CONTRAINDICATIONS / PRECAUTIONS
Diarrhea
Diarrhea, sometimes associated with dehydration and infection, has been reported in a majority of patients treated with abemaciclib, with the greatest incidence during the first month of therapy. Interruption of therapy, dose reduction, or discontinuation of therapy may be necessary. At the first sign of loose stools, patients should be instructed to begin antidiarrheal therapy (e.g., loperamide), increase oral fluids, and contact their healthcare provider for further instructions and appropriate follow-up.
Neutropenia
Neutropenia has been commonly reported in patients treated with abemaciclib in clinical trials. Febrile neutropenia has also occurred rarely; patients should report any episodes of fever to their healthcare provider. Monitor complete blood counts prior to starting therapy with abemaciclib, every 2 weeks for the first 2 months of therapy, monthly for the next 2 months, and then as clinically indicated. An interruption of therapy, dose reduction, or delay in starting treatment cycles may be necessary. Abemaciclib should not be administered for at least 48 hours after the last dose of blood cell growth factor, if required, and until hematologic toxicities resolve to grade 2 or less.
Hepatic disease, hepatotoxicity
Use abemaciclib with caution in patients with preexisting hepatic disease; dose adjustments may be necessary. Hepatotoxicity has been reported in patients treated with abemaciclib in clinical trials. Monitor liver function tests prior to beginning abemaciclib therapy, every 2 weeks for the first 2 months, monthly for the next 2 months, and then as clinically indicated. An interruption of therapy, dose reduction, or delay in treatment may be necessary.
Thromboembolic disease
Use abemaciclib with caution in patients with a history of thromboembolic disease. Venous thromboembolic events (VTE), including deep vein thrombosis, pulmonary embolism, pelvic venous thrombosis, cerebral venous sinus thrombosis, subclavian and axillary vein thrombosis, and inferior vena cava thrombosis have been reported in patients treated with abemaciclib in combination with an aromatase inhibitor, fulvestrant, or tamoxifen in clinical trials, including fatalities. Abemaciclib has not been studied in patients with early breast cancer with a history of VTE. Monitor patients for signs and symptoms of venous thrombosis and pulmonary embolism and treat as medically appropriate. An interruption of therapy is recommended for all patients with early breast cancer experiencing a VTE, and for grade 3 or 4 VTEs in patients with advanced or metastatic breast cancer.
Chronic lung disease (CLD), pneumonitis
Use abemaciclib with caution in patients who have a history of pre-existing chronic lung disease (CLD); severe pneumonitis/interstitial lung disease (ILD) has been reported in patients treated with abemaciclib. Advise patients to immediately report any new or worsening respiratory symptoms including hypoxia, cough, or dyspnea. Monitor patients for pulmonary symptoms indicative of ILD/pneumonitis and exclude other causes of respiratory symptoms including infection and neoplasm. An interruption of therapy or dose reduction is recommended for patients who develop persistent or recurrent grade 2 ILD/pneumonitis. Permanently discontinue abemaciclib in patients with grade 3 or 4 ILD/pneumonitis.
Pregnancy
Pregnancy should be avoided by females of reproductive potential during abemaciclib treatment and for 3 weeks after the last dose. Abemaciclib may cause fetal harm based on its mechanism of action and animal studies; however, there are no well-controlled studies in pregnant women. Women who are pregnant or who become pregnant while receiving abemaciclib should be apprised of the potential hazard to the fetus. In animal studies, abemaciclib was teratogenic and caused decreased fetal weight at maternal exposures similar to human clinical exposures based on AUC at the maximum recommended human dose. In an embryo-fetal development study in pregnant rats, abemaciclib exposures approximately equal to the human exposure (AUC) at the recommended dose caused decreased fetal body weights and an increased incidence of cardiovascular and skeletal malformations and variations, including absent innominate artery and aortic arch, malpositioned subclavian artery, unossified sternebra, bipartite ossification of thoracic centrum, and rudimentary or nodulated ribs, when administered to pregnant rats during organogenesis.
