NMBAs. Hypercalcemia can decrease sensitivity to NMBAs, while most other electrolyte disturbances increase sensitivity (e.g., hypokalemia, hypocalcemia, hypermagnesemia). Use vecuronium cautiously in patients with conditions that may lead to electrolyte imbalances, such as adrenal insufficiency. Severe acid/base imbalance may alter a patient's sensitivity to NMBAs: metabolic alkalosis, metabolic acidosis, and respiratory acidosis may enhance neuromuscular blockade and/or prolong recovery time, while respiratory alkalosis reduces the potency of the drug. Dehydration and hypothermia can also increase a patient's sensitivity to NMBAs.[48672] [52486]

    Asthma, chronic lung disease (CLD), chronic obstructive pulmonary disease (COPD), pulmonary disease

    Use neuromuscular blocking agents (NMBAs), including vecuronium, with caution in patients with asthma or other pulmonary conditions. NMBAs stimulate histamine release, which could exacerbate asthma. Compared with other NMBAs, vecuronium produces little or no histamine release.[52452] While some experts consider vecuronium to be an NMBA of choice in asthmatic patients, it should be used with caution in those with any condition in which a significant release of histamine may be contraindicated.[52565] Also, NMBAs cause respiratory muscle paralysis; residual muscle weakness and decreased respiratory function can persist even after drug discontinuation.[52480] Use NMBAs with caution in patients with pulmonary disease and conditions associated with low pulmonary function reserve, such as chronic obstructive pulmonary disease (COPD) or neonatal chronic lung disease (CLD). Carefully monitor respiratory status and adequacy of ventilation after drug recovery until the patient is clearly stabilized.

    Geriatric, myasthenia gravis, neuromuscular disease, obesity

    Use vecuronium with caution in patients with neuromuscular disease (e.g., myasthenia gravis, myasthenic syndrome [Eaton Lambert syndrome]); prolonged or exaggerated neuromuscular blockade may occur after nondepolarizing agent use. Geriatric patients may be at increased risk for residual neuromuscular block. Additionally, patients with weak muscle tone or severe obesity are at an increased risk for airway and ventilation complications. Consider the use of a small test dose and a peripheral nerve stimulator to monitor response in these patients. Monitor patients carefully until recovery is fully complete.[48672] Use ideal body weight or adjusted body weight for dosing in obese and morbidly obese adult patients (body mass index 30 kg/m2 or more).[62859]

    Cardiac disease, edema

    Use vecuronium with caution in patients with cardiac disease or other conditions that may be associated with a slower circulation time. Changes in the volume of distribution related to poor circulation or edema can delay the onset of neuromuscular blockade. Particular care is required in administering subsequent doses when it is uncertain whether maximum effect has been attained.

    Hepatic disease

    Experience with vecuronium in patients with hepatic disease (i.e., cirrhosis, cholestasis) has revealed prolonged recovery time.

    Dialysis, renal failure, uremia

    Prolonged recovery due to accumulation of the active metabolite and parent compound may occur in patients with uremia. Although vecuronium is primarily dependent on hepatic clearance, hepatic elimination is decreased in patients with uremia.[52503] [52510] Prolonged recovery may also occur in anephric patients when preoperative dialysis is not possible. Consider a lower dosage in such situations. Vecuronium is well tolerated in patients with renal failure who have been optimally prepared for surgery by dialysis.[48672]

    Malignant hyperthermia

    Treat patients with a personal or familial history of malignant hyperthermia with extreme caution. Malignant hyperthermia can be precipitated by many drugs used in anesthetic practice, including halogenated anesthetics and depolarizing neuromuscular blocking agents (e.g., succinylcholine). It is unknown whether vecuronium is capable of triggering hyperthermia.

    Children, infants, neonates

    Younger children (1 to 10 years) may require a slightly higher initial vecuronium dose and may also require supplementation slightly more often than adults. Neonates and infants are more sensitive to the effects of vecuronium compared to older patients; they may take up to 1.5 times as long to recover from neuromuscular blockade. Monitor young patients carefully during and after administration.[48672]

    Labor, obstetric delivery, pregnancy

    Use vecuronium during pregnancy only if clearly needed. It is not known if vecuronium can cause fetal harm or affect reproduction capacity when administered to a pregnant woman. Animal reproduction studies have not been conducted with vecuronium. Vecuronium has been used in patients undergoing labor and obstetric delivery via cesarean section. After tracheal intubation with succinylcholine, vecuronium dosages of 0.04 mg/kg (n = 11) and 0.06 to 0.08 mg/kg (n = 20) were administered. The umbilical venous plasma concentrations were 11% of maternal concentrations at delivery and mean neonate APGAR scores at 5 minutes were 9 or more in both reports. The action of neuromuscular blocking agents may be enhanced by magnesium salts administered for the management of toxemia in pregnancy.

    Breast-feeding

    Use vecuronium with caution in women who are breast-feeding. It is not known if vecuronium is excreted in human breast milk. The elimination half-life for vecuronium is 1 to 2 hours. It is a monoquaternary compound and should pass slowly through biological membranes. If trace amounts were excreted into breast milk, quaternary muscle relaxants are poorly absorbed from the gastrointestinal tract. Based on these data, lactation could be allowed as soon as practically feasible after surgery.

    ADVERSE REACTIONS

    Severe

    bronchospasm / Rapid / Incidence not known
    anaphylactoid reactions / Rapid / Incidence not known
    angioedema / Rapid / Incidence not known
    malignant hyperthermia / Rapid / Incidence not known
    apnea / Delayed / Incidence not known
    acute quadriplegic myopathy syndrome / Delayed / Incidence not known
    muscle paralysis / Delayed / Incidence not known
    thrombosis / Delayed / Incidence not known
    keratitis / Delayed / Incidence not known

    Moderate

    sinus tachycardia / Rapid / Incidence not known
    hypotension / Rapid / Incidence not known
    erythema / Early / Incidence not known
    wheezing / Rapid / Incidence not known
    respiratory depression / Rapid / Incidence not known
    myopathy / Delayed / Incidence not known
    hypoxia / Early / Incidence not known
    dyspnea / Early / Incidence not known
    skin ulcer / Delayed / Incidence not known
    skin erosion / Delayed / Incidence not known
    conjunctivitis / Delayed / Incidence not known
    tolerance / Delayed / Incidence not known

    Mild

    rash / Early / Incidence not known
    urticaria / Rapid / Incidence not known
    pruritus / Rapid / Incidence not known
    flushing / Rapid / Incidence not known
    weakness / Early / Incidence not known
    xerophthalmia / Early / Incidence not known
    anxiety / Delayed / Incidence not known