Contraception requirements, infertility, pregnancy testing, reproductive risk
Counsel patients about the reproductive risk and contraception requirements during abemaciclib treatment. Abemaciclib can cause fetal harm if taken by the mother during pregnancy. Females should avoid pregnancy and use effective contraception during and for 3 weeks after treatment with abemaciclib. Females of reproductive potential should undergo pregnancy testing prior to initiation of therapy. Women who become pregnant while receiving treatment should be apprised of the potential hazard to the fetus. In addition, based on animal data, abemaciclib may cause male infertility; there is no human data regarding fertility.
Breast-feeding
It is not known whether abemaciclib is excreted into human milk. Because many drugs are excreted into human milk and because of the potential for serious adverse reactions in a nursing infant, advise women to discontinue breast-feeding during treatment with abemaciclib and for 3 weeks after the last dose.
DRUG INTERACTIONS
Adagrasib: (Major) If coadministration with adagrasib is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If adagrasib is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of adagrasib. Abemaciclib is a CYP3A substrate and adagrasib is a strong CYP3A inhibitor. Coadministration with another strong CYP3A inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Amiodarone: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with amiodarone is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and amiodarone is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Amobarbital: (Major) Avoid coadministration of amobarbital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Abemaciclib is a CYP3A4 substrate and amobarbital is a moderate CYP3A4 inducer. Coadministration with other moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 29% to 53%.
Amoxicillin; Clarithromycin; Omeprazole: (Major) If coadministration with clarithromycin is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If clarithromycin is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of clarithromycin. Abemaciclib is a CYP3A4 substrate and clarithromycin is a strong CYP3A4 inhibitor. Coadministration with clarithromycin increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Apalutamide: (Major) Avoid coadministration of apalutamide with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and apalutamide is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Aprepitant, Fosaprepitant: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with a multi-day regimen of aprepitant is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor. When administered as a single oral or single intravenous dose, the inhibitory effect of aprepitant on CYP3A4 is weak and did not result in a clinically significant increase in the AUC of a sensitive substrate. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Aspirin, ASA; Butalbital; Caffeine: (Major) Avoid coadministration of butalbital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and butalbital is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Aspirin, ASA; Butalbital; Caffeine; Codeine: (Major) Avoid coadministration of butalbital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and butalbital is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Atazanavir: (Major) If coadministration with atazanavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If atazanavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of atazanavir. Abemaciclib is a CYP3A4 substrate and atazanavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Atazanavir; Cobicistat: (Major) If coadministration with atazanavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If atazanavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of atazanavir. Abemaciclib is a CYP3A4 substrate and atazanavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients. (Major) If coadministration with cobicistat is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If cobicistat is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of cobicistat. Abemaciclib is a CYP3A4 substrate and cobicistat is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Berotralstat: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with berotralstat is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and berotralstat is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Bexarotene: (Major) Avoid coadministration of bexarotene with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and bexarotene is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Bosentan: (Major) Avoid coadministration of bosentan with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and bosentan is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Butabarbital: (Major) Avoid coadministration of butabarbital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Abemaciclib is a CYP3A4 substrate and butabarbital is a moderate CYP3A4 inducer. Coadministration with other moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 29% to 53%.
Butalbital; Acetaminophen: (Major) Avoid coadministration of butalbital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and butalbital is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Butalbital; Acetaminophen; Caffeine: (Major) Avoid coadministration of butalbital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and butalbital is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Avoid coadministration of butalbital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and butalbital is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Carbamazepine: (Major) Avoid coadministration of carbamazepine with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and carbamazepine is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Cenobamate: (Major) Avoid coadministration of cenobamate with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and cenobamate is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 29% to 53%.
Ceritinib: (Major) If coadministration with ceritinib is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If ceritinib is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of ceritinib. Abemaciclib is a CYP3A4 substrate and ceritinib is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Chloramphenicol: (Major) If coadministration with chloramphenicol is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If chloramphenicol is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of chloramphenicol. Abemaciclib is a CYP3A4 substrate and chloramphenicol is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Cholera Vaccine: (Moderate) Patients receiving immunosuppressant medications may have a diminished response to the live cholera vaccine. When feasible, administer indicated vaccines prior to initiating immunosuppressant medications. Counsel patients receiving immunosuppressant medications about the possibility of a diminished vaccine response and to continue to follow precautions to avoid exposure to cholera bacteria after receiving the vaccine.
Ciprofloxacin: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with ciprofloxacin is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and ciprofloxacin is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Clarithromycin: (Major) If coadministration with clarithromycin is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If clarithromycin is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of clarithromycin. Abemaciclib is a CYP3A4 substrate and clarithromycin is a strong CYP3A4 inhibitor. Coadministration with clarithromycin increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Cobicistat: (Major) If coadministration with cobicistat is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If cobicistat is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of cobicistat. Abemaciclib is a CYP3A4 substrate and cobicistat is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Colony Stimulating Factors: (Major) Do not administer abemaciclib for at least 48 hours after the last dose of colony stimulating factors, if required. Hematologic toxicities should also be resolved to grade 2 or less prior to resuming treatment with abemaciclib.
Conivaptan: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with conivaptan is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A substrate and conivaptan is a moderate CYP3A inhibitor. Coadministration with other moderate CYP3A inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Crizotinib: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with crizotinib is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and crizotinib is a moderate CYP3A inhibitor. Coadministration with moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Cyclosporine: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with cyclosporine is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and cyclosporine is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Dabrafenib: (Major) Avoid coadministration of dabrafenib with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Abemaciclib is a CYP3A4 substrate and dabrafenib is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Danazol: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with danazol is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and danazol is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Darunavir: (Major) If coadministration with darunavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If darunavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of darunavir. Abemaciclib is a CYP3A4 substrate and darunavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Darunavir; Cobicistat: (Major) If coadministration with cobicistat is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If cobicistat is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of cobicistat. Abemaciclib is a CYP3A4 substrate and cobicistat is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients. (Major) If coadministration with darunavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If darunavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of darunavir. Abemaciclib is a CYP3A4 substrate and darunavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Major) If coadministration with cobicistat is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If cobicistat is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of cobicistat. Abemaciclib is a CYP3A4 substrate and cobicistat is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients. (Major) If coadministration with darunavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If darunavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of darunavir. Abemaciclib is a CYP3A4 substrate and darunavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Major) If coadministration with ritonavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If ritonavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of ritonavir. Abemaciclib is a CYP3A4 substrate and ritonavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Delavirdine: (Major) If coadministration with delavirdine is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If delavirdine is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of delavirdine. Abemaciclib is a CYP3A4 substrate and delavirdine is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Dexamethasone: (Major) Avoid coadministration of dexamethasone with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and dexamethasone is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Diltiazem: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with diltiazem is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and diltiazem is a moderate CYP3A4 inhibitor. Coadministration with diltiazem is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 2.4-fold.
Dronedarone: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with dronedarone is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and dronedarone is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Duvelisib: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with duvelisib is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and duvelisib is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Efavirenz: (Major) Avoid coadministration of efavirenz with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and efavirenz is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Efavirenz; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) Avoid coadministration of efavirenz with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and efavirenz is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Major) Avoid coadministration of efavirenz with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and efavirenz is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Eflapegrastim: (Major) Do not administer abemaciclib for at least 48 hours after the last dose of colony stimulating factors, if required. Hematologic toxicities should also be resolved to grade 2 or less prior to resuming treatment with abemaciclib.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Major) If coadministration with cobicistat is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If cobicistat is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of cobicistat. Abemaciclib is a CYP3A4 substrate and cobicistat is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Major) If coadministration with cobicistat is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If cobicistat is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of cobicistat. Abemaciclib is a CYP3A4 substrate and cobicistat is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Enzalutamide: (Major) Avoid coadministration of enzalutamide with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and enzalutamide is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Erythromycin: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with erythromycin is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and erythromycin is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Eslicarbazepine: (Major) Avoid coadministration of eslicarbazepine with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and eslicarbazepine is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Etravirine: (Major) Avoid coadministration of etravirine with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and etravirine is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Fedratinib: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with fedratinib is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and fedratinib is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Filgrastim, G-CSF: (Major) Do not administer abemaciclib for at least 48 hours after the last dose of colony stimulating factors, if required. Hematologic toxicities should also be resolved to grade 2 or less prior to resuming treatment with abemaciclib.