    DRUG INTERACTIONS

    Acebutolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Acetazolamide: (Moderate) Nondepolarizing neuromuscular blockers when combined with carbonic anhydrase inhibitors may lead to prolonged respiratory depression. This action is due to enhanced neural blockade as a result of potential hypokalemia from the carbonic anhydrase inhibitor. Serum potassium concentrations should be checked and adjusted prior to the administration of nondepolarizing neuromuscular blockers.
    Aliskiren; Amlodipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Amide local anesthetics: (Moderate) Concomitant use of neuromuscular blockers and local anesthetics may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Aminoglycosides: (Moderate) Concomitant use of neuromuscular blockers and systemic aminoglycosides may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Amlodipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Amlodipine; Atorvastatin: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Amlodipine; Benazepril: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Amlodipine; Celecoxib: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Amlodipine; Olmesartan: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Amlodipine; Valsartan: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Amphotericin B cholesteryl sulfate complex (ABCD): (Moderate) Monitor serum potassium concentrations with concomitant use of neuromuscular blockers and amphotericin B. Amphotericin B-induced hypokalemia may prolong neuromuscular blockade.
    Amphotericin B lipid complex (ABLC): (Moderate) Monitor serum potassium concentrations with concomitant use of neuromuscular blockers and amphotericin B. Amphotericin B-induced hypokalemia may prolong neuromuscular blockade.
    Amphotericin B liposomal (LAmB): (Moderate) Monitor serum potassium concentrations with concomitant use of neuromuscular blockers and amphotericin B. Amphotericin B-induced hypokalemia may prolong neuromuscular blockade.
    Amphotericin B: (Moderate) Monitor serum potassium concentrations with concomitant use of neuromuscular blockers and amphotericin B. Amphotericin B-induced hypokalemia may prolong neuromuscular blockade.
    Atenolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Atenolol; Chlorthalidone: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Bacitracin: (Moderate) Concomitant use of neuromuscular blockers and systemic bacitracin may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Bendroflumethiazide; Nadolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Beta-blockers: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Betaxolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) Concomitant use of neuromuscular blockers and tetracyclines may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration. (Minor) Caution is warranted with the coadministration of systemic metronidazole and vecuronium. Metronidazole may potentiate the effects of vecuronium.
    Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Concomitant use of neuromuscular blockers and tetracyclines may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration. (Minor) Caution is warranted with the coadministration of systemic metronidazole and vecuronium. Metronidazole may potentiate the effects of vecuronium.
    Bisoprolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Botulinum Toxins: (Moderate) Use neuromuscular blockers and botulinum toxins concurrently with caution because the effect of the botulinum toxin may be potentiated. If coadministered, observe the patient closely.
    Brimonidine; Timolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Calcium Acetate: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Calcium Carbonate: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Calcium Carbonate; Famotidine; Magnesium Hydroxide: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Calcium Carbonate; Magnesium Hydroxide: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Calcium Carbonate; Magnesium Hydroxide; Simethicone: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Calcium Carbonate; Risedronate: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Calcium Carbonate; Simethicone: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Calcium Chloride: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Calcium Gluconate: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Calcium: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Calcium; Vitamin D: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Calcium-channel blockers: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Capreomycin: (Minor) Concomitant use of neuromuscular blockers and capreomycin may prolong neuromuscular blockade. A partial neuromuscular blockade was demonstrated after large intravenous doses of capreomycin.
    Carbonic anhydrase inhibitors: (Moderate) Nondepolarizing neuromuscular blockers when combined with carbonic anhydrase inhibitors may lead to prolonged respiratory depression. This action is due to enhanced neural blockade as a result of potential hypokalemia from the carbonic anhydrase inhibitor. Serum potassium concentrations should be checked and adjusted prior to the administration of nondepolarizing neuromuscular blockers.
    Carteolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Carvedilol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Chromium: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Clevidipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Colistimethate, Colistin, Polymyxin E: (Moderate) Use neuromuscular blockers and polymyxins with extreme caution. Concomitant use of neuromuscular blockers and polymyxins may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Colistin: (Moderate) Use neuromuscular blockers and polymyxins with extreme caution. Concomitant use of neuromuscular blockers and polymyxins may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Corticosteroids: (Moderate) Limit the period of use of neuromuscular blockers and corticosteroids and only use when the specific advantages of the drugs outweigh the risks for acute myopathy. An acute myopathy has been observed with the use of high doses of corticosteroids in patients receiving concomitant long-term therapy with neuromuscular blockers. Clinical improvement or recovery after stopping therapy may require weeks to years.
    Cyclosporine: (Moderate) Concomitant use of neuromuscular blockers and cyclosporine may prolong neuromuscular blockade.