Fluconazole: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with fluconazole is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and fluconazole is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Fluoxetine: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with fluoxetine is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate. Fluoxetine is a weak CYP3A4 inhibitor, but its metabolite, norfluoxetine, is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Fluvoxamine: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with fluvoxamine is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and fluvoxamine is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Fosamprenavir: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with fosamprenavir is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A substrate and fosamprenavir is a moderate CYP3A inhibitor. Coadministration with other moderate CYP3A inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Fosphenytoin: (Major) Avoid coadministration of fosphenytoin with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and fosphenytoin is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Grapefruit juice: (Major) Advise patients to avoid grapefruit products during abemaciclib treatment due to the potential for increased abemaciclib exposure. Abemaciclib is a CYP3A4 substrate and grapefruit is a strong CYP3A inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Idelalisib: (Major) If coadministration with idelalisib is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If idelalisib is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of idelalisib. Abemaciclib is a CYP3A4 substrate and idelalisib is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Imatinib: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with imatinib is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and imatinib is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Indinavir: (Major) If coadministration with indinavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If indinavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of indinavir. Abemaciclib is a CYP3A4 substrate and indinavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Isavuconazonium: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with isavuconazonium is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and isavuconazole, the active moiety of isavuconazonium, is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Isoniazid, INH; Pyrazinamide, PZA; Rifampin: (Major) Avoid coadministration of rifampin with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and rifampin is a strong CYP3A4 inducer. Coadministration with rifampin decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Isoniazid, INH; Rifampin: (Major) Avoid coadministration of rifampin with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and rifampin is a strong CYP3A4 inducer. Coadministration with rifampin decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Itraconazole: (Major) If coadministration with itraconazole is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If itraconazole is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of itraconazole. Abemaciclib is a CYP3A4 substrate and itraconazole is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Ketoconazole: (Major) Avoid coadministration of abemaciclib with ketoconazole. Abemaciclib is a CYP3A4 substrate and ketoconazole is a strong CYP3A inhibitor. Ketoconazole is predicted to increase the AUC of abemaciclib up to 16-fold.
Lansoprazole; Amoxicillin; Clarithromycin: (Major) If coadministration with clarithromycin is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If clarithromycin is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of clarithromycin. Abemaciclib is a CYP3A4 substrate and clarithromycin is a strong CYP3A4 inhibitor. Coadministration with clarithromycin increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Lefamulin: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with oral lefamulin is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and oral lefamulin is a moderate CYP3A4 inhibitor; an interaction is not expected with intravenous lefamulin. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Lenacapavir: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with lenacapavir is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A substrate and lenacapavir is a moderate CYP3A inhibitor. Coadministration with other moderate CYP3A inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Letermovir: (Moderate) In patients receiving abemaciclib and letermovir WITHOUT concomitant cyclosporine, monitor for an increase in abemaciclib-related adverse reactions; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. In patients who are also receiving treatment with cyclosporine, a dose reduction of abemaciclib is required because the magnitude of this interaction may be amplified. Reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. If letermovir and cyclosporine are discontinued, resume the original dose of abemaciclib after 3 to 5 half-lives. Abemaciclib is a CYP3A4 substrate and letermovir is a moderate CYP3A4 inhibitor; however, the combined effect of letermovir and cyclosporine on CYP3A4 substrates may be similar to a strong CYP3A4 inhibitor. Coadministration with moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold. Coadministration with a strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Levoketoconazole: (Major) Avoid coadministration of abemaciclib with ketoconazole. Abemaciclib is a CYP3A4 substrate and ketoconazole is a strong CYP3A inhibitor. Ketoconazole is predicted to increase the AUC of abemaciclib up to 16-fold.
Lonafarnib: (Major) If coadministration with lonafarnib is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If lonafarnib is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of lonafarnib. Abemaciclib is a CYP3A4 substrate and lonafarnib is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Lopinavir; Ritonavir: (Major) If coadministration with ritonavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If ritonavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of ritonavir. Abemaciclib is a CYP3A4 substrate and ritonavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Lorlatinib: (Major) Avoid coadministration of lorlatinib with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Abemaciclib is a CYP3A4 substrate and lorlatinib is a moderate CYP3A4 inducer. Coadministration with other moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 29% to 53%.