    Demeclocycline: (Moderate) Concomitant use of neuromuscular blockers and tetracyclines may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Desflurane: (Moderate) Concomitant use of vecuronium and desflurane may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration. During maintenance of desflurane anesthesia, the vecuronium dose is likely to be reduced compared to that during nitrous oxide/opioid anesthesia. For endotracheal intubation, do not reduce the dose of vecuronium.
    Dextromethorphan; Quinidine: (Moderate) Concomitant use of neuromuscular blockers and quinidine may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Diltiazem: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Donepezil: (Moderate) A higher vecuronium dose may be required to achieve neuromuscular block with concomitant use of a cholinesterase inhibitor, such as donepezil.
    Donepezil; Memantine: (Moderate) A higher vecuronium dose may be required to achieve neuromuscular block with concomitant use of a cholinesterase inhibitor, such as donepezil.
    Dorzolamide; Timolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Doxapram: (Minor) Doxapram may temporarily mask the residual effects of neuromuscular blockers.
    Doxycycline: (Moderate) Concomitant use of neuromuscular blockers and tetracyclines may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Enalapril; Felodipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Enflurane: (Major) Reduce the initial vecuronium dose by approximately 15% (i.e., to 0.06 to 0.085 mg/kg) if vecuronium is first administered more than 5 minutes after the start of enflurane or when steady-state has been achieved. It may be necessary to reduce the vecuronium infusion rate by 25% to 60% at 45 to 60 minutes after the intubating dose in the presence of steady-state concentrations of enflurane. The neuromuscular blocking action of vecuronium is potentiated by enflurane anesthesia.
    Esmolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Ester local anesthetics: (Moderate) Concomitant use of neuromuscular blockers and local anesthetics may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Felodipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Fosphenytoin: (Moderate) Concomitant use of neuromuscular blockers and fosphenytoin may increase resistance to the neuromuscular blockade action of neuromuscular blockers, resulting in shorter durations of neuromuscular blockade and higher infusion rate requirements. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Galantamine: (Moderate) A higher vecuronium dose may be required to achieve neuromuscular block with concomitant use of a cholinesterase inhibitor, such as galantamine.
    Hetastarch; Dextrose; Electrolytes: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Indapamide: (Moderate) Concomitant use of neuromuscular blockers and indapamide may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
    Irinotecan Liposomal: (Moderate) Irinotecan may antagonize the neuromuscular blocking effects of vecuronium due to anticholinesterase activity.
    Irinotecan: (Moderate) Irinotecan may antagonize the neuromuscular blocking effects of vecuronium due to anticholinesterase activity.
    Isoflurane: (Major) Reduce the initial vecuronium dose by approximately 15% (i.e., to 0.06 to 0.085 mg/kg) if vecuronium is first administered more than 5 minutes after the start of isoflurane or when steady-state has been achieved. It may be necessary to reduce the vecuronium infusion rate by 25% to 60% at 45 to 60 minutes after the intubating dose in the presence of steady-state concentrations of isoflurane. The neuromuscular blocking action of vecuronium is potentiated by isoflurane anesthesia.
    Isradipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Ketorolac: (Minor) There have been postmarketing reports of a possible interaction between ketorolac and nondepolarizing neuromuscular blockers, such as vecuronium, that resulted in apnea.
    Labetalol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Levamlodipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Levobetaxolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Levobunolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Lincosamides: (Moderate) Use neuromuscular blockers and lincosamides with caution. Concomitant use of neuromuscular blockers and lincosamides may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Lithium: (Moderate) Concomitant use of neuromuscular blockers and lithium may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Loop diuretics: (Moderate) Concomitant use of neuromuscular blockers and loop diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
    Magnesium: (Moderate) Concomitant use of neuromuscular blockers and magnesium may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Methazolamide: (Moderate) Nondepolarizing neuromuscular blockers when combined with carbonic anhydrase inhibitors may lead to prolonged respiratory depression. This action is due to enhanced neural blockade as a result of potential hypokalemia from the carbonic anhydrase inhibitor. Serum potassium concentrations should be checked and adjusted prior to the administration of nondepolarizing neuromuscular blockers.
    Metoprolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Metronidazole: (Minor) Caution is warranted with the coadministration of systemic metronidazole and vecuronium. Metronidazole may potentiate the effects of vecuronium.
    Minocycline: (Moderate) Concomitant use of neuromuscular blockers and tetracyclines may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Nadolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Nebivolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Nebivolol; Valsartan: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Neostigmine: (Moderate) A higher vecuronium dose may be required to achieve neuromuscular block with concomitant use of a cholinesterase inhibitor, such as neostigmine. Intravenous neostigmine is indicated for reversal of the effects of nondepolarizing neuromuscular blockers, such as vecuronium.
    Nicardipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Nifedipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Nimodipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Nisoldipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Omadacycline: (Moderate) Concomitant use of neuromuscular blockers and tetracyclines may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Penbutolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Perindopril; Amlodipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Phenytoin: (Moderate) Concomitant use of neuromuscular blockers and phenytoin may increase resistance to the neuromuscular blockade action of neuromuscular blockers, resulting in shorter durations of neuromuscular blockade and higher infusion rate requirements. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Physostigmine: (Moderate) A higher vecuronium dose may be required to achieve neuromuscular block with concomitant use of a cholinesterase inhibitor, such as physostigmine.
    Pindolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Piperacillin: (Moderate) Concomitant use of vecuronium and piperacillin may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Piperacillin; Tazobactam: (Moderate) Concomitant use of vecuronium and piperacillin may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Polymyxin B: (Major) Avoid concomitant use of systemic polymyxin B and neuromuscular blockers due to the risk of respiratory depression. The neurotoxicity of polymyxin B may can result in neuromuscular blockade, especially when given soon after neuromuscular blockers. If signs of respiratory paralysis appear, assist respiration and discontinue drug therapy.
    Procainamide: (Moderate) A lower neuromuscular blocker dose may be required to achieve neuromuscular block with concomitant procainamide use due to procainamide effects on reducing acetylcholine release. Concomitant use of neuromuscular blockers and procainamide may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Propranolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Pyridostigmine: (Moderate) A higher vecuronium dose may be required to achieve neuromuscular block with concomitant use of a cholinesterase inhibitor, such as pyridostigmine. Intravenous pyridostigmine is indicated for reversal of the effects of nondepolarizing neuromuscular blockers, such as vecuronium.
    Pyridoxine, Vitamin B6: (Moderate) Concomitant use of neuromuscular blockers and calcium may result in resistance to neuromuscular blockade. Calcium antagonizes the potentiating effect of magnesium on neuromuscular blockade. Also, calcium triggers acetylcholine release, and therefore, may both reduce the sensitivity to neuromuscular blockers and decrease the duration of neuromuscular blockade.
    Quinidine: (Moderate) Concomitant use of neuromuscular blockers and quinidine may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Quinine: (Major) Avoid concomitant use of neuromuscular blockers and quinine. Quinine may enhance the action of neuromuscular blockers. In 1 patient who received a neuromuscular blocker during an operative procedure, subsequent administration of quinine 1,800 mg 3 hours later resulted in respiratory depression.
    Ranitidine: (Moderate) Ranitidine may cause resistance to vecuronium-induced neuromuscular blockade, due to pharmacodynamic alterations at the acetylcholine receptor. In vitro studies demonstrate that therapeutic serum concentrations of ranitidine inhibit acetylcholinesterase, thus increasing the amount of acetylcholine available to compete at the neuromuscular junction and reverse the neuromuscular blockade. The inhibition of acetylcholinesterase is likely dose-related. Resistance to nondepolarizing neuromuscular blockers was reported occasionally with intravenous ranitidine dosages that were slightly higher than those given clinically, but not frequently with oral therapy.
    Rivastigmine: (Moderate) A higher vecuronium dose may be required to achieve neuromuscular block with concomitant use of a cholinesterase inhibitor, such as rivastigmine.
    Sarecycline: (Moderate) Concomitant use of neuromuscular blockers and tetracyclines may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Sevoflurane: (Moderate) Reduce the initial vecuronium dose by approximately 15% (i.e., to 0.06 to 0.085 mg/kg) if vecuronium is first administered more than 5 minutes after the start of sevoflurane or when steady-state has been achieved. It may be necessary to reduce the vecuronium infusion rate by 25% to 60% at 45 to 60 minutes after the intubating dose in the presence of steady-state concentrations of sevoflurane. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration. The neuromuscular blocking action of vecuronium is potentiated by sevoflurane anesthesia.
    Sotalol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Succinylcholine: (Major) If succinylcholine is used before vecuronium, delay vecuronium administration until recovery from succinylcholine-induced neuromuscular blockade begins. With succinylcholine as the intubating agent, use initial vecuronium doses of 0.04 to 0.06 mg/kg with inhalation anesthesia and 0.05 to 0.06 mg/kg with balanced anesthesia. Prior administration of succinylcholine may enhance the neuromuscular blocking effect of vecuronium and its duration of action.
    Telmisartan; Amlodipine: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Tetracycline: (Moderate) Concomitant use of neuromuscular blockers and tetracyclines may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Tetracyclines: (Moderate) Concomitant use of neuromuscular blockers and tetracyclines may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Theophylline, Aminophylline: (Moderate) A higher neuromuscular blocker dose may be required to achieve neuromuscular block with concomitant aminophylline use. Aminophylline may antagonize neuromuscular blocking effects, possibly due to phosphodiesterase inhibition. (Moderate) A higher neuromuscular blocker dose may be required to achieve neuromuscular block with concomitant theophylline use. Theophylline may antagonize neuromuscular blocking effects, possibly due to phosphodiesterase inhibition.
    Thiazide diuretics: (Moderate) Concomitant use of neuromuscular blockers and thiazide diuretics may prolong neuromuscular blockade, possibly due to hypokalemia or alterations in potassium concentrations across the end-plate membrane.
    Timolol: (Moderate) Concomitant use of neuromuscular blockers and beta-blockers may prolong neuromuscular blockade.
    Trandolapril; Verapamil: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.
    Vancomycin: (Moderate) Concomitant use of neuromuscular blockers and vancomycin may prolong neuromuscular blockade. The use of a peripheral nerve stimulator is strongly recommended to evaluate the level of neuromuscular blockade, to assess the need for additional doses of neuromuscular blocker, and to determine whether adjustments need to be made to the dose with subsequent administration.
    Verapamil: (Moderate) Concomitant use of neuromuscular blockers and calcium-channel blockers may prolong neuromuscular blockade.