Lumacaftor; Ivacaftor: (Major) Avoid coadministration of lumacaftor; ivacaftor with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and lumacaftor is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Lumacaftor; Ivacaftor: (Major) Avoid coadministration of lumacaftor; ivacaftor with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and lumacaftor is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Mavacamten: (Major) Avoid coadministration of mavacamten with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Abemaciclib is a CYP3A substrate and mavacamten is a moderate CYP3A inducer. Coadministration with other moderate CYP3A inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 29% to 53%.
Methohexital: (Major) Avoid coadministration of methohexital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Abemaciclib is a CYP3A4 substrate and methohexital is a moderate CYP3A4 inducer. Coadministration with other moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 29% to 53%.
Mifepristone: (Major) If coadministration with mifepristone is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If mifepristone is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of mifepristone. Abemaciclib is a CYP3A4 substrate and mifepristone is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients. The clinical significance of this interaction with the short-term use of mifepristone for termination of pregnancy is unknown.
Mitotane: (Major) Avoid coadministration of mitotane with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and mitotane is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Modafinil: (Major) Avoid coadministration of modafinil with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and modafinil is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 29%.
Nafcillin: (Major) Avoid coadministration of nafcillin with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and nafcillin is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Nefazodone: (Major) If coadministration with nefazodone is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If nefazodone is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of nefazodone. Abemaciclib is a CYP3A4 substrate and nefazodone is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Nelfinavir: (Major) If coadministration with nelfinavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If nelfinavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of nelfinavir. Abemaciclib is a CYP3A4 substrate and nelfinavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Netupitant, Fosnetupitant; Palonosetron: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with netupitant is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and netupitant is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Nilotinib: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with nilotinib is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and nilotinib is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Nirmatrelvir; Ritonavir: (Major) If coadministration with ritonavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If ritonavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of ritonavir. Abemaciclib is a CYP3A4 substrate and ritonavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Olanzapine; Fluoxetine: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with fluoxetine is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate. Fluoxetine is a weak CYP3A4 inhibitor, but its metabolite, norfluoxetine, is a moderate CYP3A4 inhibitor. Coadministration with other moderate CYP3A4 inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.
Ombitasvir; Paritaprevir; Ritonavir: (Major) If coadministration with ritonavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If ritonavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of ritonavir. Abemaciclib is a CYP3A4 substrate and ritonavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Omeprazole; Amoxicillin; Rifabutin: (Major) Avoid coadministration of rifabutin with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and rifabutin is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Pegfilgrastim: (Major) Do not administer abemaciclib for at least 48 hours after the last dose of colony stimulating factors, if required. Hematologic toxicities should also be resolved to grade 2 or less prior to resuming treatment with abemaciclib.
Pentobarbital: (Major) Avoid coadministration of pentobarbital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Abemaciclib is a CYP3A4 substrate and pentobarbital is a moderate CYP3A4 inducer. Coadministration with other moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 29% to 53%.
Pexidartinib: (Major) Avoid coadministration of pexidartinib with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Abemaciclib is a CYP3A4 substrate and pexidartinib is a moderate CYP3A4 inducer. Coadministration with other moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 29% to 53%.
Phenobarbital: (Major) Avoid coadministration of phenobarbital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and phenobarbital is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Major) Avoid coadministration of phenobarbital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and phenobarbital is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Phenytoin: (Major) Avoid coadministration of phenytoin with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and phenytoin is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Posaconazole: (Major) If coadministration with posaconazole is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If posaconazole is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of posaconazole. Abemaciclib is a CYP3A4 substrate and posaconazole is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Primidone: (Major) Avoid coadministration of primidone with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and primidone, which is metabolized to phenobarbital, is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Ribociclib: (Major) If coadministration with ribociclib is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If ribociclib is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of ribociclib. Abemaciclib is a CYP3A4 substrate and ribociclib is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Ribociclib; Letrozole: (Major) If coadministration with ribociclib is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If ribociclib is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of ribociclib. Abemaciclib is a CYP3A4 substrate and ribociclib is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Rifabutin: (Major) Avoid coadministration of rifabutin with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and rifabutin is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Rifampin: (Major) Avoid coadministration of rifampin with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Consider alternative treatments. Abemaciclib is a CYP3A4 substrate and rifampin is a strong CYP3A4 inducer. Coadministration with rifampin decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Rifapentine: (Major) Avoid coadministration of rifapentine with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Abemaciclib is a CYP3A4 substrate and rifapentine is a strong CYP3A4 inducer. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Ritonavir: (Major) If coadministration with ritonavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If ritonavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of ritonavir. Abemaciclib is a CYP3A4 substrate and ritonavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Saquinavir: (Major) If coadministration with saquinavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If saquinavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of saquinavir. Abemaciclib is a CYP3A4 substrate and saquinavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
SARS-CoV-2 (COVID-19) vaccines: (Moderate) Patients receiving immunosuppressant medications may have a diminished response to the SARS-CoV-2 virus vaccine. When feasible, administer indicated vaccines prior to initiating immunosuppressant medications. Counsel patients receiving immunosuppressant medications about the possibility of a diminished vaccine response and to continue to follow precautions to avoid exposure to SARS-CoV-2 virus after receiving the vaccine.
Secobarbital: (Major) Avoid coadministration of secobarbital with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Abemaciclib is a CYP3A4 substrate and secobarbital is a moderate CYP3A4 inducer. Coadministration with moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 53%, 41%, and 29% respectively.
Sotorasib: (Major) Avoid coadministration of sotorasib with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Abemaciclib is a CYP3A4 substrate and sotorasib is a moderate CYP3A4 inducer. Coadministration with other moderate CYP3A4 inducers is predicted to decrease the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 29% to 53%.
St. John's Wort, Hypericum perforatum: (Major) Avoid coadministration of St Johns Wort with abemaciclib due to decreased exposure to abemaciclib and its active metabolites, which may lead to reduced efficacy. Abemaciclib is a CYP3A4 substrate and St Johns Wort is a strong CYP3A4 inducer. The amount of individual constituents in various St Johns Wort products may alter the inducing effects, making drug interactions unpredictable. Coadministration with another strong CYP3A4 inducer decreased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 70% in healthy subjects.
Tbo-Filgrastim: (Major) Do not administer abemaciclib for at least 48 hours after the last dose of colony stimulating factors, if required. Hematologic toxicities should also be resolved to grade 2 or less prior to resuming treatment with abemaciclib.
Tipranavir: (Major) If coadministration with tipranavir is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If tipranavir is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of tipranavir. Abemaciclib is a CYP3A4 substrate and tipranavir is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Trandolapril; Verapamil: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with verapamil is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and verapamil is a moderate CYP3A4 inhibitor. Coadministration with verapamil is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6-fold.
Tucatinib: (Major) If coadministration with tucatinib is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If tucatinib is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of tucatinib. Abemaciclib is a CYP3A4 substrate and tucatinib is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Verapamil: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with verapamil is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A4 substrate and verapamil is a moderate CYP3A4 inhibitor. Coadministration with verapamil is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6-fold.
Vonoprazan; Amoxicillin; Clarithromycin: (Major) If coadministration with clarithromycin is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If clarithromycin is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of clarithromycin. Abemaciclib is a CYP3A4 substrate and clarithromycin is a strong CYP3A4 inhibitor. Coadministration with clarithromycin increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Voriconazole: (Major) If coadministration with voriconazole is necessary, reduce the dose of abemaciclib to 100 mg PO twice daily in patients on either of the recommended starting doses of either 200 mg or 150 mg twice daily. In patients who have had already had a dose reduction to 100 mg twice daily due to adverse reactions, further reduce the dose of abemaciclib to 50 mg PO twice daily. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. If voriconazole is discontinued, increase the dose of abemaciclib to the original dose after 3 to 5 half-lives of voriconazole. Abemaciclib is a CYP3A4 substrate and voriconazole is a strong CYP3A4 inhibitor. Coadministration with another strong CYP3A4 inhibitor increased the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by 2.5-fold in cancer patients.
Voxelotor: (Moderate) Monitor for an increase in abemaciclib-related adverse reactions if coadministration with voxelotor is necessary; consider reducing the dose of abemaciclib in 50-mg decrements if toxicities occur. Discontinue abemaciclib for patients unable to tolerate 50 mg twice daily. Abemaciclib is a CYP3A substrate and voxelotor is a moderate CYP3A inhibitor. Coadministration with other moderate CYP3A inhibitors is predicted to increase the relative potency adjusted unbound AUC of abemaciclib plus its active metabolites (M2, M18, and M20) by approximately 1.6- to 2.4-fold.