    PREGNANCY AND LACTATION

    Pregnancy

    Use vecuronium with caution in women who are breast-feeding. It is not known if vecuronium is excreted in human breast milk. The elimination half-life for vecuronium is 1 to 2 hours. It is a monoquaternary compound and should pass slowly through biological membranes. If trace amounts were excreted into breast milk, quaternary muscle relaxants are poorly absorbed from the gastrointestinal tract. Based on these data, lactation could be allowed as soon as practically feasible after surgery.

    MECHANISM OF ACTION

    Muscle contraction is initiated by an action potential traveling from the central nervous system to the nerve terminal. At the nerve terminal, the action potential causes an influx of calcium, initiating release of acetylcholine (ACh) into the synaptic cleft. ACh binds to ACh receptors on the muscle fiber's motor end-plate causing a conformational change that briefly opens sodium ion channels. When an adequate number of ACh receptors are activated, membrane potential decreases and voltage-dependent sodium ion channels of adjacent muscle membranes activate, transmitting the action potential throughout the muscle fiber and resulting in muscle contraction. Nondepolarizing agents such as vecuronium produce skeletal muscle paralysis by competing with ACh for cholinergic receptor sites at the motor end-plate. Neuromuscular blockade progresses in a predictable order, beginning with muscles associated with fine movements (e.g., eyes, face, and neck), followed by muscles of the limbs, chest, and abdomen and, finally, the diaphragm. Larger doses increase the chance of respiratory depression associated with relaxation of the intercostal muscles and the diaphragm. Muscle tone returns in the reverse order. Vecuronium produces minimal to no histamine release and no ganglion blockade; therefore, hypotension and bronchospasm are not associated with its use.

    PHARMACOKINETICS

    Vecuronium is administered intravenously. At usual therapeutic doses, vecuronium is approximately 60% to 80% protein bound. After administration, the drug is rapidly distributed to the extracellular space. Distribution half-life is approximately 4 minutes in adults.[48672] Vd varies with age and is larger in infants compared to children.[52452] The metabolic fate of vecuronium is unclear, but spontaneous hydrolysis of the ester groups is known to occur. The 3-desacetyl metabolite is 50% to 70% as potent as the parent compound.[52452] The 3-deacetyl derivative accounts for up to 10% of a dose excreted in the urine and up to 25% of the drug excreted in the bile. Approximately 3% to 35% of an intravenous dose is excreted in the urine within 24 hours and 25% to 50% in the feces via the bile within 42 hours.[48672] Due to developmental changes, clearance of vecuronium varies depending on age and is highest during childhood. In general, the elimination half-life is 65 minutes in infants, 41 minutes in children, and 65 to 75 minutes in adults.[48672] [52452]
     
    Affected cytochrome P450 isoenzymes and drug transporters: none

    Intravenous Route

    Neuromuscular blockade begins within 1 minute, reaches a peak in 3 to 5 minutes, and lasts approximately 25 to 40 minutes. Intensity and duration of action are affected by the dose, age of the patient, and the use of concurrent anesthetics and other neuromuscular blocking agents.